
TensorFlow - Masterpiece of Engineering

Hy Truong Son
STATT 37790 - Topics in Statistical Machine Learning:
High-Performance Machine Learning System Design

The University of Chicago

May 2019

H. T. Son (UChicago) TensorFlow May 2019 1 / 37



Reference

Reference:

1 TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems, Abadi et. al

2 https://www.tensorflow.org/guide/extend/architecture

To get this presentation slides:

http://people.cs.uchicago.edu/~hytruongson/tensorflow.pdf

H. T. Son (UChicago) TensorFlow May 2019 2 / 37

https://www.tensorflow.org/guide/extend/architecture
http://people.cs.uchicago.edu/~hytruongson/tensorflow.pdf


What is TensorFlow?

Definition
TensorFlow is an interface for expressing machine learning algorithms, and
an implementation for executing such algorithms.

Question

Why did they use the word interface? Why not framework like PyTorch
framework?

H. T. Son (UChicago) TensorFlow May 2019 3 / 37



What is TensorFlow?

Definition
TensorFlow is an interface for expressing machine learning algorithms, and
an implementation for executing such algorithms.

Question

Why did they use the word interface? Why not framework like PyTorch
framework?

H. T. Son (UChicago) TensorFlow May 2019 3 / 37



What is special about TensorFlow?

A computation expressed using TensorFlow can be executed with little or
no change on a wide variety of heterogeneous systems, ranging from mo-
bile devices such as phones and tablets up to large-scale distributed systems
of hundreds of machines and thousands of computational devices such as
GPU cards (update: TPU as well).

Reality

The fact is: TensorFlow is designed just for Google infrastructure. Internal
TF is always smooth and efficient in any scenario. But not really outside!

H. T. Son (UChicago) TensorFlow May 2019 4 / 37



What is special about TensorFlow?

A computation expressed using TensorFlow can be executed with little or
no change on a wide variety of heterogeneous systems, ranging from mo-
bile devices such as phones and tablets up to large-scale distributed systems
of hundreds of machines and thousands of computational devices such as
GPU cards (update: TPU as well).

Reality

The fact is: TensorFlow is designed just for Google infrastructure. Internal
TF is always smooth and efficient in any scenario. But not really outside!

H. T. Son (UChicago) TensorFlow May 2019 4 / 37



History

The Google Brain project started in 2011 to explore the use of very-large-
scale deep neural networks, both for research and for use in Google’s prod-
ucts.

As part of the early work in this project, we built DistBelief, our first-
generation scalable distributed training and inference system, and this sys-
tem has served us well.

Question 1

Why did they name their first system as DistBelief?

Question 2

If this system has served us well, why did they have to make TensorFlow?

H. T. Son (UChicago) TensorFlow May 2019 5 / 37



History

The Google Brain project started in 2011 to explore the use of very-large-
scale deep neural networks, both for research and for use in Google’s prod-
ucts. As part of the early work in this project, we built DistBelief, our first-
generation scalable distributed training and inference system, and this sys-
tem has served us well.

Question 1

Why did they name their first system as DistBelief?

Question 2

If this system has served us well, why did they have to make TensorFlow?

H. T. Son (UChicago) TensorFlow May 2019 5 / 37



History

The Google Brain project started in 2011 to explore the use of very-large-
scale deep neural networks, both for research and for use in Google’s prod-
ucts. As part of the early work in this project, we built DistBelief, our first-
generation scalable distributed training and inference system, and this sys-
tem has served us well.

Question 1

Why did they name their first system as DistBelief?

Question 2

If this system has served us well, why did they have to make TensorFlow?

H. T. Son (UChicago) TensorFlow May 2019 5 / 37



History

The Google Brain project started in 2011 to explore the use of very-large-
scale deep neural networks, both for research and for use in Google’s prod-
ucts. As part of the early work in this project, we built DistBelief, our first-
generation scalable distributed training and inference system, and this sys-
tem has served us well.

Question 1

Why did they name their first system as DistBelief?

Question 2

If this system has served us well, why did they have to make TensorFlow?

H. T. Son (UChicago) TensorFlow May 2019 5 / 37



Layers of TensorFlow - Client

Client:
Defines the computation as a
dataflow graph.

Initiates graph execution using
a session.

Question

What is the graph here?

H. T. Son (UChicago) TensorFlow May 2019 6 / 37



Layers of TensorFlow - Client

Client:
Defines the computation as a
dataflow graph.

Initiates graph execution using
a session.

Question

What is the graph here?

