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Research update

Literature review:
1 Molecule Optimization by Explainable Evolution (ICLR 2021),

https://openreview.net/pdf?id=jHefDGsorp5
2 Boltzmann Generators – Sampling Equilibrium States of

Many-Body Systems with Deep Learning,
https://arxiv.org/pdf/1812.01729v2.pdf

3 Conformation-Guided Molecular Representation with
Hamiltonian Neural Network (ICLR 2021),
https://openreview.net/pdf?id=q-cnWaaoUTH
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Research update

1 TensorFlow API for the old C++/CPU CG (modified from the old
FastCG) starts working and tested. I am going to implement the graph-
based Cormorant in TF for 3D conformation generation.

2 E3NN (PyTorch): https://github.com/e3nn/e3nn

3 I still have a technical problem with IPython/Jupyter notebook, but
after it resolved, we can tackle PSI4 for DFT computation (as an al-
ternative to evaluate 3D conformations), and Boltzmann Generators.

Son (UChicago) Group Meeting February 5, 2021 3 / 37

https://github.com/e3nn/e3nn


Paper 1

Molecule Optimization by Explainable Evolution (ICLR 2021)
Binghong Chen, Tianzhe Wang, Chengtao Li, Hanjun Dai, Le Song

https://openreview.net/pdf?id=jHefDGsorp5

Note: I think the idea of subgraph recognition can be applied here.
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Proposal

Proposal

A novel algorithm for optimizing molecule properties via an Expectation
Maximization (EM)-like explainable evolutionary process. Alternate
between two stages:

Explainable local search which identifies rationales, i.e. critical
subgraph patterns accounting for desired molecular properties.

Molecule completion which explores the larger space of molecules
containing good rationales.

Note

In simple words: mimics the process of molecule optimization by human
experts.
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Overall
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Molecule optimization

Molecule optimization

Given a scoring function f : G → [0, 1], and a set of seed molecules G0 ⊂ G,
the goal is to learn a molecule generative model p(g) such that the expected
score of the generated molecules is maximized:

max
p(.)

Eg∼p(.)[f (g)] =

∫
g∈G

p(g)f (g)dg

The set of rationales

When experts are optimizing a molecular property, they will first look for
substructures that result in the formation of that property, and use them
as the foundation for building novel molecules. These subgraphs are called
rationales:

S = {s|∃g ∈ G, s.t. s is a subgraph of g}
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Rationale-based hierarchical generative model (1)

Generative model
1 Sample rationales s from a rationale distribution p(s).

2 Molecules g will be generated according to conditional distribution pθ(g |s):

pθ(g) =

∫
s∈S

p(s)pθ(g |s)ds

where θ is the learnable parameters.

Graph completion model

pθ(g |s) is a graph completion model from rationale s. We use a latent variable
model with a Gaussian prior p(z):

pθ(g |s) =

∫
z

p(z)pθ(g |s, z)dz

where pθ(g |s, z) is a variant of the GraphRNN - conditional graph generation
on subgraphs.
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Rationale-based hierarchical generative model (2)

To improve the diversity of the generated molecules, we will also regular-
ize the entropy of the rationale distribution p(s), leading to the following
diversity promoting objective function:

J(θ, p(s)) = Eg∼pθ(.)[f (g)] + λ ·H[p(s)]

where λ > 0 is a hyper-parameter.
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Alternating optimization algorithm

Generic overview

We seek to optimize pθ(g |s) and p(s) in an alternating fashion, akin to
the EM algorithm:

1 Expectation step (E-step): updating the rationale distribution p(s).

2 Maximization step (M-step): improving the molecule completion
model pθ(g |s).
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E-step

We want to maximize the objective J with respect to the rationale distribu-
tion p(s) given pθt−1(g |s):

pt(s) = arg max
p(s)

Q(p(s)|θt−1) =
1

Zθ
exp

(
1

λ
Eg∼pθt−1 (·|s)[f (g)]

)
We will maintain a finite support set St , which is obtained from an explan-
able graph model that takes a graph input g and outputs the corresponding
rationale s which explains why the graph g can obtain a high property score
f (g):

St =
t⋃

i=1

{
Explain(g) : g ∈ G i

}
that will be treated as particle locations for representing pt(s).
This is the place I think a better subgraph recognition model can contribute.
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M-step

With {si}mi=1 from pt(s), the MC estimate of the objective:

Q(θ|pt(s)) ≈
m∑
i=1

∫
pθ(g |si )f (g)dg + constant

We maximize it with respect to the parameters θ using REINFORCE:

θt ← θt−1 + α
1

m

m∑
i=1

f (gi )∇ log pθt−1(gi |si )

α > 0, gi ∼ pθt−1(·|si )

After the parameter is updated to θt , we will sample a seed set of molecules
Gt = {gi}nsi=1 from pθt (g |s) by completing the rationale samples {si}mi=1:

gi ∼ gθt (·|s), s ∼ Uniform({s1, .., sm})
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Algorithm 1
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Explainer (subgraph recognition model)

Note

In my understanding, this is an unsupervised way to learn the set of
rationales (subgraphs).

