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@ Research update

o Literature review:

© Molecule Optimization by Explainable Evolution (ICLR 2021),
https://openreview.net/pdf?id=jHefDGsorp5

@ Boltzmann Generators — Sampling Equilibrium States of
Many-Body Systems with Deep Learning,
https://arxiv.org/pdf/1812.01729v2.pdf

© Conformation-Guided Molecular Representation with
Hamiltonian Neural Network (ICLR 2021),
https://openreview.net/pdf?id=q-cnWaaoUTH
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Research update

@ TensorFlow API for the old C++/CPU CG (modified from the old
FastCG) starts working and tested. | am going to implement the graph-
based Cormorant in TF for 3D conformation generation.

@ E3NN (PyTorch): https://github.com/e3nn/e3nn

@ | still have a technical problem with IPython/Jupyter notebook, but
after it resolved, we can tackle PSI4 for DFT computation (as an al-
ternative to evaluate 3D conformations), and Boltzmann Generators.
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Molecule Optimization by Explainable Evolution (ICLR 2021)
Binghong Chen, Tianzhe Wang, Chengtao Li, Hanjun Dai, Le Song
https://openreview.net/pdf?id=jHefDGsorp5

Note: | think the idea of subgraph recognition can be applied here.
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Proposal

A novel algorithm for optimizing molecule properties via an Expectation
Maximization (EM)-like explainable evolutionary process. Alternate
between two stages:

@ Explainable local search which identifies rationales, i.e. critical
subgraph patterns accounting for desired molecular properties.

@ Molecule completion which explores the larger space of molecules
containing good rationales.

Note
In simple words: mimics the process of molecule optimization by human

experts.

| A\
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Overall

Explainable local search
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Molecule completion

Figure 1: Overview of our EM-like evolution-by-explanation algorithm. Left: climbing up the
energy landscape J(f,p(s)) by alternatively taking an E-step and M-step. Right: illustrations for
the E-step and M-step. In the E-step of time ¢, we draw samples from Q(p(s)|6*~!) to approximate
Q(0)p*(s)) using rationales extracted from the seed molecules via an explainable model. Then in the
M-step, we optimize QQ(6|p*(s)) w.r.t. 6, i.e. pushing the graph completion model pjy(-|s) towards
generating higher scoring molecules conditioned on the rationale samples.
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Molecule optimization

Molecule optimization

Given a scoring function f : G — [0, 1], and a set of seed molecules Gy C G,
the goal is to learn a molecule generative model p(g) such that the expected
score of the generated molecules is maximized:

maxE[F(8)] = / _Ple)F(&)ds

The set of rationales

When experts are optimizing a molecular property, they will first look for
substructures that result in the formation of that property, and use them
as the foundation for building novel molecules. These subgraphs are called
rationales:

S ={s|3g € G,s.t. s is a subgraph of g}

V.
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Rationale-based hierarchical generative model (1)

Generative model

@ Sample rationales s from a rationale distribution p(s).
@ Molecules g will be generated according to conditional distribution py(g|s):

;mw=/¥mamwﬂ$

where 0 is the learnable parameters.

Graph completion model

po(g|s) is a graph completion model from rationale s. We use a latent variable
model with a Gaussian prior p(z):

W@ﬂz/mnm@maw

where py(gls, z) is a variant of the GraphRNN - conditional graph generation
on subgraphs.

v
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Rationale-based hierarchical generative model (2)

To improve the diversity of the generated molecules, we will also regular-
ize the entropy of the rationale distribution p(s), leading to the following
diversity promoting objective function:

J(0, p(s)) = Egrpy()[f(g)] + A - H[p(s)]

where A > 0 is a hyper-parameter.
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Alternating optimization algorithm

Generic overview

We seek to optimize py(g|s) and p(s) in an alternating fashion, akin to
the EM algorithm:

© Expectation step (E-step): updating the rationale distribution p(s).

