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Topics

Today, we will discuss the following main topics:

DFT/FFT 1D, 2D

Cooley-Tukey (radix-2) algorithm

Fast Fourier Transform on Zn

Non-commutative FFTs

Clausen’s FFT for the symmetric group

Applications of DFT/FFT in signal/image processing

Fast Polynomial/Integer Multiplication
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My Fourier Transform Library

Source code:

https://github.com/HyTruongSon/Fourier-Transform-Library

Functionalities:

Fourier Transform Library (MATLAB interface based on MEX/C++)

DFT, FFT 1D

DFT, FFT 2D

DCT 2D

JPEG (without lossless compression)

Fast polynomial multiplication

Fast integer multiplication

Other things

All figures in this presentation can be reproduced from my library.
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History

Cooley and Tukey were interested in the analysis of time series. The partic-
ular application that Cooley and Tukey had in mind early in the 1960’s was
the analysis of seismic data. At this time, a nuclear test with the (then) USSR
was under negotiation. The USSR was balking at the notion of site visits, so
it was necessary that there be some way of remotely confirming compliance.

The prevailing idea was to surround the Soviet Union with many sensors in
order to monitor seismic activity. Nuclear detonations could then be de-
tected by particular structure in the Fourier transforms of the collection of
time series.
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Yates - Fast interaction analysis for 2k-factorial designs

One version of the abelian FFT is due to the statistician and design theorist
Yates. To efficiently compute the interaction analysis for data from a 2k-
factorial design, Yates descibed an algorithm which is an FFT for the group
(Z/2Z)k.

A 2k-factorial design is the set of all k-tuples of signs {+1,−1}k, which can
be thought of as the vertices of the k-dimensional hypercube or the space of
binary k-tuples.

It is a natural way to index the trials of an experiment which depends on k
factors, each of which maybe a set at a high or low level.
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Yates - Fast interaction analysis for 2k-factorial designs

Example: Average height of plants, denoted by αswf for a given choice of
sunlight (s), weed killer (w) and fertilizer (f ). We are given a dataset for a
23-factorial design.

The zeroth order effect is the grand mean or total average height:

µgr = 1

8

∑
(s,w,f )∈{+,−}3

αswf

Consider the first order effects: the effect of one particular factor, all other
factors being held equal. Consider the differences of the average yields at a
high level of sunlight versus the average at a low level:

µS = 1

4
(α+−−+α+−++α++−+α+++)− 1

4
(α−−−+α−−++α−+−+α−++)
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Yates - Fast interaction analysis for 2k-factorial designs

The collection of first, second and third order effects can be coded up as the
computation of a matrix-vector multiplication (the matrix of size 2k × 2k).
The analysis is the same as computing the projection of the data vector onto
an orthogonal basis.

Naively, we need (2k)2 operations to compute the analysis. Let Hk denote
the matrix of the Fourier transform on (Z/2Z)k. For example:

H1 =
[

1 1
1 −1

]
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Yates - Fast interaction analysis for 2k-factorial designs

Any character of (Z/2Z)3 maybe written as a tensor product of characters of
the group Z/2Z:

H3 = H1 ⊗H1 ⊗H1

H3 = [I4 ⊗H1] · [I2 ⊗H1 ⊗ I2] · [H1 ⊗ I4]

where Ij denotes the j× j identify matrix.

This is a sparse decomposition of the matrix H3, and the Fourier transform
of α is computed by multiplying by each of these sparse matrices in turn.
Remark: Walsh-Hadamard transform.
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Fourier analysis for finite groups - 1

A (complex) matrix representation of a finite group G is a map ρ from G into
the group d×d invertible matrices with complex entries, GLd(C), such that:

ρ(st) = ρ(s)ρ(t) (∀s, t ∈ G)

where d = dρ is called the degree or dimension of the representation ρ, and
V = Cd is called the representation space of ρ. The function ρij(s) defined
by considering the i, j entry of ρ(s) for each s is called a matrix coefficient.
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Fourier analysis for finite groups - 2

Two representations ρ1 and ρ2 are said to be equivalent if they differ only by
a change of basis, i.e., if there exists an invertible matrix A such that ρ1(s) =
A−1ρ2(s)A for all s ∈ G.

