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Lao

@ A journey of a thousand miles must begin with a single step.

@ Nature does not hurry, yet everything is accomplished.

.
My apartment, Spring 2020
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@ Dirichlet Graph Variational Autoencoder (NeurlPS 2020)
https://arxiv.org/abs/2010.04408

@ Generative 3D Part Assembly via Dynamic Graph Learning (NeurlPS
2020)
https://arxiv.org/abs/2006.07793

© Deep imitation learning for molecular inverse problems (NeurlPS 2019)
https://papers.nips.cc/paper/
8744-deep-imitation-learning-for-molecular-inverse-problems
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Generative 3D Part Assembly via Dynamic Graph Learning (NeurlPS
2020)
Jialei Huang, Guangi Zhan, Qingnan Fan, Kaichun Mo, Lin Shao,
Baoquan Chen, Leonidas Guibas, Hao Dong
https://arxiv.org/abs/2006.07793
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Generative 3D Part Assembly via Dynamic Graph Learning (1)
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To our research

Given the molecular structures as parts, how can we assemble them into a
single valid molecule that has an expected property? In an equivariant way.
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Generative 3D Part Assembly via Dynamic Graph Learning (
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Figure 1: The proposed dynamic graph learning framework. The iterative graph neural network
backbone takes a set of part point clouds as inputs and conducts 5 iterations of graph message-passing
for coarse-to-fine part assembly refinements. The graph dynamics is encoded into two folds, (a)
reasoning the part relation (graph structure) from the part pose estimation, which in turn also evolves
from the updated part relations, and (b) alternatively updating the node set by aggregating all the
geometrically-equivalent parts (the red and purple nodes), e.g. two chair arms, into a single node (the
yellow node) to perform graph learning on a sparse node set for even time steps, and unpooling these
nodes to the dense node set for odd time steps. Note the semi-transparent nodes and edges are not
included in graph learning of certain time steps.
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Deep imitation learning for molecular inverse problems (NeurlPS
2019)
Eric Jonas
https://papers.nips.cc/paper/
8744-deep-imitation-learning-for-molecular-inverse-problems
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Deep imitation learning for molecular inverse problems (1)
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Figure 1: a. The forward problem is how to compute the spectrum of a molecule (right) given its
structure (left). Spectroscopists seek to solve the corresponding inverse problem, working backward
from spectra towards the generating structure. b. Various properties measured in a spectrum, including
the chemical shift value and the degree to which each peak is split into multiplets.
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Deep imitation learning for molecular inverse problems (2)
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Figure 2: a.) Our input is a molecular formula indicating the number of atoms (vertices) of each
element (color) along with per-vertex properties P measured for a subset of those vertices (in this
case, carbon nuclei). b.) We sequentially construct a molecule by sampling the next edge (i, j) and
edge label ¢ conditioned on the existing edge set as well as vertices V' and vertex properties P. c.)
We end up with a sampled collection of candidate molecules, which we can then pass back through
our forward model to compute their spectra, and validate against the true (observed) spectrum.
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Deep imitation learning for molecular inverse problems (3)
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Figure 3: Each layer k of the network transforms per-vertex v(") and per-edge features (™ into
per-vertex v(®*) and per-edge (Y output features. At train time we take true graphs, randomly
delete a subset of edges, and exactly compute which single edges could be added back into the graph
and maintain subisomorphism. We minimize the binary cross-entropy loss between the output of our =
network and this matrix of possible next edges. :
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Deep imitation learning for molecular inverse problems (4)

true structure candidate structures
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Figure 4: Example recovered structures. The left-most column is the true structure and associated
SMILE:s string, and the right are the candidate structures produced by our method, ranked in order of
spectral reconstruction error (number below). Color indicates correct SMILE:s string. The top row
shows a molecule for which the correct structure was recovered, and the bottom row is an example of
a failure to identify a structure.
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Dirichlet Graph Variational Autoencoder (NeurlPS 2020)
Jia Li, Tomasyu Yu Jiajin Li, Honglei Zhang, Kangfei Zhao, YU Rong,
Hong Cheng
https://arxiv.org/abs/2010.04408

Note: This work is not convincing to me. The idea is not new comparing
to:

@ Dirichlet Variational Autoencoder,
https://arxiv.org/abs/1901.02739

@ Stick-Breaking Variational Autoencoders (ICLR 2017),
https://arxiv.org/abs/1605.06197
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Proposals

Proposals

@ Main idea: Replace Gaussian variables by the Dirichlet distributions
in latent modeling of VAEs, such that the latent factors can be
adopted to describe graph cluster memberships.

@ Claim: Interpret the reconstruction term as a balanced graph cut.