@ Maximization step (M-step): improving the molecule completion
model py(g|s).
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We want to maximize the objective J with respect to the rationale distribu-
tion p(s) given pye—1(gls):

_ 1 1
p'(s) = arg Té;( Q(p(s)|6* 1) = Z exp <)\Eg~p0t_1(~|$)[f(g)])

We will maintain a finite support set St, which is obtained from an explan-
able graph model that takes a graph input g and outputs the corresponding
rationale s which explains why the graph g can obtain a high property score

f(g):

t

st=J {Explain(g) g€ g"}

i=1
that will be treated as particle locations for representing pf(s).
This is the place | think a better subgraph recognition model can contrilg
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With {s;}7; from p'(s), the MC estimate of the objective:

Q(0|p'(s)) ~ Z/pg(g\s, g)dg + constant

We maximize it with respect to the parameters 6 using REINFORCE:
1 m
0t 071 +a— ) f(g)Vlog pge1(gilsi
- +am; (&1)V log pge—1(gilsi)

a>0, gi ~ poe—1(|si)

After the parameter is updated to 8%, we will sample a seed set of molecules
G' = {gi}", from py:(g|s) by completing the rationale samples {s,}f"

g ~ go:(]s), s ~ Uniform({s1, .., Sm})
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Algorithm 1

Algorithm 1: Molecule Optimization by Explainable Evolution (Mo1Evol)

Input: Seed molecules G, pretrained graph completion model py(g|s) on ChEMBL.
1 Initialize S° = {}.
2 fort < 1to Nyounas do
s | St=s81u {Explaln(g) g€ G1}.
4 Sample s1, 83, -+ , 8, from S* using Eq (j with self-normalization.
5 forj « 1to NEPMM do
6
7

L Sample g1, - - , gm from py(g|s1) . , po(g|sm) respectively.
0)).

Update ¢ with REINFORCE (Eq (1
8 Sample seed molecules G; with Eq q: .
s return py(g)

Sl
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Explainer (subgraph recognition model)

Variational Objective. We want to learn an explainer for the conditional distribution P(Y = 1|g) £
f(g) (treating f(g) as a probability), with random variables Y € {0,1} where Y = 1 indicates that
the molecule has the property, and 0 otherwise. We will learn a graph vertex sampler h4(g) jointly
with a variational approximation Q(Y |g) of P(Y'|g), such that the mutual information between Y
and s is maximized

Jmas By el [log QY | s)], such that s = (U, EY) and U ~ hy(g). (12)

Note

@ In my understanding, this is an unsupervised way to learn the set of
rationales (subgraphs).

@ The graph vertex sampler hy(g) actually can be understood as a prob-
ability distribution over the set of vertices: hy(g), is the probability
that vertex v contributes to our desired property.

o If we sample the first k vertices from hy(g), we get a (maybe discon-
nected) rationale.

v
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Algorithm 2

Algorithm 2: Explaing(g)

Input: Molecule g, vertex sampling policy ¢.
ho(g) = Softmax(FCo(MPN,(g)).

Sample I{ ~ hy(g) with Gumbel-softmax trick.
s' = Expand((i, £Y)) as defined in Eq .

return s’

Vertex sampling policy he(g) During training Figure 2: Steps of the explaining pro-
’ cess (Alg. 2). The explainer is a sub-

Q J graph selector containing two steps.

& First, a vertex sampling policy hy(g)

= » Perform SGD on loss

¢ = —yloeg - (1— ) lox(l - ) is computed (top-left). Then k vertices

are selected using the Gumbel-softmax

/ trick (bottom-left). During training,
the embeddings on the selected ver-
tices are pooled together and fed into

Eg an i : @ a MLP ¢y which predicts the prop-
7 — : E erty score (top-right). During explain-

_ 577" Estmowed rtionale— ing, The induced subgraph of the se-
lected vertices and their neighbors is
Size-k vertex subset Inelude neighbors extracted as the predicted rationale.

