
PyTorch, MxNet & Theano

Hy Truong Son
STATT 37790 - Topics in Statistical Machine Learning:
High-Performance Machine Learning System Design

The University of Chicago

May 2019

H. T. Son (UChicago) DL Frameworks May 2019 1 / 34



Reference

Reference:

1 Automatic differentiation in PyTorch, Paszke et. al (NIPS 2017)

2 MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems, Chen et. al (NIPS 2016)

3 Theano: A Python framework for fast computation of mathematical
expressions, Al-Rfou et. al, 2016

To get this presentation slides:

http://people.cs.uchicago.edu/~hytruongson/MXNet-PyTorch.pdf

H. T. Son (UChicago) DL Frameworks May 2019 2 / 34

http://people.cs.uchicago.edu/~hytruongson/MXNet-PyTorch.pdf


Overview

1 PyTorch

2 MxNet

3 Theano

4 Deep Learning frameworks

H. T. Son (UChicago) DL Frameworks May 2019 3 / 34



What is PyTorch?

Definition [Paszke et. al, 2017]
PyTorch is a library designed to enable rapid research on machine learning
models and provides a high performance environment with easy access to
automatic differentiation of models executed on different devices (CPU
and GPU). PyTorch is built upon Lua Torch, Chainer and HIPS Autograd.

Question 1

Why is PyTorch called a library?

Question 2

Why did the authors say rapid research? What was TensorFlow designed
for (discussed last time)?

Question 3

What is the scale of PyTorch (e.g. different devices) vs. TensorFlow?

H. T. Son (UChicago) DL Frameworks May 2019 4 / 34



What is PyTorch?

Definition [Paszke et. al, 2017]
PyTorch is a library designed to enable rapid research on machine learning
models and provides a high performance environment with easy access to
automatic differentiation of models executed on different devices (CPU
and GPU). PyTorch is built upon Lua Torch, Chainer and HIPS Autograd.

Question 1

Why is PyTorch called a library?

Question 2

Why did the authors say rapid research? What was TensorFlow designed
for (discussed last time)?

Question 3

What is the scale of PyTorch (e.g. different devices) vs. TensorFlow?

H. T. Son (UChicago) DL Frameworks May 2019 4 / 34



What is PyTorch?

Definition [Paszke et. al, 2017]
PyTorch is a library designed to enable rapid research on machine learning
models and provides a high performance environment with easy access to
automatic differentiation of models executed on different devices (CPU
and GPU). PyTorch is built upon Lua Torch, Chainer and HIPS Autograd.

Question 1

Why is PyTorch called a library?

Question 2

Why did the authors say rapid research? What was TensorFlow designed
for (discussed last time)?

Question 3

What is the scale of PyTorch (e.g. different devices) vs. TensorFlow?

H. T. Son (UChicago) DL Frameworks May 2019 4 / 34



What is PyTorch?

Definition [Paszke et. al, 2017]
PyTorch is a library designed to enable rapid research on machine learning
models and provides a high performance environment with easy access to
automatic differentiation of models executed on different devices (CPU
and GPU). PyTorch is built upon Lua Torch, Chainer and HIPS Autograd.

Question 1

Why is PyTorch called a library?

Question 2

Why did the authors say rapid research? What was TensorFlow designed
for (discussed last time)?

Question 3

What is the scale of PyTorch (e.g. different devices) vs. TensorFlow?

H. T. Son (UChicago) DL Frameworks May 2019 4 / 34



How is PyTorch similar and different from others?

1 Similarity: Like most other deep learning libraries, PyTorch supports
reverse-mode automatic differentiation of scalar functions (or vector -
Jacobian products of functions with multiple outputs). The most im-
portant form of automatic differentiation for deep learning applica-
tions is usually differentiating a single scalar loss.

2 Difference: To make prototyping easier, PyTorch does not follow the
symbolic approach used in many other deep learning frameworks, but
focuses on differentiation of purely imperative programs, with a focus
on extensibility and low overhead.

H. T. Son (UChicago) DL Frameworks May 2019 5 / 34



How is PyTorch similar and different from others?

1 Similarity: Like most other deep learning libraries, PyTorch supports
reverse-mode automatic differentiation of scalar functions (or vector -
Jacobian products of functions with multiple outputs). The most im-
portant form of automatic differentiation for deep learning applica-
tions is usually differentiating a single scalar loss.

