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Gaussian Filters

Gaussian Filters

an important family of recursive state estimators.

constitutes the earliest tractable implementations of the Bayes filter
for continuous spaces.

the most popular family of techniques to date despite a number of
shortcomings.

Basic idea

Beliefs are represented by multivariate normal distribution:

p(x) = det(2πΣ)−
1
2 exp

{
− 1

2
(x − µ)TΣ−1(x − µ)

}
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Representations

Moments representation

The representation of a Gaussian by its mean and covariance is called
moments representation because the mean and covariance are the first
and second moments of a probability distribution; all other moments are
zero for normal distributions.

Alternative

Canonical/natural representation.

Both moments and canonical/natural representations are functionally
equivalent in that a bijective mapping exits that transforms one into
the other (and back).
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Kalman Filter

History

Kalman filter (KF) was invented in the 1950s by Rudolph Emil Kalman, as
a technique for filtering and prediction in linear systems.

Overview

Kalman filter implements belief computation for continuous states. It
is not applicable to discrete or hybrid state spaces.

Kalman filter represents beliefs by the moments representation. At
time t, the belief is represented by the mean µt and the covariance
Σt . Posteriors are Gaussian. KF uses Markov assumptions of the
Bayes filter.
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Linear Gaussian Systems (1)

Next state probability p(xt |ut , xt−1) must be a linear function in its
arguments with added Gaussian noise:

xt = Atxt−1 + Btut + εt

where:

xt ∈ Rn is the state vector.

ut ∈ Rm is the control vector.

εt ∼ N (0,Rt) is the system noise capturing the randomness of the
system with mean zero and covariance Rt .

At ∈ Rn×n and Bt ∈ Rn×m.

This is linear system dynamics.

Son (UChicago) EKF & UKF January 23, 2020 5 / 39



Linear Gaussian Systems (1)

Next state probability p(xt |ut , xt−1) must be a linear function in its
arguments with added Gaussian noise:

xt = Atxt−1 + Btut + εt

The mean of the posterior p(xt |ut , xt−1) is given by Atxt−1 + Btut and
covariance Rt :

p(xt |ut , xt−1) = det(2πRt)
− 1

2

exp

{
− 1

2
(xt − Atxt−1 − Btut)

TR−1
t (xt − Atxt−1 − Btut)

}
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Linear Gaussian Systems (2)

The measurement probability p(zt |xt) must also be linear in its arguments,
with added Gaussian noise:

zt = Ctxt + δt

where:

zt ∈ Rk is the measurement vector.

δt ∼ N (0,Qt) is the measurement noise with zero mean and
covariance Qt .

Ct ∈ Rk×n.

We have:

p(zt |xt) = det(2πQt)
− 1

2 exp

{
− 1

2
(zt − Ctxt)

TQ−1
t (zt − Ctxt)

}
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Kalman Filter Algorithm (1)

The initial belief bel(x0) ∼ N (µ0,Σ0) must be normal distributed:

bel(x0) = p(x0) = det(2πΣ0)−
1
2 exp

{
− 1

2
(x0 − µ0)TΣ−1

0 (x0 − µ0)

}
Algorithm:

1 Input: µt−1, Σt−1, ut , zt
2 µ̄t = Atµt−1 + Btut
3 Σ̄t = AtΣt−1A

T
t + Rt

4 Kt = Σ̄tC
T
t (CtΣ̄tC

T
t + Qt)

−1 ← Kalman gain

5 µt = µ̄t + Kt(zt − Ct µ̄t)

6 Σt = (I − KtCt)Σ̄t

7 Output: µt , Σt
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Kalman Filter Algorithm (2)

Line 1 & 2:
µ̄t = Atµt−1 + Btut

Σ̄t = AtΣt−1A
T
t + Rt

Prediction step:

b̄el(xt) =

∫
p(xt |xt−1, ut) bel(xt−1) dxt−1

where:
p(xt |xt−1, ut) ∼ N (xt ;Atxt−1 + Btut ,Rt)

bel(xt−1) ∼ N (xt−1;µt−1,Σt−1)
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Kalman Filter Algorithm (3)

Line 4, 5 & 6:
Kt = Σ̄tC

T
t (CtΣ̄tC

T
t + Qt)

−1

µt = µ̄t + Kt(zt − Ctµt)

Σt = (I − KtCt)Σ̄t

Measurement update step:

bel(xt) = η p(zt |xt) b̄el(xt)

where:
p(zt |xt) ∼ N (zt ;Ctxt ,Qt)

b̄el(xt) ∼ N (xt ; µ̄t , Σ̄t)
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Extended Kalman Filter (1)

Problem with Kalman Filter

Kalman Filter has the assumptions of linear state transitions and linear
measurements with added Gaussian noise.