A subspace W ⊂ V = Cd is said to be G-invariant if for all s ∈ G, ρ(s)W ⊂ W .
The representation ρ is said to be irreducible if V = Cd has no G invariant
subspaces other than the trivial subspaces {0} and V . Otherwise, ρ is said to
be reducible.

Any representation is equivalent to the direct sum of irreducible representa-
tions, where the direct sum of two representations is the matrix direct sum
of the representations.
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Fourier analysis for finite groups - 3

Let ρ(1), ..,ρ(h) be a complete set of inequivalent matrix representations for
G with di equal to the degree of ρ(i). Then the corresponding collection of
matrix coefficients {ρ(i)

jk |1 ≤ i ≤ h,1 ≤ j,k ≤ di} form an orthogonal basis for
the |G| dimensional vector space of complex valued functions on G, denoted
CG.

A Fourier transform for a finite group G is a change of basis from the ba-
sis of point mass or delta functions for CG to a basis of irreducible matrix
coefficients.
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Fourier analysis for finite groups - 4

Let G be a finite group and f be a complex valued function on G. Let ρ be
a matrix representation of G. Then the Fourier transformation of f at ρ, de-
noted f̂ (p) is the matrix sum:

f̂ (ρ) = ∑
s∈G

f (s)ρ(s)

Similarly, define the Fourier transform of f at the matrix coefficient ρjk, de-
noted f̂ (ρjk) as the scalar sum:

f̂ (ρjk) = ∑
s∈G

f (s)ρjk(s)
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Fourier analysis for finite groups - 5

Let R be a set of matrix representations of G. Then the Fourier transform of
f on R is the set of |R| (matrix) Fourier transforms of f at the representa-
tions in R, or equivalently, the

∑
ρ∈R

d2
ρ scalar quantities given by the Fourier

transforms of f at the matrix coefficients of the representations in R.
The Fourier inversion formula:

f (s) = 1

|G|
∑
ρ∈R

dρtrace
(
f̂ (ρ)ρ(s−1)

)
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Fourier analysis for finite groups - 6

The convolution of f with h, denoted by f ∗h, is defined as:

f ∗h(x) = ∑
y∈G

f (xy−1)h(y)

For finite groups and for any irreducible representation ρ of G:

�f ∗h(ρ) = f̂ (ρ) · ĥ(ρ)
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Fourier analysis for finite groups - 7

Let G be a finite group, and R any set of matrix representations of G. The
complexity of the Fourier transform for the set R, denoted TG(R), is de-
fined to be the minimum number of operations needed to compute the Fourier
transform of f on R via a straight-line program for an arbitrary complex-
valued function f defined on G. Define the complexity of the group G to
be:

C (G) = min
R

{TG(R)}

where R varies over all complete sets of inequivalent irreducible matrix rep-
resentations of G.
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Fourier analysis for finite groups - 8

The complexity for a set of representations is equal to the complexity for the
direct sum of the representations:

TG(R) = TG(⊕ρ∈Rρ)

Direct computation of any Fourier transform gives the upper and lower bounds:

|G|−1 ≤C (G) ≤ TG(R) ≤ |G|2

The reduced complexity is defined as:

tG(R), TG(R)/|G|
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Continuous Fourier Transform - 1

Fourier transform:

f̂ (w) = 1p
2π

∞∫
−∞

f (x).e−ixwdw

Inverse Fourier transform:

f (x) = 1p
2π

∞∫
−∞

f̂ (w).eixwdw

F (f ) = f̂ (w) is the Fourier transform of f (x).
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Continuous Fourier Transform - 2

Plancharel theorem:

The Fourier transform preserves inner product, if f̂ is the Fourier
transform of f and ĝ is the Fourier transform of g, then:

〈f̂ (w), ĝ(w)〉 = 〈f (x),g(x)〉

‖f (x)‖2 = ‖f̂ (w)‖2

Some other basic properties of Fourier Transform:

F (f (x− c))(w) = e−iwc.f̂ (w)

F (f (cx))(w) = 1
c .f̂ ( w

c )
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Transition from continuous to discrete

To relate the Fourier transform of a continuous function to the transform of
a finite sequence, we should make the following assumptions:

The signal is a periodic function on the real line.