H. T. Son (UChicago) TensorFlow May 2019 6 / 37



Computation graph

A

B

C

AB

ABC

A

B

C

A’s gradient

B’s gradient

C’ gradient

AxBxC

GPUMain memory

In
pu

t
O

ut
pu

t

Matrix * A = new Matrix(m, n);
Matrix * B = new Matrix(m, p);
Matrix * C = new Matrix(p, q);
MatMul * AB = new Matrix(A, B);
MalMul * ABC = new Matrix(AB, C);
ABC->upload();
ABC->forward();
ABC->backward();
ABC->download();

download

upload
forward
backward

You can build your own computation graph in C++!

H. T. Son (UChicago) TensorFlow May 2019 7 / 37



Layers of TensorFlow - Client

H. T. Son (UChicago) TensorFlow May 2019 8 / 37



Layers of TensorFlow - Distributed Master

Distributed Master:
Prunes a specific subgraph
from the graph, as defined by
the arguments to
Session.run().

Partitions the subgraph into
multiple pieces that run in
different processes and
devices.

H. T. Son (UChicago) TensorFlow May 2019 9 / 37



Layers of TensorFlow - Distributed Master

Distributed Master:
Distributes the graph pieces to
worker services.

Initiates graph piece execution
by worker services.

H. T. Son (UChicago) TensorFlow May 2019 10 / 37



Layers of TensorFlow - Distributed Master

H. T. Son (UChicago) TensorFlow May 2019 11 / 37



Layers of TensorFlow - Distributed Master

The distributed master has grouped the model parameters in order to place
them together on the parameter server.

H. T. Son (UChicago) TensorFlow May 2019 12 / 37



Layers of TensorFlow - Distributed Master

Where graph edges are cut by the partition, the distributed master inserts
send and receive nodes to pass information between the distributed tasks.

H. T. Son (UChicago) TensorFlow May 2019 13 / 37



Layers of TensorFlow - Distributed Master

The distributed master then ships the graph pieces to the distributed tasks.

H. T. Son (UChicago) TensorFlow May 2019 14 / 37



Layers of TensorFlow - Worker Services

Worker Services:
Schedule the execution of
graph operations using kernel
implementations appropriate
to the available hardware
(CPUs, GPUs, TPUs, etc).

Send and receive operation
results to and from other
worker services.

H. T. Son (UChicago) TensorFlow May 2019 15 / 37



Layers of TensorFlow - Worker Services

gRPC over TCP

H. T. Son (UChicago) TensorFlow May 2019 16 / 37



Layers of TensorFlow - Kernel Implementations

Kernel Implementations:
Perform the computation for
individual graph operations.

H. T. Son (UChicago) TensorFlow May 2019 17 / 37



Client - Master - Workers

The main components in a TensorFlow system are the client, which uses the
Session interface to communicate with the master, and one or more worker
processes, with each worker process responsible for arbitrating access to
one or more computational devices (such as CPU cores or GPU cards) and
for executing graph nodes on those devices as instructed by the master.

Question

Why does TensorFlow’s model of computation has only a single master?

Solution
Jeff Dean: MapReduce, GFS, etc.

H. T. Son (UChicago) TensorFlow May 2019 18 / 37



Client - Master - Workers

The main components in a TensorFlow system are the client, which uses the
Session interface to communicate with the master, and one or more worker
processes, with each worker process responsible for arbitrating access to
one or more computational devices (such as CPU cores or GPU cards) and
for executing graph nodes on those devices as instructed by the master.

Question

Why does TensorFlow’s model of computation has only a single master?

Solution
Jeff Dean: MapReduce, GFS, etc.

H. T. Son (UChicago) TensorFlow May 2019 18 / 37



Client - Master - Workers

The main components in a TensorFlow system are the client, which uses the
Session interface to communicate with the master, and one or more worker
processes, with each worker process responsible for arbitrating access to
one or more computational devices (such as CPU cores or GPU cards) and
for executing graph nodes on those devices as instructed by the master.

Question

Why does TensorFlow’s model of computation has only a single master?

Solution
Jeff Dean: MapReduce, GFS, etc.

H. T. Son (UChicago) TensorFlow May 2019 18 / 37



Local vs Distributed (1)

There are 2 implementations of TensorFlow:

1 Local: The local implementation is used when the client, the master,
and the worker all run on a single machine in the context of a single
operating system process (possibly with multiple devices, e.g. GPU
cards in one machine).

2 Distributed: The distributed implementation shares most of the code
with the local implementation, but extends it with support for an
environment where the client, the master, and the workers can all be
in different processes on different machines.

