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@ Research update
o Literature review:
@ Auto-Encoding Molecular Conformations (NeurlPS 2020
workshop), https://arxiv.org/pdf/2101.01618.pdf
@ Stochastic Normalizing Flows (NeurlPS 2020),
https://arxiv.org/pdf/2002.06707.pdf
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Research update

@ Simple implementation (no learnable parameter, single layer) Cormorant
(N-Body) network in TensorFlow 2 (with Keras) using the C++ core
of CG. Testing with the task of learning the total sum of Coulomnb
forces between every pair of atoms. This is just a template API for
building more complicated networks and then embed them into 3D
conformation generation.

@ We need a better C++/CUDA core. The current speed is 6ms for a
forward pass of a system of 15 atoms.

© TorchMD: A deep learning framework for molecular simulations.

Paper: https://arxiv.org/pdf/2012.12106.pdf
Code: https://github.com/torchmd
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Auto-Encoding Molecular Conformations (NeurlPS 2020 workshop)
Robin Winter, Frank Noé, Djork-Arné Clevert
https://arxiv.org/pdf/2101.01618.pdf

Note: This is still a workshop paper. | think they will resubmit to a
mainstream conference soon.
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Internal coordinate representation

Internal coordinate representation
Another name Z-matrix. A molecule spatial arrangement (conformation)
= is defined by:
@ The set of distances D = {di, .., dn,, } between bonded atoms (bond
length).
@ The angles ® = {¢1, .., dn, } of three connected atoms (bond angles).

@ The torsion angles (dihedral angles) W = {91, .., ¥p, } of three
consecutive bonds.

This representation is invariant to rotations and rigid translations and can
always be transformed to and from Cartesian coordinates.
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Proposal
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Figure 1: Model architecture of the conformation encoder (middle) and decoder (right). The encoding
functions p(™), p(®) and p(*) encode their respective internal coordinates into a latent representation.
The decoding functions §(P), §(*) and §(¥) are conditioned on the averaged latent representations
(conformer embedding) to reconstruct their respective internal coordinates, given a set of node
embeddings h; € H. On the left hand side, the definition of the internal coordinates, bond length
d; ; € D, bond angle ¢; j » € ® and dihedral angle v; j,x; € ¥, is visualized.
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Conformation autoencoder (1)

Find functions fg (encoder) and go (decoder) that map a conformation =g
of a molecule G to and from a fixed-sized latent representation z= € RFz.

Minimizing the reconstruction error of the internal coordinates = for a
given molecule:
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Conformation autoencoder (2)
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Figure 2: a) Learning curves for the autoencoder (AE) and variational autoencoder (VAE) during
training, with evaluation loss as defined in (]D and root means squared deviation (RMSD) between
predicted and input conformations on a holdout set. b) Four example conformations generated by
our proposed model. c) First two principle components of the latent representation (conformation
embedding) of 200 conformations with a corresponding representative conformation for each cluster.
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Conformation autoencoder (3)

Encoder:
2z = fo(H,E) =0 (Z p(?{,f)) = i > pe(H,€)
[{=c] = g2

m (Z P (H,d)+ > S (M. ¢) + Zpg)(’i‘{,@b)) )
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where:

o H ={h1,..,hn} are the node embeddings produced by the molecular
graph encoder (with attention model).

° p( ) p(¢), pgu) are feed-forward neural nets that take bond lengths

bond angles, and dihedral angles along with the graph context

Decoder: additional neural nets 5(@D), 6( ) , and 5(“’)
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Summary:
@ PubChem3D dataset: organic molecules, up to 50 heavy atoms.

@ Multiple conformations generated by the forcefield software OMEGA.
@ Metrics:
@ RMSD
@ Internal energy with the MMFF94 forcefield (implemented in the
Python package RDKit)
@ Result:

@ Median energetic difference: 80 kcal/mol.
@ RMSD got worse by 0.07 A comparing to ETKDG (distance geometry).
© The result is not mature, missing baselines.
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Stochastic Normalizing Flows (NeurlPS 2020)
Hao Wu, Jonas Kohler, Frank Noé
https://arxiv.org/pdf/2002.06707 .pdf
https://github.com/noegroup/stochastic_normalizing_ flows

Note:

@ | think the idea is similar to the stochastic (hierarchical) VAEs where
we stack multiple VAEs on top of each other.

@ The result with stochastic is better, but the paper misses the analysis

and intuition of why it is better.

February 12, 2021
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Background (1)

Boltzmann-type distribution

Given a known energy function u(x):
p(x) o< exp(—u(x))

Sampling is usually done by:
@ Molecular dynamics (MD)
@ Markov-Chain Monte-Carlo (MCMC)

Normalizing Flows (NF)

Learn an invertible function fy : R” — R” that transforms sample z ~ p(z)
of a simple prior density (e.g. Gaussian) into x = fp(z) of a complex density
Pty

of, 1 (x)

P () = p(f () det L2
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Background (2)

Boltzmann-Generating Flows

Use NF to generate samples x, from a density pg, that approximates the
Boltzmann density.