The signal is band-limited, i.e., the signal has a finite Fourier
expansion.

f (t) =
N∑

k=−N
f̂ (k)e−2πikt (0 ≤ t < 1)

f̂ (k) =
1∫

0

f (t)e2πiktdt

Quadrature rule with bandwidth N :

f̂ (k) = 1

2N +1

2N∑
j=0

f
( j

2N +1

)
e2πikj/(2N+1)
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Discrete Fourier Transform 1D - 1

Fourier transform:

f̂k =
1p
N

N−1∑
n=0

fn.e−i2πk n
N

In the case that the original signal (fn) is real:

f̂k =
1p
N

N−1∑
n=0

fn

[
cos

(
2πk

n

N

)− i sin
(
2πk

n

N

)]

Re(f̂k) = 1p
N

N−1∑
n=0

fn.cos
(
2πk

n

N

)
Im(f̂k) =− 1p

N

N−1∑
n=0

fn. sin
(
2πk

n

N

)
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Discrete Fourier Transform 1D - 2

Inverse Fourier transform:

fn = 1p
N

N−1∑
k=0

f̂k.ei2πk n
N

Amplitude:

|f̂k| =
√

Re(f̂k)2 + Im(f̂k)2

Phase:
arg(f̂k) = atan2(Im(f̂k),Re(f̂k))

Source code:

dft_1d.cpp
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Discrete Fourier Transform 1D - 3

example_dft_1d_denoising.m
example_fft_1d_denoising.m
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Discrete Fourier Transform 1D - 4

example_dft_1d_denoising.m
example_fft_1d_denoising.m
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Discrete Fourier Transform 2D - 1

Fourier transform:

f̂x,y = 1p
MN

M−1∑
u=0

N−1∑
v=0

fu,v.e−i2π( xu
M + yv

N )

f̂x,y = 1p
MN

M−1∑
u=0

e−i2π xu
M .

(N−1∑
v=0

fu,v.e−i2π yv
N

)
Let P(u,y) =

N−1∑
v=0

fu,v.e−i2π yv
N . Then:

f̂x,y = 1p
MN

M−1∑
u=0

e−i2π xu
M .P(u,y)
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Discrete Fourier Transform 2D - 2

Inverse Fourier transform:

fu,v = 1p
MN

M−1∑
x=0

N−1∑
y=0

f̂x,y.ei2π( xu
M + yv

N )

fu,v = 1p
MN

M−1∑
x=0

ei2π xu
M .

(N−1∑
y=0

f̂x,y.ei2π yv
N

)

Let H(x,v) =
N−1∑
y=0

f̂x,y.ei2π yv
N . Then:

fu,v = 1p
MN

M−1∑
x=0

ei2π xu
M .H(x,v)

Source code:

dft_2d.cpp
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Discrete Fourier Transform 2D - 3

The Fourier image (to visualize amplitudes or phases) is shifted in such a
way that the value (image mean) f̂ (0,0) is displayed in the center of the im-
age. The further way from the center an image point is, the higher is its cor-
responding frequency. The dynamic range of the Fourier coefficients (for ex-
ample, the intensity values in the Fourier image) is too large to be displayed
on the screen, therefore all other values appear as black. We need to apply a
logarithmic transformation to the image as follows:

Q(i, j) = c log(1+|P(i, j)|)
where P(i, j) is the original image, and Q(i, j) is the transformed image. The
scaling constant c is chosen so that the maximum output value is 255 (pro-
viding an 8-bit format). That means if R is the value with the maximum mag-
nitude in the input image, c is given by:

c = 255

log(1+|R|)
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Discrete Fourier Transform 2D - 4

example_dft_2d.m
example_fft_2d.m
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Fast Fourier Transform 1D (radix-2) - 1

Cooley-Tukey FFT algorithm was invented by Carl Friedrich Gauss and then
rediscovered by Cooley and Tukey (the radix-2 Decimation In Time or DIT
case). DFT is defined by the formula:

f̂k =
N−1∑
n=0

fn.e−
2πi
N nk k = 0,1, ..,N −1

Radix-2 DIT first computes the DFTs of the even-indexed inputs

(f2m = f0, f2, .., fN−2)

and of the odd-indexed inputs

(f2m+1 = f1, f3, .., fN−1)

and then combines those two results to produce the DFT of the whole
sequence.
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Fast Fourier Transform 1D (radix-2) - 2

f̂k =
N/2−1∑

m=0
f2m.e−

2πi
N (2m)k +

N/2−1∑
m=0

f2m+1.e−
2πi
N (2m+1)k

f̂k =
N/2−1∑

m=0
f2m.e−

2πi
N/2 mk +e−

2πi
N k

N/2−1∑
m=0

f2m+1.e−
2πi
N/2 mk

f̂k = Ek +e−
2πi
N k.Ok

where Ek is the DFT of the even-indexed part of fm, and Ok is the DFT of the
odd-indexed part of fm.
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Fast Fourier Transform 1D (radix-2) - 3

Based on the periodicity of the DFT: Ek+N
2
= Ek, Ok+N

2
= Ok. We have the

following:

f̂k = Ek +e−
2πi
N k.Ok 0 ≤ k < N

2

f̂k = Ek−N
2
+e−

2πi
N k.Ok−N

2

N

2
≤ k < N

The harmonic factor e−2πik/N have the property that:

e−
2πi
N (k+N

2 )=e
−2πik

N −πi =−e−
2πik

N

We can cut the number of harmonic factor calculations in half. For
0 ≤ k < N

2 :

f̂k = Ek +e−
2πi
N k.Ok

f̂k+N
2
= Ek −e−

2πi
N k.Ok
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Fast Fourier Transform 1D (radix-2) - 4

Pseudocode:
01: f̂0,1,..,N−1 ← FFT(f ,N ,s) : returns the DFT of (f0, fs, f2s, ..)
02: if N = 1 then
03: f̂0 ← f0

04: else
05: f̂0,..,N/2−1 ← FFT(f ,N/2,2s)
06: f̂N/2,..,N−1 ← FFT(f + s,N/2,2s)
07: for k = 0 to N/2−1
08: t ← f̂k

09: f̂k ← t +exp(−2πik/N)f̂k+N/2

10: f̂k+N/2 ← t −exp(−2πik/N)f̂k+N/2

11: endfor
12: endif
Note that: f + s (in the context of C ++ programming language) means
moving the array pointer of f to the s-th element.
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Fast Fourier Transform on Zn - 1

DFT:

f̂k =
N−1∑
j=0

fjw
jk k = 0,1, ..,N −1 w = e2πi/N

Cooley and Tukey derived and implemented an algorithm which given a
prime factorization of N = p1..pr , computed the DFT in N

∑
i pi. If each

pi = 2, this is 2N log2 N operations. Consider N = pq. We change the in-
dexing:

j = i2 + i1q

k = m1 +m2p
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Fast Fourier Transform on Zn - 2

Define the two-dimensional arrays:

fi1,i2 = fj i1 = 0, ..,p−1 i2 = 0, ..,q−1

f̂m1,m2 = f̂k m1 = 0, ..,p−1 m2 = 0, ..,q−1

DFT becomes:

f̂m1,m2 =
q−1∑
i2=0

wi2(m1+m2p)
p−1∑
i1=0

(wq)i1m1 fi1,i2
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Fast Fourier Transform on Zn - 3