2 Difference: To make prototyping easier, PyTorch does not follow the
symbolic approach used in many other deep learning frameworks, but
focuses on differentiation of purely imperative programs, with a focus
on extensibility and low overhead.

H. T. Son (UChicago) DL Frameworks May 2019 5 / 34



Features of autograd

1 Dynamic, define-by-run execution: A dynamic framework defines the
function to be differentiated simply by running the desired computa-
tion. In contrast, a static graph structure is differentiated symbolically
ahead of time and then run many times.

2 Immediate, eager execution: An eager framework runs tensor com-
putations as it encounters them, avoids materializing a forward graph,
and records only what is necessary to differentiate the computation.

H. T. Son (UChicago) DL Frameworks May 2019 6 / 34



Features of autograd

1 Dynamic, define-by-run execution: A dynamic framework defines the
function to be differentiated simply by running the desired computa-
tion. In contrast, a static graph structure is differentiated symbolically
ahead of time and then run many times.

2 Immediate, eager execution: An eager framework runs tensor com-
putations as it encounters them, avoids materializing a forward graph,
and records only what is necessary to differentiate the computation.

H. T. Son (UChicago) DL Frameworks May 2019 6 / 34



Dynamic eager execution (1)

Traditional reverse - mode differentiation records a tape (also known as a
Wengert list) describing the order in which operations were originally exe-
cuted; this optimization allows implementations to avoid a topological sort.

Every intermediate result records only the subset of the computation graph
that was relevant to their computation. PyTorch users can mix and match
independent graphs (without explicit synchronization). When a portion
of the graph becomes dead, it is automatically freed (to free large memory
chunks).

Question

Can this design work for multiple workers (each worker has multiple
devices) connecting by RPC (or gRPC) as in TensorFlow?

H. T. Son (UChicago) DL Frameworks May 2019 7 / 34



Dynamic eager execution (1)

Traditional reverse - mode differentiation records a tape (also known as a
Wengert list) describing the order in which operations were originally exe-
cuted; this optimization allows implementations to avoid a topological sort.

Every intermediate result records only the subset of the computation graph
that was relevant to their computation. PyTorch users can mix and match
independent graphs (without explicit synchronization). When a portion
of the graph becomes dead, it is automatically freed (to free large memory
chunks).

Question

Can this design work for multiple workers (each worker has multiple
devices) connecting by RPC (or gRPC) as in TensorFlow?

H. T. Son (UChicago) DL Frameworks May 2019 7 / 34



Dynamic eager execution (2)

History

PyTorch started its life as a Python library.

Question

Python is an interpreter language. Is that a problem for automatic
differentiation (AD)?

Core logic in C++

Interpreter overhead is too high for core AD logic. PyTorch is in the process
of moving core operator definitions to C++.

The authors claimed that PyTorch can achieve much lower overhead com-
pared to other frameworks(?).

H. T. Son (UChicago) DL Frameworks May 2019 8 / 34



Dynamic eager execution (2)

History

PyTorch started its life as a Python library.

Question

Python is an interpreter language. Is that a problem for automatic
differentiation (AD)?

Core logic in C++

Interpreter overhead is too high for core AD logic. PyTorch is in the process
of moving core operator definitions to C++.

The authors claimed that PyTorch can achieve much lower overhead com-
pared to other frameworks(?).

H. T. Son (UChicago) DL Frameworks May 2019 8 / 34



Dynamic eager execution (2)

History

PyTorch started its life as a Python library.

Question

Python is an interpreter language. Is that a problem for automatic
differentiation (AD)?

Core logic in C++

Interpreter overhead is too high for core AD logic. PyTorch is in the process
of moving core operator definitions to C++.

The authors claimed that PyTorch can achieve much lower overhead com-
pared to other frameworks(?).

H. T. Son (UChicago) DL Frameworks May 2019 8 / 34



Interface - Example

Consider the following example:
from torch.autograd import Variable
x, prev_h =

Variable(torch.randn(1, 10)),
Variable(torch.randn(1, 20))

W_h, W_x =
Variable(torch.randn(20, 20)),
Variable(torch.randn(20, 10))

i2h = torch.matmul(W_x, x.t())
h2h = torch.matmul(W_h, prev_h.t())
(i2h + h2h).tanh().sum().backward()

H. T. Son (UChicago) DL Frameworks May 2019 9 / 34



Implementation - Metadata

Observation: You write code as if you were executing tensor operations di-
rectly; however, instead of operating on Tensors (PyTorch’s equivalent of
Numpy multi-dimensional array), the user manipulates Variable, which
store extra metadata necessary for automatic differentiation.