During explaining

o
]
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Experiments (1)

Table 1: Results on multi-property molecule optimization. MolEvol is compared with three vari-
ants and four baselines in terms of success rate, novelty, diversity and an overall metric (QNU). The
diversity of MSO and GA-D(t) is not reported here due to their extremely low novelty scores.

Algorithm  MolEvol [MCTS] [FixM] [FixR] |Rati0naleRL REINVENT MSO GA-D(t)

Successrate 93.0% 77.7% 67.3% 66.3% 61.1% 46.6% 57.7% 62.0%
Novelty 75.7% 12.5% 67.4% 54.6% 57.4% 66.4% 28.6% 19.4%
Diversity 0.681 0707 0723 0727 0.749 0.666 - -

QNU 52.7% 474% 393% 283%| 29.5% 7.4% 16.4% 12.0%
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Experiments (2)
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Figure 3: Property score distribution of the generated molecules. Left: the evolution of the f-score
distribution of MolEvol over the number of iterations. Right: the distribution of four property
scores of our generated molecules, the ground truth molecules in the reference set, and the molecules
in ChEMBL. The higher the better for INK3/GSK-33/QED, the lower the better for SA.
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Figure 4: An example of rationale
and corresponding generated molecules
with f-scores.
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Boltzmann Generators — Sampling Equilibrium States of Many-Body
Systems with Deep Learning
Frank Noé, Simon Olsson, Jonas Kohler, and Hao Wu
https://arxiv.org/pdf/1812.01729v2.pdf

Note: As last time we discussed about learning the Boltzmann distribution
for the task of 3D conformation generation, this paper is prerequisite for
Equivariant Flows.
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Computing equilibrium states in condensed-matter many-body systems.
Molecular dynamics is computationally expensive.

| A\

Proposal
Boltzmann Generators:

@ To generate unbiased one-shot equilibrium samples of representative
condensed matter systems and proteins.

@ Uses neural networks to learn a coordinate transformation of the
complex configurational equilibrium distribution to a distribution that
can be easily sampled. (The authors meant normalizing flows.)

Metric = Free energy difference.

A\

-\,
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Background

@ Under a wide range of conditions, the equilibrium probability of a mi-
croscopic configuration x (setting of all spins, positions of all protein
atoms, etc.) is proportional to e_”("), the well-known Boltzmann dis-
tribution.

@ The dimensionless energy u(x) contains the potential energy of the sys-
tem, the temperature and optionally other thermodynamic quantities.

Trajectory methods

Markov Chain Monte Carlo (MCMC) or Molecular Dynamics (MD):
@ Conventional methods for sampling from the Boltzmann distribution.
@ Make tiny changes to x in each step. Require many simulation steps.

@ Biased user-defined order parameters called reaction coordinates to
enhance sampling of the rare events.

V.

Son (UChicago) Group Meeting February 5, 2021 20/37



Overview

3] Boltzmann Generator

1. Sample Gaussian
dsrtution b

Boltzmann distribution e
b) Invertible neural block
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Boltzmann Generators

Boltzmann Generators

© Given a sample z from a simple prior (Gaussian), an invertible neural
network transformation F,.(z) provides a configuration x which has a
high Boltzmann weight, from a distribution px(x) that is similar to the
target one.
@ Reweight the generated distribution px(x) to the Boltzmann distribu-
tion e~ u(x):
w(x) = e “*) /px(x)

for every sample x.
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Boltzmann Generators — Training by Energy

KL divergence between the proposal distribution px(x) and Boltzmann
distribution e~“(®) can be computed as the expectation over samples z:

Ikt = E[u(Fzx(2)) — log Rox(2)]

where:

@ u(F.(z)) is the energy of the generated configuration.

@ R,y is the determinant of the Boltzmann Generator's Jacobian matrix.