The computation is performed into two steps:

First, q transforms of length p are computed according to

f i2,m1
=

p−1∑
i1=0

(wq)i1m1 fi1,i2

Next, p transforms of length q are computed according to

q−1∑
i2=0

wi2(m1+m2p)f i2,m1

Instead of (pq)2 operations, the above uses (pq)(p+q) operations. The main
idea is that we have converted a one-dimensional algorithm, in terms of in-
dexing, into a two-dimensional algorithm.
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Fast Fourier Transform on Zn - 4

Let G =Z/NZ be the group of integers modulo N . Then the characters of G
are the functions ρ0, ..,ρN−1 defined by:

ρk(j) = wjk

Consider:

The sequence fj as defining a function on Z/NZ.

The sequence f̂k as defining a function on the group of characters.

The DFT is seen as the Fourier transform on Z/NZ:

f̂k = f̂ (ρk) = ∑
j∈Z/NZ

ρk(j)fj
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Non-commutative FFTs - 1

Cooley-Tukey algorithm can be generalized to non-commutative groups
based on the matrix separation of variables:

f̂ (ρ) = ∑
y∈Y

ρ(y)
∑

h∈H
(ρ ↓H )(h)f (yh) ρ ∈RG

where H = {0,q,2q, .., (p−1)q} is a subgroup of G =Zn isomorphic to Zp, and
Y = {0,1,2, ..,q−1}. By theorem of complete reducibility:

(ρ ↓H )(h) = T †
[ ⊕
ρ′∈RH (ρ)

ρ′(h)
]

T

where RH (ρ) is a sequence of irreducible representations of H and T is a
unitary matrix.
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Non-commutative FFTs - 2

Given a G-module V , we say that a basis B is a Gel’fand-Tsetlin basis for V
relative to H < G if the matrix representation induced by B is adapted to H .
When RG is H-adapted:∑

h∈H
(ρ ↓H )(h)f (yh) = ⊕

ρ′∈RH (ρ)

∑
h∈H

ρ′(h)f (yh)

Define fy(h) = f (yh): ⊕
ρ′∈RH (ρ)

∑
h∈H

ρ′(h)fy(h) =⊕
ρ′

f̂y(ρ′)

where f̂y are now Fourier transforms over H .
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Non-commutative FFTs - 3

Algorithm:

1 For each y ∈ Y , compute the Fourier transform {f̂y(ρ)}ρ′∈RH (over H) of
fy.

2 If ρ ∈RG decomposes into irreducibles of H in the form

ρ = ρ′
1 ⊕ρ′

2 ⊕ ..⊕ρ′
k

then assemble the matrix

f y(ρ) = f̂y(ρ′
1)⊕ f̂y(ρ′

2)⊕ ..⊕ f̂y(ρ′
k)

for each y ∈ Y .

3 Finally, complete the transform by computing the sums:

f̂ (ρ) = ∑
y∈Y

ρ(y)f y(ρ) ρ ∈RG
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Clausen’s FFT for the symmetric group - 1

The first non-commutative FFT was proposed by Clausen in 1989 for Fourier
transformation on the symmetric group. Clausen’s algorithm follows the
matrix separation of variables tailored to the chain of subgroups:

S1 <S2 < .. <Sn−1 <Sn
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Clausen’s FFT for the symmetric group - 2

Clausen’s theorem. Let f be a function Sn →C and let

f̂ (λ) = ∑
σ∈Sn

ρλ(σ)f (σ) λ` n

be its Fourier transform with respect to Young’s orthogonal representation.
For i = 1,2, ..,n, define fi : Sn−1 → C as fi(σ′) = f (�i,n�)σ′) for σ′ ∈ Sn−1, and
let

f̂i(λ
−) = ∑

σ′∈Sn−1

ρλ−(σ′)fi(σ
′) λ− ` n−1

be the corresponding Fourier transforms, again with respect to Young’s or-
thogonal representation. Then up to reordering of rows and columns:

f̂ (λ) =
n∑

i=1
ρλ(�i,n�)

⊕
λ−∈R(λ)

f̂i(λ
−)

where R(λ) = {λ− ` n−1|λ− ≤λ}.
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Fast Fourier Transform 2D - 1

Discrete Fourier Transform 2D:

f̂x,y = 1p
MN

M−1∑
u=0

N−1∑
v=0

fu,v.e−i2π
(

xu
M + yv

N

)

f̂x,y = 1p
MN

M−1∑
u=0

e−i2π xu
M .