Question

What is the extra metadata?

Solution
1 Variables support a backward() method, which computes the

gradient of all input Variables involved in computation.

2 Gradients are accumulated in the grad field of input variables, a
design inherited from Chainer.

H. T. Son (UChicago) DL Frameworks May 2019 10 / 34



Implementation - Metadata

Observation: You write code as if you were executing tensor operations di-
rectly; however, instead of operating on Tensors (PyTorch’s equivalent of
Numpy multi-dimensional array), the user manipulates Variable, which
store extra metadata necessary for automatic differentiation.

Question

What is the extra metadata?

Solution
1 Variables support a backward() method, which computes the

gradient of all input Variables involved in computation.

2 Gradients are accumulated in the grad field of input variables, a
design inherited from Chainer.

H. T. Son (UChicago) DL Frameworks May 2019 10 / 34



Implementation - Metadata

Observation: You write code as if you were executing tensor operations di-
rectly; however, instead of operating on Tensors (PyTorch’s equivalent of
Numpy multi-dimensional array), the user manipulates Variable, which
store extra metadata necessary for automatic differentiation.

Question

What is the extra metadata?

Solution
1 Variables support a backward() method, which computes the

gradient of all input Variables involved in computation.

2 Gradients are accumulated in the grad field of input variables, a
design inherited from Chainer.

H. T. Son (UChicago) DL Frameworks May 2019 10 / 34



Interface - Functional Programming

Autograd style

PyTorch provides a HIPS autograd-style functional interface for computing
gradients.

Example

The function torch.autograd.grad(f(x, y, z), (x, y)) computes
the derivative of f w.r.t. x and y only (no gradient is computed for z).

No mutation for .grad attributes

Unlike the Chainer-style API, the call does not mutate .grad attributes;
instead, it returns a tuple containing gradient w.r.t. each of the inputs
requested in the call.

H. T. Son (UChicago) DL Frameworks May 2019 11 / 34



Interface - Functional Programming

Autograd style

PyTorch provides a HIPS autograd-style functional interface for computing
gradients.

Example

The function torch.autograd.grad(f(x, y, z), (x, y)) computes
the derivative of f w.r.t. x and y only (no gradient is computed for z).

No mutation for .grad attributes

Unlike the Chainer-style API, the call does not mutate .grad attributes;
instead, it returns a tuple containing gradient w.r.t. each of the inputs
requested in the call.

H. T. Son (UChicago) DL Frameworks May 2019 11 / 34



Interface - Functional Programming

Autograd style

PyTorch provides a HIPS autograd-style functional interface for computing
gradients.

Example

The function torch.autograd.grad(f(x, y, z), (x, y)) computes
the derivative of f w.r.t. x and y only (no gradient is computed for z).

No mutation for .grad attributes

Unlike the Chainer-style API, the call does not mutate .grad attributes;
instead, it returns a tuple containing gradient w.r.t. each of the inputs
requested in the call.

H. T. Son (UChicago) DL Frameworks May 2019 11 / 34



Interface - Other properties

1 Excluding subgraphs from derivative computation when they are not
needed for computational saving.

2 PyTorch users can create custom differentiable operations by specify-
ing a pair of forward() and backward() functions in Python. The
forward() computes the operation, while the backward() extends the
vector-Jacobian product.

H. T. Son (UChicago) DL Frameworks May 2019 12 / 34



Implementation - Memory management (1)

Problem 1
One of the biggest limitations of GPUs is low memory capacity.

Solution
1 PyTorch frees all intermediate values as soon as they become

unneeded.

2 Python is well-suited for this purpose, because it is reference counted
by default.

H. T. Son (UChicago) DL Frameworks May 2019 13 / 34



Implementation - Memory management (1)

Problem 1
One of the biggest limitations of GPUs is low memory capacity.

Solution
1 PyTorch frees all intermediate values as soon as they become

unneeded.

2 Python is well-suited for this purpose, because it is reference counted
by default.

H. T. Son (UChicago) DL Frameworks May 2019 13 / 34



Implementation - Memory management (2)

Problem 2
A naive implementation of automatic differentiation can easily introduce
reference cycles. For example, when a differentiable function wants to save
a reference to its output. Another challenge is avoiding reference cycles.