@ Propose a new variant of GNN named Heatts utilizing the Taylor
series for fast computation of heat kernels.
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Background — Balanced graph cut (1)

Definition — Graph cut

Graph cut is defined as the number of edges between different clusters:
1 _
R Z cut( Vi, Vk)
k

where Vk_is the node set assigned to cluster k, Vi =V =V, and
cut( Vk, Vk) = ZiGVk,jEVk AU

-

Source: https://github.com/loicland/cut-pursuit
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Background — Balanced graph cut (2)

Using the max-flow/min-cut approach for image segmentation:

(d)

Source: Tracing liquid level and material boundaries in transparent vegee
using the graph cut computer vision approach, Sagi Eppel P

Son (UChicago) Group Meeting October 23, 2020



Background — Balanced graph cut (3)

Markov Random Field:

Foreground Probabilities Background Probabilities

Foreground with Maxflow/Mincut Segmented Foreground with GraphCut

. ¢

Source: https://sandipanweb.wordpress.com/2018/02/11
interactive-image-segmentation-with-graph-cut/

W cres [ Vit
b 5G| 5 o
o Cicia | ac [

Son (UChicago) Group Meeting October 23, 2020


https://sandipanweb.wordpress.com/2018/02/11/interactive-image-segmentation-with-graph-cut/
https://sandipanweb.wordpress.com/2018/02/11/interactive-image-segmentation-with-graph-cut/

Background — Balanced graph cut (4)

Definition — Graph cut (alternative)
% Z (CRDC.k — CRLAC x) = —trace(CTLC)

where C € {0,1}N*K is the cluster indicator, Cjx = 1 represents node i
belongs to cluster k, and 0 otherwise. D denotes the degree matrix, and
L =D — Ais the un-normalized graph Laplacian.

° CJ,—(DC:,;< = number of edges with at least 1 end point in V/

o C! AC x = number of edges within cluster Vj

Son (UChicago) Group Meeting October 23, 2020 17 /32



Background — Balanced graph cut (5)

Graph cut favors imbalanced clustering — utilize ratio cut.

Definition — Ratio cut

where |Vy| = C:-’,—( C. x counts the number of nodes within cluster k.

The minimum of the function Z,’le V1k| is achieved if all | V| are the
same. Ratio cut is an NP-hard problem — spectral clustering.
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Background — Balanced graph cut (6)

Spectral clustering;:
© Compute the normalized graph Laplacian: L = D~1/2/p~1/2,

@ For k clusters, compute the first (smallest) k eigenvectors (v, .., vk)
associating with k eigenvalues (A1, .., \).

@ Stack the eigenvectors vertically (column-by-column). Represent each
node by a row of this new matrix.

© Perform K-Mean to cluster these nodes into clusters Vi, .., V4.
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Background — Balanced graph cut (7)

Spectral clutering: Smallest K eigenvalues — low-pass filter giq()\;)
with threshold Ak defined as

gid(Ai) = I[N\ < Ak]

The difference between the 2 can easily be shown by this illustration:

K-means Spectral clustering
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Source: https://medium.com/@SeoJaeDuk/
archived-post-spectral-clustering-45c478ee0e30
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GNNs and VAEs

@ Encoder: a variational posterior g4(Z|G) parameterized by GNNs,
with a prior p(Z) acting as a regularization for q4(Z|G).

@ Decoder: a generative distribution pg(A|Z).

Maximnizing Evidence Lower Bound (ELBO):

Leigo(¢, 0; G) = —KL(q4(Z1G)|[p(Z)) + Eq,(zi6) log po(AlZ)

Simplifying Graph Convolutional Networks (ICML 2019) [Wu et al., 2019]
https://arxiv.org/abs/1902.07153:

GCN is a linear spectral filter with gc(A;) =1 — A\; — deviates the
low-pass characteristics.
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Dirichlet Graph Variational Autoencoder (1)

Main idea: Replace Gaussian variables by the Dirichlet distributions in
latent modeling of VAEs, such that the latent factors can be adopted to
describe graph cluster memberships.

N

as(Z|A, X) = [ [ 96:(21A, X)
i=1

is the variational family in which the variational marginals gy,(zi|A, X) are
assumed to follow the Dirichlet distributions.

Laplace approximation: to approximate the Dirichlet distributions
the logistic normal distribution.
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Dirichlet Graph Variational Autoencoder (2)

The parameters for the variational marginals g, (z;|A, X) are specified by a
multi-layer GNN:
1%, 6% = GNN,4(A, X)

We can approximate the Dirichlet distributions q,(zi|G) by sampling
e ~N(0,1) and compute

zi = softmax(p® + (£°)Y/2¢)
where Y0 = diag(c?) € RK*K.