Extended Kalman Filter

The extended Kalman filter (EKF) overcomes the linearity assumptions.
Assume that the next state probability and the measurement probabilities
are governed by nonlinear functions g and h:

xt = g(ut , xt−1) + εt

zt = h(xt) + δt

The function g replaces the matrices At and Bt , and h replaces the matrix
Ct .
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Extended Kalman Filter (2)

Problem with Extended Kalman Filter

With the arbitrary functions g and h, the belief is no longer a
Gaussian.

Performing the belief update exactly is usually impossible for
nonlinear functions g and h, in the sense that the Bayes filter does
not possess a closed-form solution.

EKF’s approximation

EKF calculates an approximation to the true belief. It represents the
approximation by a Gaussian (with moments representation). The belief
bel(xt) at time t is represented by a mean µt and a covariance Σt . EKF
inherits from the original KF the basic belief representation, but it differs
in that this belief is only approximate, not exact.
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Extended Kalman Filter (3)

Thrun et. al, 2006
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Linearization via Taylor Expansion (1)

Suppose we are given a nonlinear next state function g . Linearization
approximates g by a linear function that is tangent to g at the mean of
the Gaussian. Once g is linearized, the mechanics of belief propagation are
equivalent to those of the Kalman filter. The same argument applies to h.

First-order approximation

First-order Taylor expansion constructs a linear approximation to a
function g from g ’s value and slope. The slope is given by:

Gt = g ′(ut , µt−1) =
∂g(ut , xt−1)

∂xt−1

∣∣∣∣
xt−1=µt−1

Gt is the gradient of g at ut and µt−1.
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Linearization via Taylor Expansion (2)

g is approximated by its value at ut and µt−1:

g(ut , xt−1) ≈ g(ut , µt−1) + g ′(ut , µt−1)(xt−1 − µt−1)

= g(ut , µt−1) + Gt(xt−1 − µt−1)

The next state probability is approximated as:

p(xt |ut , xt−1) ≈ det(2πRt)
−1/2 exp

{
− 1

2
[xt − g(ut , µt−1)− Gt(xt−1 − µt−1)]T

R−1
t

[xt − g(ut , µt−1)− Gt(xt−1 − µt−1)]

}
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Linearization via Taylor Expansion (3)

The same linearization applies to the measurement function h:

h(xt) ≈ h(µ̄t) + h′(µ̄t)(xt − µ̄t)
= h(µ̄t) + Ht(xt − µ̄t)

where

Ht = h′(xt)|xt=µ̄t =
∂h(xt)

∂xt

∣∣∣∣
xt=µ̄t

We have the approximation for measurement probability:

p(zt |xt) ≈ det(2πQt)
−1/2

exp

{
− 1

2 [zt − h(µ̄t)− Ht(xt − µ̄t)]TQ−1
t [zt − h(µ̄t)− Ht(xt − µ̄t)]

}

Son (UChicago) EKF & UKF January 23, 2020 16 / 39



The EKF algorithm (1)

Algorithm:

1 Input: µt−1, Σt−1, ut , zt
2 µ̄t = g(ut , µt−1)

3 Σ̄t = GtΣt−1G
T
t + Rt

4 Kt = Σ̄tH
T
t (HtΣ̄tH

T
t + Qt)

−1 ← Kalman gain

5 µt = µ̄t + Kt(zt − h(µ̄t))

6 Σt = (I − KtHt)Σ̄t

7 Output: µt , Σt
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The EKF algorithm (2)

Kalman Filter EKF

State prediction (Line 2) Atµt−1 + Btut g(ut , µt−1)

Measurement prediction (Line 5) Ct µ̄t h(µ̄t)

The Jacobian Gt corresponds to the matrices At and Bt .