H. T. Son (UChicago) TensorFlow May 2019 19 / 37



Local vs Distributed (2)

H. T. Son (UChicago) TensorFlow May 2019 20 / 37



Single-Device Execution

This is the simplest execution scenario: a single worker process with a single
device. The nodes of the graph are executed in an order that respects the
dependencies between nodes.

Question

How to find the order that respects the dependencies between nodes?

Solution
We keep track of a count per node of the number of dependencies of
that node that have not yet been executed.

Once this count drops to zero, the node is eligible for execution and is
added to a ready queue.

The ready queue is processed in some unspecified order, delegating
execution of the kernel for a node to the device object.

When a node has finished executing, the counts of all nodes that
depend on the completed node are decremented.

H. T. Son (UChicago) TensorFlow May 2019 21 / 37



Single-Device Execution

This is the simplest execution scenario: a single worker process with a single
device. The nodes of the graph are executed in an order that respects the
dependencies between nodes.

Question

How to find the order that respects the dependencies between nodes?

Solution
We keep track of a count per node of the number of dependencies of
that node that have not yet been executed.

Once this count drops to zero, the node is eligible for execution and is
added to a ready queue.

The ready queue is processed in some unspecified order, delegating
execution of the kernel for a node to the device object.

When a node has finished executing, the counts of all nodes that
depend on the completed node are decremented.

H. T. Son (UChicago) TensorFlow May 2019 21 / 37



Single-Device Execution

This is the simplest execution scenario: a single worker process with a single
device. The nodes of the graph are executed in an order that respects the
dependencies between nodes.

Question

How to find the order that respects the dependencies between nodes?

Solution
We keep track of a count per node of the number of dependencies of
that node that have not yet been executed.

Once this count drops to zero, the node is eligible for execution and is
added to a ready queue.

The ready queue is processed in some unspecified order, delegating
execution of the kernel for a node to the device object.

When a node has finished executing, the counts of all nodes that
depend on the completed node are decremented.
H. T. Son (UChicago) TensorFlow May 2019 21 / 37



Multi-Device Execution

Once a system has multiple devices, there are two main complications:

1 Deciding which device to place the computation for each node in the
graph ⇒ Node Placement Algorithm.

2 Managing the required communication of data across device
boundaries implied by these placement decisions ⇒ Cross-Device
Communication.

H. T. Son (UChicago) TensorFlow May 2019 22 / 37



Node Placement Algorithm (1)

Task
Given a computation graph, one of the main responsibilities of the
TensorFlow implementation is to map the computation onto the set of
available devices.

Input

One input to the placement algorithm is a cost model, which contains
estimates of the sizes (in bytes) of the input and output tensors for each
graph node, along with estimates of the computation time required for
each node when presented with its input tensors.

H. T. Son (UChicago) TensorFlow May 2019 23 / 37



Node Placement Algorithm (1)

Task
Given a computation graph, one of the main responsibilities of the
TensorFlow implementation is to map the computation onto the set of
available devices.

Input

One input to the placement algorithm is a cost model, which contains
estimates of the sizes (in bytes) of the input and output tensors for each
graph node, along with estimates of the computation time required for
each node when presented with its input tensors.

H. T. Son (UChicago) TensorFlow May 2019 23 / 37



Node Placement Algorithm (2)

Solution
1 The placement algorithm runs a simulated execution of the graph.

2 It starts with the sources of the computation graph, and simulates the
activity on each device in the system as it progresses.

3 For nodes with multiple devices, the placement algorithm uses a
greedy heuristic that examines the effects on the completion time of
the node of placing the node on each possible device.

4 The node to device placement generated by this simulation is also
used as the placement for the real execution.

H. T. Son (UChicago) TensorFlow May 2019 24 / 37



Cross-Device Communication

Decentralization philosophy: allow the scheduling of individual nodes of
the graph on different devices to be decentralized into the workers.

H. T. Son (UChicago) TensorFlow May 2019 25 / 37



Gradient Computation (1)

Consider the following Python code:
tensorflow as tf
b = tf.Variable(tf.zeros([1000]))
W = tf.Variable(tf.random_uniform([784, 1000], -1, 1))
x = tf.placeholder(name = "x")
relu = tf.nn.relu(tf.matmul(W, x) + b)
C = [...]
s = tf.Session()
for step in range(0, 100):
input = ...
result = s.run(C, feed_dict = x: input)
print step, result

H. T. Son (UChicago) TensorFlow May 2019 26 / 37



Gradient Computation (2)

H. T. Son (UChicago) TensorFlow May 2019 27 / 37



Partial Execution

Often a client wants to execute just a subgraph of the entire execution
graph. For example: Only route f ← c ← a is needed.

