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Introduction

Objective

Learn heuristics for combinatorial optimization (NP-hard problems):

Travelling Salesman Problem (TSP)

Vehicle Routing Problem (VRP)

Orienteering Problem (OP)

(Stochastic) Prize Collecting TSP (PCTSP)

The paper’s proposal

Model based on attention layers with benefits over the Pointer
Network.

Train the model using REINFORCE with a simple baseline based on
a deterministic greedy rollout.
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NP-hard and NP-complete

NP-hard

TSP is an NP-hard (non-deterministic polynomial-time hardness)
problem.

If I give you a solution, you cannot check whether or not that solution
is optimal by any polynomial-time algorithm.

NP-complete

Deciding if there is a Hamiltonian path/cycle in a graph is an
NP-complete problem.

If I give you a solution, you can check whether or not it is a valid
Hamiltonian path/cycle by a simple polynomial-time algorithm.

Problem of deciding if a graph has a Hamiltonian path/cycle can be
reduced to finding one.
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NP-complete

NP-complete problems

Boolean satisfiability problem (SAT)

Hamiltonian path/cycle problem

Clique problem

Vertex cover problem

P = NP?

2-SAT problem has a polynomial-time algorithm, but not for k-SAT
with k > 2.

3-SAT can be reduced to Hamiltonian path/cycle problem, and vice
versa. Reduction is a transformation by a polynomial-time algorithm
from one problem to another.

3-SAT is called to be Turing equivalent to Hamiltonian path/cycle
problem.
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NP-complete

P = NP?

If we can offer a polynomial-time algorithm to solve any NP-complete
problem, then we can solve all others (because they are
Turing-equivalent) and we can prove that P = NP.

Any neural network finding a solution of the Hamiltonian path/cycle
problem that has complexity O(|V |c) where |V | is the size of the
graph and c is a constant independent of |V | is considered as a
polynomial-time algorithm.

My proposal

Investigate how powerful is graph neural networks?

How to achieve global understanding of the graph?

How much affect global has with respect to local empirically?
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Attention Model

We define a problem instance s as a graph with n nodes, where node
i ∈ {1, 2, .., n} is represented by features xi that is the coordinates. The
graph is fully connected. We define a solution (tour) π = (π1, .., πn) as a
permutation of the nodes.

Our attention based encoder-decoder model defines a stochastic policy
p(π|s) for selecting a solution given a problem instance s (factorized and
parameterized by θ):

pθ(π|s) =
n∏

t=1

pθ(πt |s,π1:t−1)

The encoder produces embeddings of all input nodes. The decoder
produces the sequence π of input nodes, one node at a time.
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Encoder (1)

From the dx -dimensional input features xi (for TSP dx = 2), the encoder

compute initial dh-dimensional node embeddings h
(0)
i (in experiment,

dh = 128):

h
(0)
i = W xxi + bx

Denote with h
(`)
i the node embeddings produced by layer ` ∈ {1, ..,N}.

Encoder architecture

Transformer architecture in which each attention layer consist of two
sublayers:

a multi-head attention (MHA) layer that executes message passing
between the nodes.

a node-wise fully connected feed-forward (FF) layer.

each sublayer has skip-connection and batch normalization (BN)
that works better than layer normalization.
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Encoder (2)

ĥi = BN`

(
h
(`−1)
i + MHA`i

(
h
(`−1)
1 , .., h

(`−1)
n

))
h
(`)
i = BN`

(
ĥi + FF `(ĥi )

)

MHA = multi-head attention

FF = fully connected feed-forward

BN = batch normalization

The encoder computes an aggregated embedding h̄(N) of the input graph

as the mean of the final node embeddings h
(N)
i :

h̄(N) =
1

n

n∑
i=1

h
(N)
i
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Context embedding (1)

The context of the decoder at time t comes from the encoder and the
output up to time t consisting of the embedding of: (i) the graph, (ii) the
previous (last) node πt−1, and (iii) the first node π1.

t = 1: h
(N)
(c) = [h(N), v1, v f ] where v1 and v f are input placeholders.

t > 1: h
(N)
(c) = [h̄(N), h

(N)
πt−1 , h

(N)
π1 ]

A new context node embedding h
(N+1)
(c) using the (M-head) attention

mechanism. Compute a single query q(c) (per head) from the context
node:

q(c) = WQh(c) ki = WKhi
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Context embedding (2)