Z = {z}! | coincides with the relaxed graph cluster memberships C like
in spectral clustering.
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Dirichlet Graph Variational Autoencoder (3)

We rewrite the prior p(z;) = Dir(«) as the logistic normal distribution with
mean p! and covariance matrix ¥1:

1
i = log oy — Zloga,—
1

1 2 1 1

Zl - (1= i _
(k) e

1
The KL divergence between two logistic normal distributions as:

D (0516l Ip(a)) = 5 { trace((1) £+

B 51
(it = )T (EN) Tt - 10 - K+ IogH}
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Dirichlet Graph Variational Autoencoder (4)

Decoder:

p(AlZ) o [ exp (G, ) [] exp(1 - £(Ci, G))
Aj=1 A;j;i=0

where f denotes a distance metric:
@ (G, G)=GC"G
Q@ (G, C)) =1 - MSE(G, C;) where MSE = mean squared error.
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Reconstruction term as balanced graph cut

Maximizing the reconstruction term of DGVAE is equivalent to minimizing
the spectral relaxed graph cut and a regularization that encourages
balanced cluster size.

The claim is trivial! \

The soft membership (assignment) C; € Ax_1 where Ak_1 is the (K —1)-
simplex. We can regard this row C; as an independent sample drawn from
the posterior Dirichlet distributions.
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Taylor series approximation for heat kernels (1)

Motivation

We need a low-pass graph filter that:

@ retains the low eigenvectors, and drops the high eigenvectors of the
graph Laplacian L.

@ is fast, not involving the explicit eigendecomposition of L —
computationally expensive.

Consider the heat kernel g5(\) = e~** where s > 0 is a scaling

hyper-parameter. The spectral graph convolutions on a signal x € R":
gs * x = Udiag(gs(M1), -, &s(An)) U x = Ugs(N)UT x

where U is the eigenvector matrix of the normalized graph Laplacian
L=UNUT.
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Taylor series approximation for heat kernels (2)

We apply the Taylor series approximation on gs(A):

1) 1)
gs kX = UZ( nl) SnAnUTX:Z( nl)

Heatts — Taylor approximation:
@ Message function:

3
l (_1)nnn£
I\/I—g n!SLH
n=0

@ Vertex update function:

H1 = ReLU(M‘W)

where HO = X. W is the parameter set of be learned.
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Experiments (1)

Figure 2: Left one in blue: the input graphs. Right five in colors: graph samples generated by
DGVAE, where colors indicate latent cluster memberships with K = 3.

Son (UChicago) Group Meeting October 23, 2020



Experiments (2)

Table 1: Test graph generation comparison of different methods

Erdos-Renyi Ego Regular Geometric Power Law Barabasi-Albert
NLL RMSE NLL RMSE NLL RMSE NLL RMSE NLL RMSE NLL RMSE
GAE 0.647 0.535 0356 0346 0.523 0455 0583 0370 0.580 0401 0.553 0428

VGAE 1.010 0.609 0917 0492 0914 0452 0.813 0524 0901 0485 0.894 0501
Graphite-AE ~ 0.678  0.529 0370 0.333 0.526 0395 0851 0.385 0.541 0399 0.557 0.390
Graphite-VAE  1.087 0.602 0.896 0496 0983 0474 0.846 0.536 0938 0.466 0.925 0482

Abl-AE 0.646  0.530 0.349 0400 0497 0429 0472 0350 0.536 0419 0.536 0.383
Abl-VAE 0.760 0.512 0.541 0.445 0.601 0454 0.682 0475 0.638 0395 0.678 0430

DGAE 0.239 0186 0.250 0.231 0.305 0.282 0.406 0.182 0.383 0415 0308 0214
DGVAE 0286 0.249 0436 0274 0516 0340 0537 0.233 0519 0255 0346  0.194

NLL = Negative log-likelihood
RMSE = Root mean square error

Wores [ Vit
b i e
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Note: For the Dirichlet one, AE seems to be better than VAE.
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Experiments (3)

Table 2: Cluster performance comparison of different methods

Pubmed Citeseer Wiki
ACC (%) NMI (%) Fl (%) ACC (%) NMI (%) F1 (%) ACC (%) NMI (%) F1 (%)

SC 583+£05 19.0+06 432+04 239+14 59+35 295+£26 236437 193+32 173+£25
N2v&K  67.7x12 295+£13 663 =x1.1 413*11 167+08 395%13 349+1.8 31.1+£22 303£13
GAE&K  642+19 240%15 644+£1.1 412409 208=+12 401412 251+19 267+£1.7 198+18

VGAE&K 62.0+3.0 204417 6254+28 434433 227409 418430 322421 302428 293+22

Abl-AE 66314 25719 662+1.7 46.1£19 243422 401422 381423 338+£1.6 24.7£2.1
Abl-VAE  62.6 £2.1 242427 614425 402+£27 16.1+£22 385+24 362423 314%14 259427
DGAE 684 +19 288421 67.3+23 513+£21 272+15 494418 389418 369+15 27.7+23
DGVAE  649+20 258425 665422 449428 194+27 41943.1 375433 317426 287+19

NMI = Normalized Mutual Information
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Implementation

https://github.com/HyTruongSon/LibCCNs/tree/master/pytorch/
small_graphs

Note:

@ Seems to have a good convergence.

e The KL divergence loss (from Laplace approximation) seems to be
numerically unstable.
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