Observation

@ E,[u(F.x(2))] is the mean potential energy, that tries to minimize

the energy and trains BG to sample low-energy structures (high-
probability).

o E,[log R.«(z)] is equal to the entropic contribution to the free energy,
that tries to maximize the entropy of the generated distrubtuion and
prevents mode-collapse.

v
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Boltzmann Generators — Training by Examples

Training by Energy

@ Approximate Jk; using a batch of around 1,000 samples.

@ Gradient descent to decrease Jk; .

Training by Examples
@ Training by Energy alone is not sufficient as it tends to focus on sam-
pling of the most stable states.

o First, initialize BG with some valid configurations x. Transform (in-
vertly) them to the latent space z = F,,(x).

@ Maximize the likelihood by minimizing:

1
It = Bx | 5|1Fe(x)[|? — log Rex()

to help F,. to focus on relevant parts of state space.
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Experiment — 2D model potentials (toy model)

Experiments:

@ 2D toy model

@ Condensed matter systems

© Complex molecules (proteins)

Double well

Mueller potential

Configuration space X
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Experiment — Complex molecules (proteins)
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Conformation-Guided Molecular Representation with Hamiltonian
Neural Network (ICLR 2021)
Ziyao Li, Shuwen Yang, Guojie Song, Lingsheng Cai
https://openreview.net/pdf?id=q-cnWaaoUTH

Note: It is kind of weird when people apply the notion of Hamiltonian in
Newtonian physics to a quantum physics problem. However, it is just my
opinion.
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A novel molecular representation algorithm which preserves 3D conforma-
tions of molecules with a Molecular Hamiltonian Network (HamNet).

HamNet

Implicit positions and momentums of atoms in a molecule interact in the
Hamiltonian Engine following the discretized Hamiltonian equations.

@ translation rotation-invariant losses.

@ inputs to Fingerprint Generator, a MPNN for other downstream
molecular tasks.

Son (UChicago) Group Meeting February 5, 2021 28 /37



Hamiltonian equations

The Hamiltonian equations depict Newton's laws of motion in the form
of first-order PDEs. Considering a system of n particles with positions
(g1, .., qn) and momentums (p1, .., pn), the dynamics of the system follow:

. dq  OH . dp; M

= —

dt Gp," Pi= dt oq;

where H is the Hamiltonian of the system, equals to the total system energy:
n
H=> Ti+U
i=1

If dissipation exists in the system, ® denotes the dissipation function which
describes how the system enery is dissipated by the outer environment:

oM . (87-{, a<1>> (87—[ aq>>
qi = pi=— o o) =5 tmin—

- op;’ dq;  0q; oq; 'Op;
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Discretized Hamiltonian equations (1)

The Hamiltonian engine is designed to simulate the physical interactions
between atoms in a molecule. To correctly incorporate the laws of motion,
we discretize the Hamiltonian equations, and model the energy and dissi-

pation with learnable functions. At the t-th step in the engine, for atom
i

) 9 p, p,’

(t+1) () OHO (t+1) (1) (07{“) 8‘I>(t)>
a; =4 +tN j - +m
8pft 0q,-(t) [”)p,(t)

where:

@ 7 is a hyper-parameter of step size which controls the granularity of
the discretization.

@ m;j is the (normalized) mass of atom i.

o H®) and ®(*) are the learnable Hamiltonian and dissipation func
of g(t) and p(®).

Son (UChicago)
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Discretized Hamiltonian equations (2)

n

H:ZTi(pi)+U(qiv"vqn)7 ‘I):Z¢(p’)

i=1 i=1

@ q,p € R¥, dr > 3 are implicit positions and momentums in a generalized
dr-dimensional space. {Wr, Wy, Wy} are network parameters.