H. T. Son (UChicago) TensorFlow May 2019 28 / 37



Data Parallel Training - Single CPU

Graph 1

Graph 2

...

Graph N

Mini-Batch

Thread 1

Thread 2

...

Thread 8

Gradient 1

Gradient 2

...

Gradient N

Stochastic
Gradient
Descent

H. T. Son (UChicago) TensorFlow May 2019 29 / 37



Synchronous vs Asynchronous

H. T. Son (UChicago) TensorFlow May 2019 30 / 37



Model Parallel Training

Model parallel training, where different portions of the model computation
are done on different computational devices simultaneously for the same
batch of examples. For example: A recurrent, deep LSTM model used for
sequence to sequence learning, parallelized across three different devices.

H. T. Son (UChicago) TensorFlow May 2019 31 / 37



Customized Kernel Implementation - PyTorch (1)

so3vector_product.cpp

std::vector<torch::Tensor> product_forward(
const std::vector<torch::Tensor> &v1,
const std::vector<torch::Tensor> &v2,
const int L

) {
...

}

std::vector<torch::Tensor> product_backward(
const std::vector<torch::Tensor> &product_grad,
const std::vector<torch::Tensor> &v1,
const std::vector<torch::Tensor> &v2

) {
...

}

H. T. Son (UChicago) TensorFlow May 2019 32 / 37



Customized Kernel Implementation - PyTorch (2)

so3vector_product.cpp

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(

"product_forward",
&product_forward,
"Tensor product operation - Forward pass");

m.def(
"backward_forward",
&backward_forward,
"Tensor product operation - Backward pass");

}

H. T. Son (UChicago) TensorFlow May 2019 33 / 37



Customized Kernel Implementation - PyTorch (3)

_so3vector_product.py

import so3vector_product

class SO3vector_Product(torch.autograd.Function):
@staticmethod
def forward(ctx, v1, v2, L):

product = so3vector_product.product_forward(v1, v2, L)
variables = v1 + v2
ctx.save_for_backward(*variables)
ctx.L1 = len(v1)
return tuple(product)

@staticmethod
def backward(ctx, product_grad):

v = ctx.saved_variables
v1 = v[0:ctx.L1+1]
v2 = v[ctx.L1+1:]
grads = so3vector_product.product_backward(product_grad, v1, v2)
v1_grad = grads[0:ctx.L1+1]
v2_grad = grads[ctx.L1+1:]
return tuple(v1_grad), tuple(v2_grad)

H. T. Son (UChicago) TensorFlow May 2019 34 / 37



Customized Kernel Implementation - TensorFlow (1)

CPU_API.cc

typedef float TYPE;
class TensorProductOp : public OpKernel {
public:

explicit TensorProductOp(OpKernelConstruction *context) : OpKernel(context) {
OP_REQUIRES_OK(context, context -> GetAttr("L", &L));

}
void Compute(OpKernelContext *context) override {

...
}

private:
int L;

};

REGISTER_OP("TensorProduct")
.Attr("T: list(type)")
.Attr("L: int")
.Input("in: T")
.Output("out: T")
;

REGISTER_KERNEL_BUILDER(Name("TensorProduct").Device(DEVICE_CPU),
TensorProductOp);

H. T. Son (UChicago) TensorFlow May 2019 35 / 37



Customized Kernel Implementation - TensorFlow (2)

CPU_API.cc

class TensorProductGradOp : public OpKernel {
public:

explicit TensorProductGradOp(OpKernelConstruction *context) : OpKernel(context) {
OP_REQUIRES_OK(context, context -> GetAttr("L", &L));

}
void Compute(OpKernelContext *context) override {

...
}

private:
int L;

};

REGISTER_OP("TensorProductGrad")
.Attr("P: list(type)")
.Attr("T: list(type)")
.Input("product_grad: P")
.Input("v: T")
.Output("v_grads: T")
;

REGISTER_KERNEL_BUILDER(Name("TensorProductGrad").Device(DEVICE_CPU),
TensorProductGradOp);

H. T. Son (UChicago) TensorFlow May 2019 36 / 37



Customized Kernel Implementation - TensorFlow (3)

CPU_API_grad.py

CPU_API = tf.load_op_library("CPU_API/CPU_API.so")

@ops.RegisterGradient("TensorProduct")
def tensor_product_grad(op, *grad):

L = op.get_attr("L")
return CPU_API.tensor_product_grad(grad, op.inputs, L = L)

H. T. Son (UChicago) TensorFlow May 2019 37 / 37