The graph vertex sampler hφ(g) actually can be understood as a prob-
ability distribution over the set of vertices: hφ(g)v is the probability
that vertex v contributes to our desired property.

If we sample the first k vertices from hφ(g), we get a (maybe discon-
nected) rationale.
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Algorithm 2
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Experiments (1)

Son (UChicago) Group Meeting February 5, 2021 16 / 37



Experiments (2)
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Paper 2

Boltzmann Generators – Sampling Equilibrium States of Many-Body
Systems with Deep Learning

Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu
https://arxiv.org/pdf/1812.01729v2.pdf

Note: As last time we discussed about learning the Boltzmann distribution
for the task of 3D conformation generation, this paper is prerequisite for
Equivariant Flows.
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Proposal

Problem

Computing equilibrium states in condensed-matter many-body systems.
Molecular dynamics is computationally expensive.

Proposal

Boltzmann Generators:

To generate unbiased one-shot equilibrium samples of representative
condensed matter systems and proteins.

Uses neural networks to learn a coordinate transformation of the
complex configurational equilibrium distribution to a distribution that
can be easily sampled. (The authors meant normalizing flows.)

Metric = Free energy difference.
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Background

Observation

Under a wide range of conditions, the equilibrium probability of a mi-
croscopic configuration x (setting of all spins, positions of all protein
atoms, etc.) is proportional to e−u(x), the well-known Boltzmann dis-
tribution.

The dimensionless energy u(x) contains the potential energy of the sys-
tem, the temperature and optionally other thermodynamic quantities.

Trajectory methods

Markov Chain Monte Carlo (MCMC) or Molecular Dynamics (MD):

Conventional methods for sampling from the Boltzmann distribution.

Make tiny changes to x in each step. Require many simulation steps.

Biased user-defined order parameters called reaction coordinates to
enhance sampling of the rare events.
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Overview
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Boltzmann Generators

Boltzmann Generators
1 Given a sample z from a simple prior (Gaussian), an invertible neural

network transformation Fzx(z) provides a configuration x which has a
high Boltzmann weight, from a distribution pX (x) that is similar to the
target one.

2 Reweight the generated distribution pX (x) to the Boltzmann distribu-
tion e−u(x):

w(x) = e−u(x)/pX (x)

for every sample x .
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Boltzmann Generators – Training by Energy

KL divergence between the proposal distribution pX (x) and Boltzmann
distribution e−u(x) can be computed as the expectation over samples z :

JKL = Ez [u(Fzx(z))− logRzx(z)]

where:

u(Fzx(z)) is the energy of the generated configuration.

Rzx is the determinant of the Boltzmann Generator’s Jacobian matrix.

Observation

Ez [u(Fzx(z))] is the mean potential energy, that tries to minimize
the energy and trains BG to sample low-energy structures (high-
probability).

Ez [logRzx(z)] is equal to the entropic contribution to the free energy,
that tries to maximize the entropy of the generated distrubtuion and
prevents mode-collapse.
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Boltzmann Generators – Training by Examples

Training by Energy

Approximate JKL using a batch of around 1,000 samples.

Gradient descent to decrease JKL.

Training by Examples

Training by Energy alone is not sufficient as it tends to focus on sam-
pling of the most stable states.

First, initialize BG with some valid configurations x . Transform (in-
vertly) them to the latent space z = Fxz(x).

Maximize the likelihood by minimizing:

JML = Ex

[
1

2
||Fxz(x)||2 − logRxz(x)

]
to help Fzx to focus on relevant parts of state space.
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Experiment – 2D model potentials (toy model)

Experiments:
1 2D toy model
2 Condensed matter systems
3 Complex molecules (proteins)
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Experiment – Complex molecules (proteins)
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Paper 3

Conformation-Guided Molecular Representation with Hamiltonian
Neural Network (ICLR 2021)

Ziyao Li, Shuwen Yang, Guojie Song, Lingsheng Cai
https://openreview.net/pdf?id=q-cnWaaoUTH

Note: It is kind of weird when people apply the notion of Hamiltonian in
Newtonian physics to a quantum physics problem. However, it is just my
opinion.
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Proposal

Proposal

A novel molecular representation algorithm which preserves 3D conforma-
tions of molecules with a Molecular Hamiltonian Network (HamNet).