The Jacobian Ht corresponds to the matrix Ct .
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The EKF algorithm (3)

Line 2 & 3:
µ̄t = g(ut , µt−1)

Σ̄t = GtΣt−1G
T
t + Rt

Prediction step:

b̄el(xt) =

∫
p(xt |xt−1, ut) bel(xt−1) dxt−1

where:

p(xt |xt−1, ut) ∼ N (xt ; g(ut , µt−1) + Gt(xt−1 − µt−1),Rt)

and
bel(xt−1) ∼ N (xt−1;µt−1,Σt−1)
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The EKF algorithm (4)

Line 4, 5 & 6:
Kt = Σ̄tH

T
t (HtΣ̄tH

T
t + Qt)

−1

µt = µ̄t + Kt(zt − h(µ̄t))

Σt = (I − KtHt)Σ̄t

Measurement update step:

bel(xt) = η p(zt |xt) b̄el(xt)

where:
p(zt |xt) ∼ N (zt ; h(µ̄t) + Ht(xt − µ̄t),Qt)

and
b̄el(xt) ∼ N (xt ; µ̄t , Σ̄t)
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Demo EKF 1D (a)

Consider the dynamnics of one dimensional timeseries:

xt = g(xt−1) + εt = sin(xt−1 + ∆x) +N (0, 0.01)

zt = h(xt) + δt = xt +N (0, 0.01)

In this example, we ignore the control signal ut . All our matrices have size
1x1:

Gt |x=µ = [cos(µ)]

Ht = I1 = [1]

R = [0.01]

Q = [0.01]
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Demo EKF 1D (b)

Total norm `2 error ≈ 5.29
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Practical considerations

Each update of EKF requires time complexity O(k2.8 + n2), where k is the
dimension of the measurement vector zt , and n is the dimension of the
state vector xt .

Multiple hypotheses

EKF represents the belief by a multivariate Gaussian distribution. How
about multiple distinct hypotheses?

Mixture of Gaussians

A common extension of EKFs is to represent the posteriors using a
mixture of J Gaussians (multi-modal representations):

bel(x) =
∑
j

aj det(2πΣj ,t)
−1/2 exp

{
− 1

2
(xt − µj ,t)TΣ−1

j ,t (xt − µj ,t)
}

where aj are mixture parameters with aj ≥ 0 and
∑

j aj = 1. This is called
multi-hypothesis extended Kalman filter or MHEKF.
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Unscented Kalman Filter (1)

Hardness of EKF

EKF approximates functions g(ut , xt−1) and h(xt).

Intuition: It is easier to approximate a Gaussian than to approximate
a function.

Unscented transform

Instead of performing a linear approximation to the function and passing a
Gaussian through it, we pass a deterministically chosen set of points,
known as sigma points through the function, and then fit a Gaussian to
the resulting transformed points. This is known as the unscented
transform.
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The unscented transform (1)

Assume p(x) = N (x |µ,Σ), and consider estimating p(y), where y = f (x)
for some nonlinear function f . We create a set of 2d + 1 sigma points xi
given by:

x =

{
µ,

{
µ+

[
(d + λ)Σ

]1/2

:i

}d
i=1
,
{
µ−

[
(d + λ)Σ

]1/2

:i

}d
i=1

}
where

λ = α2(d + κ)− d

is a scaling parameter to be specified, and the notation M:i denotes the
i ’th column of matrix M. The optimal values of α, β and κ are problem
dependent. In the one-dimensional case d = 1, we have α = 1, β = 0
and κ = 2. Thus, the three sigma points are:

x =

{
µ, µ +

√
3σ, µ−

√
3σ

}
Son (UChicago) EKF & UKF January 23, 2020 25 / 39



The unscented transform (2)

The sigma points are propagated through the nonlinear function to yield
yi = f (xi ) and the mean and covariance for y is computed as follows:

µy =
2d∑
i=0

w i
myi

Σy =
2d∑
i=0

w i
c(yi − µy )(yi − µy )T

where:

w0
m =

λ

d + λ

w0
c =

λ

d + λ
+ (1− α2 + β)

w i
m = w i

c =
1

2(d + λ)
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The unscented transform (3)

Wan and der Merwe 2001
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The UKF Algorithm (1)

Approximate the predictive density p(xt |z1:t−1, u1:t) ≈ N (zt |µ̄t , Σ̄t) by
passing the old belief state N (xt−1|µt−1,Σt−1) through non-linearity g :

x0
t−1 =

{
µt−1,

{
µt−1+

[
(d+λ)Σt−1

]1/2

:i

}d
i=1
,
{
µt−1−

[
(d+λ)Σt−1

]1/2

:i

}d
i=1

}
x̄∗it = g(ut , x

0i
t−1)

