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Lao Tzu

1 A journey of a thousand miles must begin with a single step.

2 Nature does not hurry, yet everything is accomplished.

My apartment, Spring 2020
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Papers

1 Dirichlet Graph Variational Autoencoder (NeurIPS 2020)
https://arxiv.org/abs/2010.04408

2 Generative 3D Part Assembly via Dynamic Graph Learning (NeurIPS
2020)
https://arxiv.org/abs/2006.07793

3 Deep imitation learning for molecular inverse problems (NeurIPS 2019)
https://papers.nips.cc/paper/

8744-deep-imitation-learning-for-molecular-inverse-problems
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Paper 3

Generative 3D Part Assembly via Dynamic Graph Learning (NeurIPS
2020)

Jialei Huang, Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin Shao,
Baoquan Chen, Leonidas Guibas, Hao Dong
https://arxiv.org/abs/2006.07793
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Generative 3D Part Assembly via Dynamic Graph Learning (1)

3D part assembly:

To our research

Given the molecular structures as parts, how can we assemble them into a
single valid molecule that has an expected property? In an equivariant way.
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Generative 3D Part Assembly via Dynamic Graph Learning (2)
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Paper 2

Deep imitation learning for molecular inverse problems (NeurIPS
2019)

Eric Jonas
https://papers.nips.cc/paper/

8744-deep-imitation-learning-for-molecular-inverse-problems
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Deep imitation learning for molecular inverse problems (1)
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Deep imitation learning for molecular inverse problems (2)
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Deep imitation learning for molecular inverse problems (3)
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Deep imitation learning for molecular inverse problems (4)
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Paper 1

Dirichlet Graph Variational Autoencoder (NeurIPS 2020)
Jia Li, Tomasyu Yu Jiajin Li, Honglei Zhang, Kangfei Zhao, YU Rong,

Hong Cheng
https://arxiv.org/abs/2010.04408

Note: This work is not convincing to me. The idea is not new comparing
to:

1 Dirichlet Variational Autoencoder,
https://arxiv.org/abs/1901.02739

2 Stick-Breaking Variational Autoencoders (ICLR 2017),
https://arxiv.org/abs/1605.06197
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Proposals

Proposals

Main idea: Replace Gaussian variables by the Dirichlet distributions
in latent modeling of VAEs, such that the latent factors can be
adopted to describe graph cluster memberships.

Claim: Interpret the reconstruction term as a balanced graph cut.

Propose a new variant of GNN named Heatts utilizing the Taylor
series for fast computation of heat kernels.
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Background – Balanced graph cut (1)

Definition – Graph cut

Graph cut is defined as the number of edges between different clusters:

1

K

∑
k

cut(Vk ,Vk)

where Vk is the node set assigned to cluster k , Vk = V − Vk , and
cut(Vk ,Vk) =

∑
i∈Vk ,j∈Vk

Aij .

Source: https://github.com/loicland/cut-pursuit
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Background – Balanced graph cut (2)

Using the max-flow/min-cut approach for image segmentation:

Source: Tracing liquid level and material boundaries in transparent vessels
using the graph cut computer vision approach, Sagi Eppel
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Background – Balanced graph cut (3)

Markov Random Field:

Source: https://sandipanweb.wordpress.com/2018/02/11/

interactive-image-segmentation-with-graph-cut/
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Background – Balanced graph cut (4)

Definition – Graph cut (alternative)

1

K

∑
k

(CT
:,kDC:,k − CT

:,kAC:,k) =
1

K
trace(CTLC )

where C ∈ {0, 1}N×K is the cluster indicator, Cik = 1 represents node i
belongs to cluster k , and 0 otherwise. D denotes the degree matrix, and
L = D − A is the un-normalized graph Laplacian.

CT
:,kDC:,k = number of edges with at least 1 end point in Vk

CT
:,kAC:,k = number of edges within cluster Vk
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Background – Balanced graph cut (5)

Graph cut favors imbalanced clustering → utilize ratio cut.

Definition – Ratio cut

1

K

∑
k

CT
:,kLC:,k

|Vk |

where |Vk | = CT
:,kC:,k counts the number of nodes within cluster k .

The minimum of the function
∑K

k=1
1
|Vk | is achieved if all |Vk | are the

same. Ratio cut is an NP-hard problem → spectral clustering.
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Background – Balanced graph cut (6)

Spectral clustering:

1 Compute the normalized graph Laplacian: L = D−1/2LD−1/2.

2 For k clusters, compute the first (smallest) k eigenvectors (v1, .., vk)
associating with k eigenvalues (λ1, .., λk).

3 Stack the eigenvectors vertically (column-by-column). Represent each
node by a row of this new matrix.

4 Perform K -Mean to cluster these nodes into clusters V1, .., Vk .
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Background – Balanced graph cut (7)

Spectral clutering: Smallest K eigenvalues → low-pass filter gid(λi )
with threshold λK defined as

gid(λi ) = I[λi ≤ λK ]

Source: https://medium.com/@SeoJaeDuk/

archived-post-spectral-clustering-45c478ee0e30
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GNNs and VAEs

1 Encoder: a variational posterior qφ(Z |G ) parameterized by GNNs,
with a prior p(Z ) acting as a regularization for qφ(Z |G ).