HamNet

Implicit positions and momentums of atoms in a molecule interact in the
Hamiltonian Engine following the discretized Hamiltonian equations.

translation rotation-invariant losses.

inputs to Fingerprint Generator, a MPNN for other downstream
molecular tasks.
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Hamiltonian equations

The Hamiltonian equations depict Newton’s laws of motion in the form
of first-order PDEs. Considering a system of n particles with positions
(q1, ..,qn) and momentums (p1, ..,pn), the dynamics of the system follow:

q̇i =
dqi

dt
=
∂H
∂pi

, ṗi =
dpi

dt
=
∂H
∂qi

whereH is the Hamiltonian of the system, equals to the total system energy:

H =
n∑

i=1

Ti + U

If dissipation exists in the system, Φ denotes the dissipation function which
describes how the system enery is dissipated by the outer environment:

q̇i =
∂H
∂pi

, ṗi = −
(
∂H
∂qi

+
∂Φ

∂q̇i

)
= −

(
∂H
∂qi

+ mi
∂Φ

∂pi

)
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Discretized Hamiltonian equations (1)

The Hamiltonian engine is designed to simulate the physical interactions
between atoms in a molecule. To correctly incorporate the laws of motion,
we discretize the Hamiltonian equations, and model the energy and dissi-
pation with learnable functions. At the t-th step in the engine, for atom
i ,

q(t+1)
i = q(t)

i + η
∂H(t)

∂p(t)
i

, p(t+1)
i = p(t)

i − η
(
∂H(t)

∂q(t)
i

+ mi
∂Φ(t)

∂p(t)
i

)
where:

η is a hyper-parameter of step size which controls the granularity of
the discretization.

mi is the (normalized) mass of atom i .

H(t) and Φ(t) are the learnable Hamiltonian and dissipation functions
of q(t) and p(t).
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Discretized Hamiltonian equations (2)

H =
n∑

i=1

Ti (pi ) + U(qi , ..,qn), Φ =
n∑

i=1

φ(pi )

q,p ∈ Rdf , df > 3 are implicit positions and momentums in a generalized
df -dimensional space. {WT ,Wφ,WU} are network parameters.
Kinetic energy T = p2/2m as the quadratic forms:

Ti (pi ) =
pT
i W

T
T WTpi

2mi

Rayleigh’s dissipation function Φ = 1/2
∑n

i,j=1 cij q̇i q̇j :

φi (pi ) =
pT
i W

T
φ Wφpi

2m2
i

Lennard-Jones potential U(r) = ε(r−12 − r−6):

U =
∑
i 6=j

uij , uij = r−4ij − r−2ij , r2ij = (qi − qj)
TW T

U WU(qi − qj)
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Overall
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Initial positions and momentums

Graph-based neural networks are used to initialize these spatial quantities,
given the bond-strength-adjacency:

Aij = sigmoid(MLP(vi ⊕ eij ⊕ vj))

An LSTM over the GCN outputs to generate unique positions and
momentums:

q̃i =
L⊕
`=0

f (`)
i , q(0)

i = LSTMsi (q̃s1 , .., q̃sn)

p̃i =
L⊕
`=0

g (`)
i , p(0)

i = LSTMsi (p̃s1 , .., p̃sn)

where f (`)
i , g (`)

i are hidden representations of atom i in the `-th GCN layer.
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Conformation preserving

After the dynamical process in the Hamiltonian engine, positions in the
generalized Rdf space are transformed into real 3D space linearly:

Q̂ = QWtrans

where Q̂ ∈ Rn×3 and Q = (q1, ..,qn) ∈ Rn×df .

Problem

It is not rotational-equivariant.
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Translational- and rotational-invariant metrics

1 Kabsch-RMSD (K-RMSD):

Q̂K = Kabsch(Q̂,QR), Lk-rmsd(Q̂,QR) =

√∑n
i=1mi ||q̂K

i − qR
i ||22∑n

i=1mi

2 Distance loss:

L2dist(Q̂,Q
R) =

1

n2

n∑
i ,j=1

(
||qi − qj ||22 − ||qR

i − qR
j ||22

)2

3 ADJ-k loss considering the distances between k-hop atoms:

L2adj-k(Q̂,QR) =
1

n2

n∑
i ,j=1

Ãk
ij

(
||qi − qj ||22 − ||qR

i − qR
j ||22

)2

L = Lk-rmsd + λLadj-3
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Experiments (1)
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Experiments (2)
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