Solution
PyTorch does not record a full-fledged variable, but instead a saved variable,
which omits a pointer to the Function in such cases.

H. T. Son (UChicago) DL Frameworks May 2019 14 / 34



Implementation - Memory management (2)

Problem 2
A naive implementation of automatic differentiation can easily introduce
reference cycles. For example, when a differentiable function wants to save
a reference to its output. Another challenge is avoiding reference cycles.

Solution
PyTorch does not record a full-fledged variable, but instead a saved variable,
which omits a pointer to the Function in such cases.

H. T. Son (UChicago) DL Frameworks May 2019 14 / 34



What is MxNet?

Definition [Chen et. al, 2016]
MxNet is a multi-language machine learning (ML) library to ease the devel-
opment of ML algorithms, especially for deep neural networks. Embedded
in the host language, it blends declrative symbolic expression with impera-
tive tensor computation in a unified fashion. It offers auto differentation to
derive gradients. MxNet is computation and memory efficient and runs on
various heterogeneous systems, ranging from mobile devices to distributed
GPU clusters.

H. T. Son (UChicago) DL Frameworks May 2019 15 / 34



Programming paradigms

Possible programming paradigms are:

1 Imperative: The user specifies exactly how computation needs to be
performed.

2 Declarative: The user focuses on what to be done.

Mixture of programming paradigms

Frameworks such as Theano and TensorFlow can also be viewed as a mixture
of both imperaive and declarative programming paradigms. They declare a
computational graph, yet the computation within the graph is imperatively
specified.

H. T. Son (UChicago) DL Frameworks May 2019 16 / 34



Programming paradigms

Possible programming paradigms are:

1 Imperative: The user specifies exactly how computation needs to be
performed.

2 Declarative: The user focuses on what to be done.

Mixture of programming paradigms

Frameworks such as Theano and TensorFlow can also be viewed as a mixture
of both imperaive and declarative programming paradigms. They declare a
computational graph, yet the computation within the graph is imperatively
specified.

H. T. Son (UChicago) DL Frameworks May 2019 16 / 34



Executions

Execution (how the computation is carried out) can be:

1 Concrete: The result is returend right away on the same thread.

2 Asynchronize (delayed):

The statements are gathered and transformed into a dataflow graph as
an intermediate representation first, before released to available de-
vices.

Mixture of executions
Concrete execution is restrictive (e.g. parallelized matrix multiplication),
whereas asynchronized/delayed execution additionally identified all paral-
lelism within the scope of an instance of dataflow graph automatically.

H. T. Son (UChicago) DL Frameworks May 2019 17 / 34



Executions

Execution (how the computation is carried out) can be:

1 Concrete: The result is returend right away on the same thread.

2 Asynchronize (delayed):

The statements are gathered and transformed into a dataflow graph as
an intermediate representation first, before released to available de-
vices.

Mixture of executions
Concrete execution is restrictive (e.g. parallelized matrix multiplication),
whereas asynchronized/delayed execution additionally identified all paral-
lelism within the scope of an instance of dataflow graph automatically.

H. T. Son (UChicago) DL Frameworks May 2019 17 / 34



Compare to other popular open-source ML libraries

Mixture of different approaches

Combined effort from Amazon resulted in MXNet (or mix-net, previously
called CXXNet), intending to blend advantages of different approaches.

[Chen et. al, 2016]

H. T. Son (UChicago) DL Frameworks May 2019 18 / 34



Compare to other popular open-source ML libraries

Mixture of different approaches

Combined effort from Amazon resulted in MXNet (or mix-net, previously
called CXXNet), intending to blend advantages of different approaches.

[Chen et. al, 2016]

H. T. Son (UChicago) DL Frameworks May 2019 18 / 34



MXNet - Host language

Similar to other Machine Learning
systems, MXNet embeds a domain-
specific language (DSL) into a host
language (e.g. Python, Lua, C++).

H. T. Son (UChicago) DL Frameworks May 2019 19 / 34



MXNet - Declarative Symbolic Expressions

MXNet uses multi-output symbolic
expressions, Symbol, declare the
computation graph:

Symbols are composited by op-
erators, such as matrix oper-
ations or complex neural net-
work layers.