2 Decoder: a generative distribution pθ(A|Z ).

Maximnizing Evidence Lower Bound (ELBO):

LELBO(φ, θ;G ) = −KL(qφ(Z |G )||p(Z )) + Eqφ(Z |G) log pθ(A|Z )

Simplifying Graph Convolutional Networks (ICML 2019) [Wu et al., 2019]
https://arxiv.org/abs/1902.07153:
GCN is a linear spectral filter with gc(λi ) = 1− λi → deviates the
low-pass characteristics.
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Dirichlet Graph Variational Autoencoder (1)

Main idea: Replace Gaussian variables by the Dirichlet distributions in
latent modeling of VAEs, such that the latent factors can be adopted to
describe graph cluster memberships.

qφ(Z |A,X ) =
N∏
i=1

qφi (zi |A,X )

is the variational family in which the variational marginals qφi (zi |A,X ) are
assumed to follow the Dirichlet distributions.

Laplace approximation: to approximate the Dirichlet distributions with
the logistic normal distribution.
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Dirichlet Graph Variational Autoencoder (2)

The parameters for the variational marginals qφi (zi |A,X ) are specified by a
multi-layer GNN:

µ0, σ0 = GNNφ(A,X )

We can approximate the Dirichlet distributions qφ(zi |G ) by sampling
ε ∼ N (0, 1) and compute

zi = softmax(µ0 + (Σ0)1/2ε)

where Σ0 = diag(σ0) ∈ RK×K .

Z = {zi}Ni=1 coincides with the relaxed graph cluster memberships C like
in spectral clustering.
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Dirichlet Graph Variational Autoencoder (3)

We rewrite the prior p(zi ) = Dir(α) as the logistic normal distribution with
mean µ1 and covariance matrix Σ1:

µ1k = logαk −
1

K

∑
i

logαi

Σ1
kk =

1

αk

(
1− 2

K

)
+

1

K 2

∑
i

1

αi

The KL divergence between two logistic normal distributions as:

DKL(qφ(zi |G )||p(zi )) =
1

2

{
trace((Σ1)−1Σ0)+

+(µ1 − µ0)T (Σ1)−1(µ1 − µ0)− K + log
|Σ1|
|Σ0|

}
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Dirichlet Graph Variational Autoencoder (4)

Decoder:

p(A|Z ) ∝
∏
Aij=1

exp f (Ci ,Cj)
∏
Aij=0

exp(1− f (Ci ,Cj))

where f denotes a distance metric:

1 f (Ci ,Cj) = CT
i Cj

2 f (Ci ,Cj) = 1−MSE(Ci ,Cj) where MSE = mean squared error.

Son (UChicago) Group Meeting October 23, 2020 25 / 32



Reconstruction term as balanced graph cut

Claim

Maximizing the reconstruction term of DGVAE is equivalent to minimizing
the spectral relaxed graph cut and a regularization that encourages
balanced cluster size.

Note

The claim is trivial!

The soft membership (assignment) Ci ∈ ∆K−1 where ∆K−1 is the (K −1)-
simplex. We can regard this row Ci as an independent sample drawn from
the posterior Dirichlet distributions.
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Taylor series approximation for heat kernels (1)

Motivation

We need a low-pass graph filter that:

1 retains the low eigenvectors, and drops the high eigenvectors of the
graph Laplacian L.

2 is fast, not involving the explicit eigendecomposition of L –
computationally expensive.

Consider the heat kernel gs(λ) = e−sλ where s > 0 is a scaling
hyper-parameter. The spectral graph convolutions on a signal x ∈ RN :

gs ∗ x = Udiag(gs(λ1), .., gs(λN))UT x = Ugs(Λ)UT x

where U is the eigenvector matrix of the normalized graph Laplacian
L = UΛUT .
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Taylor series approximation for heat kernels (2)

We apply the Taylor series approximation on gs(Λ):

gs ∗ x = U
∑
n

(−1)n

n!
snΛnUT x =

∑
n

(−1)n

n!
snLnx

Heatts – Taylor approximation:

Message function:

M` =
3∑

n=0

(−1)n

n!
snLnH`

Vertex update function:

H`+1 = ReLU(M`W )

where H0 = X . W is the parameter set of be learned.

Son (UChicago) Group Meeting October 23, 2020 28 / 32



Experiments (1)
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Experiments (2)

NLL = Negative log-likelihood
RMSE = Root mean square error

Note: For the Dirichlet one, AE seems to be better than VAE.
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Experiments (3)

NMI = Normalized Mutual Information

Note: For the Dirichlet one, AE seems to be better than VAE.
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Implementation

https://github.com/HyTruongSon/LibCCNs/tree/master/pytorch/

small_graphs

Note:

Seems to have a good convergence.

The KL divergence loss (from Laplace approximation) seems to be
numerically unstable.
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