Mask (set u(c)j = −∞ nodes which cannot be visited at time t, otherwise
set:

u(c)j =
qT(c)kj√

dk

where dk = dh
M is the query/key dimensionality. We output probability

vector p using a softmax:

pi = pθ(πt = i |s,π1:t−1) =
eu(c)i∑
j e

u(c)j
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Context embedding (3)
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Reinforce with greedy rollout baseline (1)

We define the loss L(θ|s) = Epθ(π|s)[L(π)] that is the expectation of the
cost L(π) (tour length for TSP). We optimize L by gradient descent, using
the REINFORCE gradient estimator with baseline b(s):

5L(θ|s) = Epθ(π|s)[(L(π)− b(s))5 log pθ(π|s)]

where b(s) is the cost of a solution from a deterministic greedy rollout
of the policy defined by the best model so far. Self-critical training with
an exponential moving average:

b(s)← βb(s) + (1− β)L(π)
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Reinforce with greedy rollout baseline (2)

Alternative to the greedy rollout

Why don’t we choose Genetic Algorithm or Ant Colony as the baseline
b(s) and apply Q-Learning instead?
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Drawbacks

Local vs. Global

Usually, people only apply few layers of message passing that can only
capture local structure.

The solution of Traveling Saleman Problem (TSP) requires an
understanding of the global structure.

For two furthest vertices to exchange messages, it would require
|V | − 1 iterations of message passing.

Therefore, we need |V | − 1 layers of message passing neural networks.

However, in theory, it is proven that the Weisfeiler-Lehman
isomorphism test only needs O(log |V |) iterations. What would be
the optimal number of layers? – Open question!

To train a deep network of many layers, we need skip connection like
to train with Recurrent Neural Networks.
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Graph Transformer Networks
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Proposal architectures

Encoder - Proposal 1

MPNN of |V | − 1 layers and skip connection.

Encoder - Proposal 2

(Transformer idea) |V | MPNNs of |V | − 1 layers in which k-th MPNN has
input as Ak . The outputs of all MPNNs are concatenated.

Decoder

The solution of TSP and Hamiltonian problem is represented by an
adjacency matrix.

(From Variational Graph Autoencoder - VGAE) Given the output
from the encoder (or latent representation) Z . The decoder gives the
output adjacency as:

Â = σ(ZZT )

where σ is the Sigmoid function.
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TSP - data generation (1)

Input

Random N points on the 2D plane (coordinates range from -100 to
100). In our experiments, N ∈ {5, 10, 20}.
The input adjacency matrix is the normalized Euclidean-distance
matrix.

Baselines

OPT: Optimal solution found by Dynamic Programming O(N2× 2N).

Sampling: Random a solution (permutation) 10,000 times and select
the best.

2-OPT: Random a solution (permutation) and iterative fix that
solution until there is no crossing. We can prove that the factor is
less than 2.

2-OPT*: Repeat 2-OPT 10,000 times and select the best.
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TSP - data generation (2)
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TSP - result

It does not work! Sorry!

Method N = 5 N = 10 N = 20

Sampling/OPT 1.0 1.07 1.78

2-OPT*/OPT 1.0 1.0 1.0

Proposal 1/OPT ? ? ?

Proposal 2/OPT ? ? ?
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Hamiltonian cycle finding - data generation (1)

Data generation

1 Random a permutation p that determines a Hamiltonian cycle

2 Initialize the graph as that cycle

3 Random a number m ∈ [0,N(N − 1)/2]

4 If m > N, add m − N random edges to the graph, otherwise do
nothing.
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Hamiltonian cycle finding - data generation (2)
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Hamiltonian cycle finding - result

Training, validation and testing sets contain 10,000 graphs each. The
metrics is percentage of the number of graphs the networks can correctly
output one of its Hamiltonian cycle. The baseline is local MPNN with
only 3 iterations of message passing.

Method N = 5 N = 10 N = 20

(Local) MPNN 86.97% 3.52% 7.4%

Proposal 1 86.97% 37.51% 20.52%

Proposal 2 86.97% 41.16% 20.54%

2N(N−1)/2 1,024 3.5184372e+13 1.5692754e+57
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What next?

Theoretical question

The message passing neural network is zero-th order. What is the
limit/power of higher-order message passing? Covariant Compositional
Networks?

Practical question

Attention?

What are the applications?

What are the competing methods? For publication.
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Q & A

Thank you very much for your attention!
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