© Training by Energy:

Lrr = Eznp {U(fe(Z)) — log

0y(2)
S H

5 (%)
det 8x

@ Training by Examples:

Lant = By, [— log p(f;"(x)) — log

|

© Final loss:

L=(1-XN)LkL+ ML

4
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Stochastic Normalizing Flows (1)

A SNF is a sequence of T stochastic and deterministic transformations. We

sample z = yp from the prior 7, and generate a forward path (y1,..,y7)
resulting in a proposal y7:

@ Forward path probabilities:

T-1

pr(z=w = yr=x) = H qe(ye = Yet1)
t=0

Yerlye ~ qe(ye = yet1)
@ Backward path probabilities:

T-1

po(Xx =yT = Yo = 2) = H Ge(yes1 — yt)
t=0

Yelyer1 ~ Ge(yer1 — ye)
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Stochastic Normalizing Flows (2)
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Figure 1: Deterministic versus stochastic normalizing flow for the double well. Red arrows
indicate deterministic transformations, blue arrows indicate stochastic dynamics. a) 3 RealNVP
blocks (2 layers each). b) Same with 20 BD steps before or after ReaINVP blocks. ¢) Unbiased
sample from true distribution.
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Figure 2: Schematic for Stochastic Normalizing Flow (SNF). An SNF transforms a tractable prior
piz(2z) o exp(—uo(z)) to a complicated target distribution p x (x) o exp(—u1(x)) by a sequence of
deterministic invertible transformations (flows, grey boxes) and stochastic dynamics (sample, ochre)
that sample with respect to a guiding potential 125 (x). SNFs can be trained and run in forward mode
(black) and reverse mode (blue).
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Stochastic Normalizing Flows (3)

In contrast to NFs, the probability that an SNF generates a sample x:

px(x) = /MZ(YO)Pf(YO — y7)dyo..dyT_1

is generally intractable, that involves an integral over all paths that end in
x. Unnormalized importance weight proportional to the acceptance ratio to
each sample path from z = yp to x = y7:

~—

~—

w(z — x) = exp ( — ux(x) +uz(z) + Z ASt(Vf)) x Z;g;gf((;( :i

where .
Ge(Yer1 — i)

AS; = log
' qe(yt = Yev1)
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Stochastic Normalizing Flows (4)

The parameters of a SNF can be optimized by minimizing the Kullback -
Leibler divergence between the forward and backward path probabilities, or
alternatively maximizing forward and backward path weights:

L = B, (2)pr(z—x) [~ log w(z — x)]

= Dki(pz(z)pr(z — x)||ux(x)ps(x — z)) + const

Varitional bound:

Drr(px (x)||1x(x)) < Dr(pz(z)pr(z = x)||px (x)pp(x — 2))
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Stochastic Normalizing Flows (5)
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Figure 3: S: ling of two-di ional densities. a-¢) Sampling of smiley, dog and text densities
with different methods. Columns: (1) Normalizing Flow with RealNVP layers, (2) Metropolis
MC sampling, (3) Stochastic Normalizing Flow combining (1+2), (4) neural spline flow (NSF),
(5) Stochastic Normalizing Flow combining (1+4), (6) Unbiased sample from exact density. d-e)
Compare representative power and statistical efficiency of different flow methods by showing KL
divergence (mean and standard deviation over 3 training runs) between flow samples and true density
for the three images from Fig. 3| d) Comparison of deterministic flows (black) and SNF (red) as a
function of the number of RealNVP or Neural Spline Flow transformations. Total number of MC
steps in SNF is fixed to 50. e) Comparison of pure Metropolis MC (black) and SNF (red, solid line
RealNVP, dashed line Neural spline flow) as a function of the number of MC steps. Total number of
RealNVP or NSF transformations in SNF is fixed to 10.
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Alanine dipeptide (1)

Evaluation of SNFs on density estimation and sampling molecular structures
from a simulation of the alanine dipeptide molecule in vacuum:

@ The molecule has 66 dimensions in x augmented with 66 auxiliary
dimensions in v (velocities).

o Target density:

o) = exp (= ut) — 5117

where u(x) is the potential energy of the molecule and %Hsz is the
kinetic energy term.

@ Prior distribution of the latent 7 is an isotropic Gaussian norma
distribution in all dimensions.
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Alanine dipeptide (2)
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Figure 5: Alanine dipeptide sampled with deterministic normalizing flows and stochastic normaliz-
ing flows. a) One-shot SNF samples of alanine dipeptide structures. b) Energy (negative logarithm)
of marginal densities in 5 unimodal torsion angles (top) and all 5 multimodal torsion angles (bottom).

density

Table 2: Alanine dipeptide: KL -divergences of RNVP flow and SNF (RNVP+MCMC) between
generated and target distributions for all multimodal torsion angles. Mean and standard deviation
from 3 independent runs.

KL-div. ¢ M 1 T2 Y3

RNVP 1.69+0.03 3.82+40.01  0.98+0.03  0.79+0.03  0.79+0.09
SNF 0.36+£0.05 021001 027003 012+0.02 0.15+0.04

5 multimodal torsion angles:
@ Backbone angles ¢ and .
@ Methyl rotation angles 1, ¥2, and ~3.
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