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@ Literature review:

e A Simple Framework for Contrastive Learning of Visual
Representations (ICML 2020),
https://arxiv.org/abs/2002.05709
(2D image)

e MoICLR: Molecular Contrastive Learning of Representations via
Graph Neural Networks, https://arxiv.org/abs/2102.10056
(molecular graphs)

o Graph Contrastive Learning with Augmentations (NeurlPS 2020),
https://arxiv.org/pdf/2010.13902.pdf
(molecular graphs)

e PointContrast: Unsupervised Pre-training for 3D Point Cloud
Understanding, https://arxiv.org/pdf/2007.10985.pdf
(3D point cloud)
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A Simple Framework for Contrastive Learning of Visual
Representations (ICML 2020)
Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton
https://arxiv.org/abs/2002.05709
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Overview

Maximize agreement
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Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. Afier
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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Augmentation

(f) Rotate {90°, 1807, 270° } (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. llustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (¢.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
madels only includes random erop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)
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Algorithm

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {z;,}_ de
forallk € {1,...,N} do
draw two augmentation functions { ~T, ' ~T
# the first augmentation
Top 1 = t(xy)
hop_1 = f(Zap_1) # representation
Zokp—_1 = g(hgk_l) # ]'.‘I'U_jL‘L‘linll
# the second augmentation
:f!gk = t’(:l’.’k)

hoy = f(Ea) # representation

zor = g(har) # projection
end for
forallie {1,....2N}andj € {1,...,2N} do

Sij = ZJ—ZJ/(HZLHHZJH) # pairwise similarity
end for

exp(si,;/T)
g 1 L) exp(si i /T)
L= N [62k—1,2k) + ((2k, 2k—1)]
update networks f and g to minimize £
end for
return encoder network f(-), and throw away g(-)

define £(i, j) as £(i,7)=—log 77
k=
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Loss candidates

Name | Negative loss function | Gradient w.r.t.
T+ Fon
NT-Xent vl /7 —10g 3 e ot oy (T /7) | (1 — SRS gt 5n el D)
NT-Logistic logo(u? v /7) + loga(—uTv™ /1) (o(—uTot /) /o — o(uTv™ /1) /o™
Margin Triplet —max(uTv™ — uTv" +m,0) vt —w ifuTot —uTvT < melse 0

Table 2. Negative loss functions and their gradients. All input vectors, i.e. u, v, v, are £ normalized. NT-Xent is an abbreviation for
“Normalized Temperature-scaled Cross Entropy”. Different loss functions impose different weightings of positive and negative examples.
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Experiments

Method Architecture  Param (M) Topl Top35 Label fraction
Methods using ResNet-50: Method Architecture 1% T éO%
Local Agg. ResNet-50 24 60.2 - op
MoCo ResNet-50 24 60.6 - Supervised baseline ResNet-50 484 804
PIRL ResNet-50 24 63.6 - Methods using other label. .
CPCv2 ResNet-50 24 63.8 853 N o
. Pseudo-label ResNet-50 516 824
SimCLR (ours) ResNet-50 2 693 8% VAT+Entropy Min. ResNet-50 70 834
Metheds using other architectures: UDA (w. RandAug) ResNet-50 - 88.5
Rotation RevNet-50 (4x) 86 554 - FixMatch (w. RandAug) ResNet-50 - 89.1
BigBiGAN RevNet-50 (4x) 86 613 819 S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
AMDIM Custom-ResNet 626 68.1 - N B N
CMC ResNet-50 (2x) 188 684 882 Methods using representation learning only:
InstDisc ResNet-50 392 774
MoCo ResNet-50 (4x) 375 68.6 - P,
BigBiGAN RevNet-50 (4x) 552 788
CPCv2 ResNet-161 () 305 715 901 PIRL ResNet-50 572 838
SimCLR (ours) ResNet-50 (2x) 94 742 92.0 CPCv2 R:Nz‘ o) 779 912
SimCLR (ours) ResNet-50 (4x) 375 76.5 932 SimCLR (ours) ResNet.50 755 878
Table 6. ImageNet accuracies of linear classifiers trained on repre- S,mCLR (ours) ResNet-50 (2x) ~ 83.0 912
SimCLR (ours) ResNet-50 (4x) 85.8 92.6

sentations learned with different self-supervised methods.