An operator can take several
input variables, produce more
than one output variables, and
have internal state variables.

H. T. Son (UChicago) DL Frameworks May 2019 20 / 34



MXNet - Declarative Symbolic Expressions

MXNet uses multi-output symbolic
expressions, Symbol, declare the
computation graph:

Symbols are composited by op-
erators, such as matrix oper-
ations or complex neural net-
work layers.

An operator can take several
input variables, produce more
than one output variables, and
have internal state variables.

H. T. Son (UChicago) DL Frameworks May 2019 21 / 34



MXNet - Imperative Tensor Computation

MXNet offers NDArray with imper-
ative tensor computation to fill the
gap between the declarative sym-
bolic expression and the host lan-
guage.

H. T. Son (UChicago) DL Frameworks May 2019 22 / 34



MXNet - Declarative vs. Imperative (1)

Declarative programs offer clear
boundary on the global computa-
tion graph, discovering more opti-
mization opportunity, whereas im-
perative programs offer more flexi-
bility.

H. T. Son (UChicago) DL Frameworks May 2019 23 / 34



MXNet - Declarative vs. Imperative (2)

Declarative programming is
useful in specifying the com-
putation structure in neural
network configurations.

Imperative programming is
more natural for parame-
ter updates and interactive
debugging.

H. T. Son (UChicago) DL Frameworks May 2019 24 / 34



MXNet - Data Synchronization Over Devices

The KVStore is a distributed key -
value store for data synchronization
over multiple devices. It supports
two primitives:

1 Push: pushing a key-value pair
from a device to the store.

2 Pull: pulling the value on a key
from the store.

Question

What are the equivalent Google
technologies?

H. T. Son (UChicago) DL Frameworks May 2019 25 / 34



MXNet - Data Synchronization Over Devices

The KVStore is a distributed key -
value store for data synchronization
over multiple devices. It supports
two primitives:

1 Push: pushing a key-value pair
from a device to the store.

2 Pull: pulling the value on a key
from the store.

Question

What are the equivalent Google
technologies?

H. T. Son (UChicago) DL Frameworks May 2019 25 / 34



Implementaiton - Computation Graph

Computation graph for both forward and backward

H. T. Son (UChicago) DL Frameworks May 2019 26 / 34



Implementaiton - Data Communication

Data communication of data centers

Question

What is the name of this topology?

H. T. Son (UChicago) DL Frameworks May 2019 27 / 34



Implementaiton - Data Communication

Data communication of data centers

Question

What is the name of this topology?

H. T. Son (UChicago) DL Frameworks May 2019 27 / 34



Implementaiton - CLOS topology

CLOS topology

In the field of telecommunications, a Clos network is a kind of multi-
stage circuit-switching network which represents a theoretical idealization
of practical, multistage switching systems. It was invented by Edson Erwin
in 1938 and first formalized by Charles Clos in 1952.

H. T. Son (UChicago) DL Frameworks May 2019 28 / 34



Amazon vs. Google

H. T. Son (UChicago) DL Frameworks May 2019 29 / 34



Google’s Jupiter (CLOS topology)

Jupiter Rising: A Decade of Clos Topologies and Centralized Control in
Google’s Datacenter Network, SIGCOMM’15, Google Inc.

H. T. Son (UChicago) DL Frameworks May 2019 30 / 34



Performance

Tested on convnet-benchmarks with batch size 32 on a single Nvidia GTX
980 card. TensorFlow is always 2x slower (which might be due to its use of a
lower CUDNN version).

H. T. Son (UChicago) DL Frameworks May 2019 31 / 34



History lesson: What is Theano?

Theano is a Python library that allows you to define, optimize, and evaluate
mathematical expressions involving multi-dimensional arrays efficiently.
Theano takes an declarative approach, enabling more global graph-aware
optimization. CXXNet (and later, MXNet) adopts declarative programming
(over tensor abstraction) and concrete execution, similar to Caffe.

Legacy

Forgotten, but influenced other Deep Learning frameworks.

H. T. Son (UChicago) DL Frameworks May 2019 32 / 34



Popularity - Github repositories

May 2017

H. T. Son (UChicago) DL Frameworks May 2019 33 / 34



Popularity - Search interest

February 2018

H. T. Son (UChicago) DL Frameworks May 2019 34 / 34


	PyTorch
	MxNet
	Theano
	Deep Learning frameworks