µ̄t =
2d∑
i=0

w i
mx̄
∗i
t

Σ̄t =
2d∑
i=0

w i
c(x̄∗it − µ̄t)(x̄∗it − µ̄t)T + Rt

Son (UChicago) EKF & UKF January 23, 2020 28 / 39



The UKF Algorithm (2)

Approximate the likelihood p(zt |xt) ≈ N (zt |ẑt ,St) by passing the prior
N (zt |µ̄t , Σ̄t) through the non-linearity h:

x̄0
t =

{
µ̄t ,

{
µ̄t +

[
(d + λ)Σ̄t

]1/2

:i

}d
i=1
,
{
µ̄t −

[
(d + λ)Σ̄t

]1/2

:i

}d
i=1

}
z̄∗it = h(x̄0i

t )

ẑt =
2d∑
i=0

w i
mz̄
∗i
t

St =
2d∑
i=0

w i
c(z̄∗it − ẑt)(z̄∗it − ẑt)

T + Qt
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The UKF Algorithm (3)

Finally, get the posterior p(xt |z1:t , u1:t) ≈ N (xt |µt ,Σt):

Σ̄x ,z
t =

2d∑
i=0

w i
c(x̄∗it − µ̄t)(z̄∗it − ẑt)

T

Kt = Σ̄x ,z
t S−1

t

µt = µ̄t + Kt(zt − ẑt)

Σt = Σ̄t − KtStK
T
t

Son (UChicago) EKF & UKF January 23, 2020 30 / 39



Demo UKF 1D

Total norm `2 error of UKF ≈ 3.64 < 5.29 of EKF.

Son (UChicago) EKF & UKF January 23, 2020 31 / 39



Demo KF vs. UKF (a)

Consider the velocity model for tracking an object in two-dimensional.
Suppose the state vector to be:

xTt = (x1t , x2t , ˙x1t , ˙x2t)

where x1t and x2t is the x and y coordinates at time t; ˙x1t and ˙x2t are the
corresponding velocity in x and y axis, respectively. Assume we have a
linear dynamic system:

xt = Atxt−1 + εt
x1t

x2t

˙x1t

˙x2t

 =


1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1



x1(t−1)

x2(t−1)

˙x1(t−1)

˙x2(t−1)


where ∆ is the sampling period. Assume we have a linear measurement
system:

zt = xt + δt
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Demo KF vs. UKF (b)

This case, linearity works fine. Let’s make it more complicated!
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Demo KF vs. UKF (c)

Consider the robot uses the polar coordinate (r , θ) internally, while the
camera on top of it still uses the x, y coordinate (pixel!). The robot has a
constant radius velocity and angular velocity:

rt ← rt−1 + ∆r

θt ← θt−1 + ∆θ

Conversion:

rt =
√

x2
1t + x2

2t

θt = tan−1

(
x2t

x1t

)
and

x1t = rt cos(θt)

x2t = rt sin(θt)
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Demo KF vs. UKF (d)

We get an infinite curve!

Son (UChicago) EKF & UKF January 23, 2020 35 / 39



Demo multi-object tracking with KF (a)

Consider N objects moving in a 2D plane. Let x
(i)
t and y

(i)
t be the

horizontal and vertical coordinates, and ∆x
(i)
t and ∆y

(i)
t be the velocity:

xT
t =

[
x

(1)
t y

(1)
t · · · x

(N)
t y

(N)
t ∆x

(1)
t ∆y

(1)
t · · · ∆x

(N)
t ∆y

(N)
t

]
xt = Atxt−1 + εt

x
(1)
t

y
(1)
t
...

∆x
(1)
t

∆y
(1)
t
...


=

[
A11 A12

A21 A22

]


x
(1)
t−1

y
(1)
t−1
...

∆x
(1)
t−1

∆y
(1)
t−1
...


+ εt

where I is the identity matrix of size 2N × 2N and

A11 = I A12 = ∆ · I A21 = I A22 = I
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Demo multi-object tracking with KF (b)

Measurement:
zt = Ctxt + δt

x̂
(1)
t

ŷ
(1)
t
...

 =
[
C1 C2

]


x
(1)
t

y
(1)
t
...

∆x
(1)
t

∆y
(1)
t
...


+ δt

where:
C1 = I C2 = 02N×2N

Son (UChicago) EKF & UKF January 23, 2020 37 / 39



Demo multi-object tracking with KF (c)

We need the Hungarian matching algorithm on bipartite graph to
match which measurement goes to which object!

https://github.com/HyTruongSon/RobotSoccer
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Q & A

Thank you very much for your attention!
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