Table 7. ImageNet accuracy of models trained with few labels.
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Paper 2 & 3

MolCLR: Molecular Contrastive Learning of Representations via
Graph Neural Networks
Yuyang Wang, Jianren Wang, Zhonglin Cao, Amir Barati Farimani
https://arxiv.org/abs/2102.10056

Graph Contrastive Learning with Augmentations (NeurlPS 2020)
Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang,
Yang Shen
https://arxiv.org/pdf/2010.13902.pdf
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Proposal

©Q A self-supervised learning framework for molecular representation
learning.
@ Three molecular graph augmentation strategies to generate contrastive
pairs:
o Atom masking.
o Bond deletion.
e Subgraph removal.
© Able to achive SOTA on several downstream molecular classification
tasks.
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Contrastive Loss
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Figure 1: Molecular Contrastive Learning of Representations via Graph Neural Networks. A SMILES
$y, from a mini-batch of N molecule data is converted to a molecule graph G,,. Two stochastic
molecule graph data augmentation operators are applied to each graph, resulting two correlated
masked graphs: (:'9,,,] and (:'7,,. A base feature encoder built upon graph convolutions and the
readout operation extracts the representation hz,—1, hz,. Contrastive loss is utilized to maximize
agreement between the latent vectors za,,_1, za, from the MLP projection head.
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Overview (2)

Add & Delete Edge
Drop Node & Edge:

Maximize
Agreement

Shared 6NN-based Encoder
(] Embeddings

Figure 1: A framework of graph contrastive learning. Two graph augmentations ¢; (-|/G) and g;(-|G) are sampled
from an augmentation pool 7" and applied to input graph G. A shared GNN-based encoder f(-) and a projection
head g(-) are trained to maximize the agreement between representations z; and z; via a contrastive loss.
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Contrastive learning

@ Contrastive learning aims at learning represetation through contrastive
positive data pairs against negative ones.

@ SimCLR demonstrates contrastive learning can greatly benefits from
the composition of data augmentations and large batch sizes.

@ Based on InfoNCE, SimCLR proposes the normalized temperature-
scaled cross entropy (NT-Xent) loss:

exp(sim(z;, zj)/7)
N 1{k # i}t exp(sim(z;, 2,)/7)
where z; and z; are latent vectors extracted from a positive data pair, N

is the batch size, 7 is the temperature parameter, and sim(.) measures
the similarity between the two vectors (e.g. cosine):

ﬁ,"j = |Og

T,
Zi Z

s|m(zi7 ZJ) - m
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MolCLR Framework (1)

Molecular graph data augmentation strategies:

@ Atom Masking: Atoms in the graph are randomly masked with a given
ratio (e.g. atom features x, is replaced by a mask token m).

@ Bond Deletion: Randomly removes edges completely out of the graph.

© Subgraph Removal: Subgraph removal starts from a randomly picked
origin atom. The removal process is implemented in DFS manner.

Algorithm:

@ Given a mini-batch of size N, a molecular graph G, is transformed
into two different but correlated molecular graphs G; and G; where
i=2n—1andj=2n.

@ Molecular graphs augmented from the same molecule are denot i

positive pairs. From different molecules, negative pairs.
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MolCLR Framework (2)
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(a) Atom masking (b) Bond deletion (c) Subgraph removal

Figure 2: Three molecule graph augmentation strategies. (a) Atom masking randomly replaces the
node feature x,, of an atom feature with a mask token m. (b) Bond deletion randomly deletes the
bond between two atoms, so that the they are not directly connected on the graph. (c) Subgraph
removal randomly removes an induced subgraph [66] from the original molecule graph. Within the
subgraph, all nodes are masked and all edges are deleted.
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Experiments (1)

Table 1: Test ROC-AUC (%) performance comparison of different models, where the first five models
are supervised learning methods and the last three are self-supervised/pre-training methods. Mean
and standard deviation on each benchmark are reported.

Dataset BBBP Tox21 ClinTox HIV BACE SIDER MUV

# Molecules 2039 7831 1478 41127 1513 1478 93087

# Tasks 1 12 2 1 1 27 17

RF 71.4£0.0 769%15 71.3£56 78.1£0.6 86.7t0.8 68.4+0.9 0632123
SVM 72.9£0.0 81.8+1.0 66.9£9.2 79.240.0 86.2+£0.0 68.2+t13 67.3%£l1.3

MGCN [74] 85.0L£6.4 70.7k1.6 63.4£42 738%£l1.6 73.4£3.0 552£18 70.2+£34
D-MPNN [28] 71.2+3.8 68.9+13 90.5£53 75.0+2.1 853+53 632+23 76.2+2.8

HU.etal [60] 708+1.5 787+04 789+24 802409 859+08 652409 814420
N-Gram [75] 91.2£3.0 769427 85.5+3.7 83.0+1.3 87.6+3.5 632405 B81.6+1.9
MolCLR 73.6£0.5 79.8+0.7 93.2+1.7 80.6E£l1.1 89.0£0.3 68.0Lf1.1 88.612.2
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Experiments (2)

Table 2: Test ROC-AUC (%) performance comparison of different temperature parameter 7. Mean
and standard deviation of all the seven benchmarks are reported.