@ Kinetic energy T = p?/2m as the quadratic forms:

_ P,‘T W7T Wrp;

Ti(pi) = =—

@ Rayleigh's dissipation function ® = 1/2%""._, ¢;qiq;:

i) = PV Wb
(P ==

@ Lennard-Jones potential U(r) = e(r=12 — r=9%):

_ . P —2 2 _(q.
U= g uj, uj=rgt =g, r,-j—(q,—
i#j
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Overall

Position & Momentum
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Figure 1: The overall structure of HamNet.
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Initial positions and momentums

Graph-based neural networks are used to initialize these spatial quantities,
given the bond-strength-adjacency:

A;j = sigmoid(MLP(v; @ e @ v}))

An LSTM over the GCN outputs to generate unique positions and
momentums:

L
G = @ fi(E)a q,(()) = LSTMS,‘(&SU s Gsy)
£=0
- l 0
ﬁi = @gl( ), p,( ) - LSTMSi(ﬁSp "’ﬁSn)
/=0

where fi(e), g,-(g) are hidden representations of atom i in the /-th GCN Kggen
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Conformation preserving

After the dynamical process in the Hamiltonian engine, positions in the
generalized RY space are transformed into real 3D space linearly:

A

Q — QWtrans

where Q € R™3 and Q = (qi,..,qn) € R,

Problem
It is not rotational-equivariant.

Son (UChicago) Group Meeting February 5, 2021



Translational- and rotational-invariant metrics

© Kabsch-RMSD (K-RMSD):

éK = Kabsch(@, QR)’ Lk—rmsd Q QR \/ZI 1 ml||q/ —q; ||2

=1 Mi
@ Distance loss:
1 O 2
A OR
(@07 = % Y (110 13 - Il - a13)
ij=1
© ADJ-k loss considering the distances between k-hop atoms:
2
250,09 = 5 > Al 0l - ¥ - aFIR)
ij=1 o

L= Lk—rmsd + )\Ladj—3
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Experiments (1)

Table 1: Quantitative results of conformation prediction on QM9.

METRIC | Kabsch-RMSD (A) Distance Loss (1072 4)
MPNN 1.708 8.620
RDKit 1.649 7519
Ham. Eng. (w/o LSTM) 2.039 10.871
Ham. Eng. (w/o dyn.) 1.442 5.519
Ham. Eng. (w/o ®) 1.389 5.227
Ham. Eng. (w/o ADJ-3) 1.084 7.746
Ham. Eng. (as proposed) 1.384 5.186

(b)

(c)

Real Conf. Step 0 Step 3 Step 6 Step 9 Step 12 Step 15 Step 20

Figure 2: Visualized conformations at different steps of the Hamiltonian Engine.
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Experiments (2)

Table 2: Quantitative results on various datasets of baselines, HamNet, and its variants. Baselines
using 3D conformations as inputs are marked bold. 1" indicates that higher is better, ”|” contrarily.
We directly take reported performances from references, and leave unreported entries blank ("-").

DATASET QM9 Tox21 Lipop FreeSolv ESOL
METRIC Multi-MAE|  Multi-ROCT RMSE| RMSE| RMSE|
MoleculeNet (2017) 2.350 0.829 0.655 1.150 0.580
3DGCN (2019) - - - 0.82420.014  0.558+0.069
DimeNet (2020) 1.920 - - -
Attentive FP (2020) 1.292 0.857 0578 0.736 0.505
CMPNN (2020) - 0.8564 0.006 - 0.808+0.129  0.547+0.011
HamNet (w/o conf)) | 1.23740.030 0.868+£0.012  0.572+0.011 0.737£0.025  0.458+0.010
HamNet (real conf.) | 1.199+£0.017  0.8644+0.006  0.566+0.015 0.710+0.036  0.463+0.011
HamNet (ours) 1.19440.038 0.875+ 0.006 0.557+0.014 0.694+0.053 0.444+0.011

Traiaing Time psr Mol (s)

(a) Engine depth (T"). (b) Dimensionality of q, p (dy). (c) Step size (n).

Figure 3: Effects on conformation prediction of hyperparameters in the Hamiltonian Engine. Dis-
tance losses and running time versus (a) the engine depth T (b) the dimensionality of the general-
ized space dy; and (c) the step size ) of discretization are plotted.
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