(N−1∑
v=0

fu,v.e−i2π yv
N

)
We can compute P(u,y) =

N−1∑
v=0

fu,v.e−i2π yv
N by FFT-1D. Again, we use FFT-1D

to compute f̂x,y = 1p
MN

M−1∑
u=0

e−i2π xu
M .P(u,y).
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Fast Fourier Transform 2D - 2

Inverse Discrete Fourier Transform 2D:

fu,v = 1p
MN

M−1∑
x=0

N−1∑
y=0

f̂x,y.ei2π
(

xu
M + yv

N

)

fu,v = 1p
MN

M−1∑
x=0

ei2π xu
M .

(N−1∑
y=0

f̂x,y.ei2π yv
N

)

Compute H(x,v) =
N−1∑
y=0

f̂x,y.ei2π yv
N and then fu,v = 1p

MN

M−1∑
x=0

ei2π xu
M .H(x,v) by

FFT-1D algorithm.
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The effect of Gaussian filter on noisy image - 1

example_fft_2d_gaussian_denoising_by_smoothing.m
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The effect of Gaussian filter on noisy image - 2

example_fft_2d_gaussian_denoising_by_smoothing.m
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Low-pass filter

example_fft_2d_gaussian_denoising_by_lowpass_filter.m
example_fft_2d_gaussian_smoothing.m
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Hybrid image - Mixing frequencies - 1

example_fft_2d_hybrid_frequecy_image.m
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Hybrid image - Mixing frequencies - 2

example_fft_2d_hybrid_frequecy_image.m
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Hybrid image - Mixing frequencies - 3

example_fft_2d_hybrid_frequecy_image.m
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Discrete Cosine Transform

Discrete Cosine Transform:

f̂u,v = 1

4
α(u)α(v)

M−1∑
x=0

N−1∑
y=0

fx,ycos
[ (2x+1)uπ

2M

]
cos

[ (2y+1)vπ

2N

]
where α(u) = 1p

2
if u = 0, and α(u) = 1 otherwise.

Inverse Discrete Cosine Transform:

fx,y = 1

4

M−1∑
u=0

N−1∑
v=0

f̂u,v.α(u)α(v)cos
[ (2x+1)uπ

2M

]
cos

[ (2y+1)vπ

2N

]
Source code:

dct_2d_jpeg.cpp
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DCT 2D operators

example_dct_2d_operator.m
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Inverse DCT 2D operators

example_dct_2d_operator.m
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JPEG by DCT 2D with Huffman code

example_dct_2d_jpeg.m
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Luminance quantization for JPEG

example_dct_2d_jpeg.m
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Chrominance quantization for JPEG

example_dct_2d_jpeg.m
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Fast Polynomial Multiplication by FFT - 1

Given two polynomials:

A(x) =
n−1∑
i=0

ai.x
i

B(x) =
m−1∑
i=0

bi.x
i

Compute:

C(x) = A(x).B(x) =
k−1∑
i=0

ci.x
i (k = n+m−1)

where ci =∑
j

aj.bi−j.
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Fast Polynomial Multiplication by FFT - 2

Let N be the smallest power of 2 that is bigger than or equal to k. We can
rewrite A(x), B(x), C(x) as polynomials of degree N −1 as follows:

A(x) =
n−1∑
i=0

ai.x
i +

N−1∑
i=n

0.xi

B(x) =
m−1∑
i=0

bi.x
i +

N−1∑
i=m

0.xi

C(x) =
k−1∑
i=0

ci.x
i +

N−1∑
i=k

0.xi
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Fast Polynomial Multiplication by FFT - 3

Let w be the N-th complex root of unity: w = cos
(2π

N

)+ i.sin
(2π

N

)
. Some

properties of w:

wj =
[

cos
(2π

N

)
+ i.sin

(2π

N

)]j
= cos

(2π

N
j
)
+ i.sin

(2π

N
j
)

w0 = 1

wN = 1

wj+N
2 =−wj

wj+N = wj
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Fast Polynomial Multiplication by FFT - 4

We will use the idea of the Fast Fourier Transform algorithm to compute the
values of A(x) and B(x) at this special series W = {w0,w1,w2, ..,wN−1} in time
complexity O(N logN). Then we can compute the values of C(x) at W in
time complexity O(N). Finally, from these values, we can intepolate to
compute the coefficients of C(x) again by FFT.

Let P(x) be an arbitrary polynomial of degree N −1: P(x) =
N−1∑
i=0

pi.xi. We

have:

P(wj) =
N−1∑
i=0

pi.(wj)i

⇔ P(wj) =
N/2−1∑

k=0
p2k.(wj)2k +

N/2−1∑
k=0

p2k+1.(wj)2k+1

⇔ P(wj) =
N/2−1∑

k=0
p2k.(w2j)k +wj.

N/2−1∑
k=0

p2k+1.(w2j)k
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Fast Polynomial Multiplication by FFT - 5

On the another hand:

P(wj+N/2) =
N/2−1∑

k=0
p2k.(w2j+N )k +wj+N/2.

N/2−1∑
k=0

p2k+1.(w2j+N )k

⇔ P(wj+N/2) =
N/2−1∑

k=0
p2k.(w2j)k −wj.

N/2−1∑
k=0

p2k+1.(w2j)k
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Fast Polynomial Multiplication by FFT - 6

Pseudocode of computing the DFT F(P) or the evaluation of P(x) at
1,w,w2, ..,wN−1:
01: F0,1,..,N−1 ← FFT(p,N ,s,w) : returns the DFT of (p0,ps,p2s, ..)
02: if N = 1 then
03: F0 ← p0

04: else
05: F0,..,N/2−1 ← FFT(p,N/2,2s,w2)
06: FN/2,..,N−1 ← FFT(p+ s,N/2,2s,w2)
07: x ← 1
08: for j = 0 to N/2−1
09: t ← Fj

10: Fj ← t +x.Fj+N/2

11: Fj+N/2 ← t −x.Fj+N/2

12: x ← x.w
13: endfor
14: endif
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Fast Polynomial Multiplication by FFT - 7

The final algorithm is:

Step 1. Fourier transform for evaluation - time O(N logN):
FA ← FFT(A,N ,1,w)

Step 2. Fourier transform for evaluation - time O(N logN):
FB ← FFT(B,N ,1,w)

Step 3. Time O(N):
for i = 1 to N

FC[i] ← FA[i].FB[i]
endfor

Step 4. Fourier Transform for interpolation - time O(N logN):
C ← 1

N .FFT(FC ,N ,1,w−1)

Note that w−1 = cos
(2π

N

)− i.sin
(2π

N

)
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Fast Integer Multiplication by FFT

Given two decimal integer A = (an−1, ..,a1,a0) and B = (bm−1, ..,b1,b0). A and
B can be expressed in terms of polynomials:

A(10) =
n−1∑
i=0

ai.10i

B(10) =
m−1∑
i=0

bi.10i

Then the product of A and B is equal to A(10).B(10). Apply the Fast Fourier
Transform algorithm as described above, we can compute the
multiplication polynomial C(x) = A(x).B(x) faster, so the result will be C(10).
Source code:
polymul_fft.cpp, example_polymul_fft.m, intmul_fft.cpp,
example_intmul_fft.m
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Q & A

Thank you very much for your attention!
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