Temperature (7)  0.05 0.1 0.5
ROC-AUC (%) 76.84+1.2 80.2+1.3 78.44+1.7

Atom masking + bond deletion
100.00 Subgraph removal (p<25%)
= Subgraph removal

95.00
m Composition of three augmentations

i

Tox21 M

90.00

85.00 I I B
80.00 I .
75.00 .
70.00
L
65.00 i
HIV

60.00
SIDER  ClinTox BACE BBBP

ROC-AUC (%)

Figure 3: Test ROC-AUC (%) performance of pre-trained MolCLR model with different compositions 7
of molecular graph augmentation strategies. Height of each bar represents the mean ROC-AUC on  [#&)
the benchmark, and length of each error bar represents the standard deviation.
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Experiments (3)

Table 3: Test ROC-AUC (%) of GIN with/without molecule graph augmentations on all the seven
supervised molecular classification benchmarks. GIN models are trained in the supervised learning
manner without pre-training.

Dataset BBBP Tox21 ClinTox HIV BACE SIDER MUV

GIN w/o Aug  65.8+4.5 74.0+08 58.0+4.4 753+19 70.1+£54 573+1.6 71.8%£25
GINw/Aug 72109 750+1.1 64.0+24 76.1+12 71.6+0.7 652+1.4 80.5£3.1

Molecular weight

Figure 4: Two-dimensional t-SNE embedding of the molecular representations learned by our
MOolICLR pre-training. Representations are extracted from the validation set of the pre-training
dataset, which contains 100k unique molecules. The color of each embedding point indicates its
corresponding molecular weight.
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Experiments (4)

RDT-B

High
Identical 2.47 2.27 1.01 1.07 1.66 1.39 0.85 0.17 -0.26
AttrMask| 0.03 1.20 -0.62 -1.05-1.14 {2.43 1.89 0.85 1.15 1.37 1.53 0.47 -0.36 0.25
EdgePert|-1.26 1.95 .-1.1! 1.28. 0.71 1.37 1.74 1.52 0.97 0.34 0.71
Subgraph{1.63 1.17 2.10 1.90 1.62 2.54 2.30 2.20 2.67 1.13 1.50 1.25 1.06 1.39
NodeDrop|0.85 1.57 -0.86 -0.59-0.17| 12.00 2.27 1.62 1.31 1.85 1.45 1.66 1.53 1.31
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& &P & &
BQ‘Q :§°° 52. &g Q“‘“ 99‘0 Q@Q Qéb “\@ as,sb
& & & & & F

Figure 2: Semi-supervised learning accuracy gain (%) when contrasting different augmentation pairs, compared
to training from scratch, under four datasets: NCI1, PROTEINS, COLLAB, and RDT-B. Pairing “Identical"
stands for a no-augmentation baseline for contrastive learning, where the positive pair diminishes and the
negative pair consists of two non-augmented graphs. Warmer colors indicate better performance gains. The
baseline training-from-scratch accuracies are 60.72%, 70.40%, 57.46%, 86.63% for the four datasets respectively.
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PointContrast: Unsupervised Pre-training for 3D Point Cloud
Understanding
Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas J. Guibas, Or
Litany
https://arxiv.org/abs/2007.10985
https://github.com/facebookresearch/PointContrast
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Overview

Fig. 2: PointContrast: Pretext task for 3D pre-training.

Sparse Res-U-Net

| Paoint Contrastive
(+)4 )
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~
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Algorithm 1 General Framework of PointContrast

Input: Backbone architecture NN; Dataset X = {x; € ]RNX:}}; Point feature dimension D:
Output: Pre-trained weights for NN.
for each point cloud x in X do

- From x, generate two views x! and x2.

- Compute correspondence mapping (matches) M between points in x! and x2.

- Sample two transformations T; and Ts.

- Compute point features f*, fZ2 ¢ RV*P by

f1 = NN(T:(x!)) and £? = NN(T=2(x?)).

- Backprop. to update NN with contrastive loss .C,n(f]',fQ) on the matched points.
end
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PointInfoNCE Loss

exp(f - £/7)
S oyer o0(fi - /7)

where P is the set of all the positive matches from two views:

Le=— Z log
(if)eP

e For a matched pair (/,j) € P, point feature fl-l will serve as the query,
and 6—2 will serve as the positive key.

e Point feature f2 where 3(-,k) € P and k # j as the set of negative
keys.
@ The number of points is 100K, so sample 4,096 pairs of matching only.
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