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© Graph Normalizing Flows (NeurlPS 2019),
https://arxiv.org/abs/1905.13177

@ Variational Inference with Normalizing Flows (ICML 2015),
https://arxiv.org/abs/1505.05770

© MOolGAN: An implicit generative model for small molecular
graphs, https://arxiv.org/abs/1805.11973

© A Generative Model for Molecular Distance Geometry (ICML
2020), https://arxiv.org/abs/1909.11459

© Constrained Graph Variational Autoencoders for Molecule
Design (NeurlPS 2018),
https://proceedings.neurips.cc/paper/2018/hash/
b8a03cbc15fcfa8daeOb03351ebl1742f-Abstract.html

@ Deep imitation learning for molecular inverse problems (Negig:
2019), https://papers.nips.cc/paper/2019/hash/
bObef4c9a6e50d43880191492d4fc827-Abstract.html
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Graph Normalizing Flows (NeurlPS 2019)
Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, Kevin Swersky
https://arxiv.org/abs/1905.13177
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Normalizing Flows (1)

Normalizing flows (NFs) are a class of generative models that uses invertible
mappings to transform an observed vector x € R to a latent vector z € R?
using a mapping function:

z = f(x), x = f7(f(x))
The change of variables:

Of (x)
ox

P(z) = P(x)

For example, if we strech-out x 2 times: z = f(x) = 2x. Then: 9f(x)/0x =
2, so the density is 2 times less dense: P(z) = P(x)/2.
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Normalizing Flows (

o With sufficiently expressive mapping, NFs can learn to map a
complicated distribution into one that is well modeled as a Gaussian.

@ The key is to find a mapping that is expressive, but with an efficiently
computable determinant.

fl(ZO) fz(z1 1) fz+1(zz
ORNE @

N . N .

2z ~ po(Zo) z; ~ pi(z;) zk ~ pk(zK)
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Normalizing Flows (3)

RealNVP partitions the dimensions of x into two sets of variables, x(©)
and x(), and maps them into variables z(®) and z(1:

20 _ (0

21 = xMW) @ exp(s(x@)) + t(x(@)

where @ is the element-wise (Hadamard) product, s and t are any

nonlinear functions.
& & g &
9}: 9&:
M & &

(a) Forward propagation (b) Inverse propagation
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Overview

1 training

* inference

Irreversible

* A

: (Adjacency ~ (Node
Hr ~N(0,1)  Matrix)  Features)
(Prior)

H o~ N(0,6°T)

Reversible Prior - Exact Likelihood

1 1 (Gi(H?)) (1)
Hﬁ’ Ht(¢)% M Hyh

(a) Architecture of 1 step of message passing in a GRevNet: Ht(o), Htm (b? A summary of{our Graph gener-
denote the two parts of the node-features of a particular node, F(-), Fo(-) ation pipeline using GNFs. The
and G1(-), G2(-) are 1-step MP transforms consisting of applying M; and GNF model generates node fea-
Uy once each. The scaling functions (F», G2) are shown in red, whereas tures which are then fed into a de-
the translation functions (F;, Gy ) are shown in blue. ocder to generate the adjacency.

Figure 1: (a) GRevnet Message Passing, and (b) GNF generation pipeline
Note:

@ When we partition each vertex features into half, we basically operate gg
isomorphic graphs with different vertex features.

@ F and G are any graph nets (that was mentioned in the talk and differ?
from the paper).
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Reversible Graph Neural Networks (GRevNets)

Forward:
HO — O o ex (F HMY) + B(HDY) HO — g©
t+1 t P (L1 {41y 2y t4+1 t+1
) _ g 1) _ (D) (0) (0)
Hyy=H H = #), © e (G (12,)) + 6 (1))
(3)
Inverse:
) _ 4700 1) _ @)
HyPy = H2 HY = H,),
HY, Gy (HO, HO, — py(HD)
o (ARG (m0)) (0 )

Note: | think the reason they have the middle step t + 1/2 is just to
ensure all features are used. In the NFs, half the features are left
unchanged.
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GNFs for Structured Density Estimation

From the change of variables:

OH
P(He_1) = P(H;) a;/ 1
t
From the chain rule:
-
OH
P(@) = P(HN) TT | ot

t=1

The Jacobians are given by lower triangular matrices — tractable. GNFs
can model expressive distributions in continuous spaces over sets of
vectors. We choose the prior:

N

P(Hr) = [TV (hif0,1)

i=1
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Experiments

Dataset/Task GNN GRevNet Neumann RBP

Cora Semi-Supervised ~ 71.9 74.5 56.5
Cora (1% Train) 55.5 55.8 54.6
Pubmed Semi-Supervised  76.3 76.0 62.4
Pubmed (1% Train) 76.6 77.0 58.5
PPI Inductive 0.78 0.76 0.70

Model mu alpha HOMO LUMO gap R2

GNN 0.474 0421 0.097 0.124  0.170 27.150
GrevNet  0.462 0.414 0.098 0.124  0.169 26.380

Model ZPVE uo U H G Cv

GNN 0.035 0410 0.396 0.381 0.373  0.198
GrevNet  0.036  0.390 0.407 0418 0359  0.195

Table 1: Top: performance in terms of accuracy (Cora, Pubmed) and Micro F1 scores (PPI). For
GNN and GrevNet, number of MP steps is fixed to 4. For Neumann RBP, we use 100 steps of MP.
These values are averaged out over 3-5 runs with different seeds. Bottom: performance in terms of
Mean Absolute Error (lower is better) for independent regression tasks on QM9 dataset. Number of
MP steps is fixed to 4. The model was trained for 350k steps, as in [6].
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Experiments

COMMUNITY-SMALL EGO-SMALL
MODEL DEGREE CLUSTER ORBIT DEGREE CLUSTER ORBIT
GRAPHVAE 0.35 0.98 0.54 0.13 0.17 0.05
DEEPGMG 0.22 0.95 0.4 0.04 0.10 0.02
GRAPHRNN 0.08 0.12 0.04 0.09 0.22 0.003
GNF 0.20 0.20 0.11 0.03 0.10 0.001
GRAPHRNN(1024) 0.03 0.01 0.01 0.04 0.05 0.06
GNF(1024) 0.12 0.15 0.02 0.01 0.03 0.0008

Table 4: Graph generation results depicting MMD for various graph statistics between the test set
and generated graphs. GRAPHVAE and DEEPGMG are reported directly from [30]. The second set
of results (GRAPHRNN, GNF) are from evaluating the GraphRNN evaluation scheme with node
distribution matching turned on. We trained 5 separate models of each type and performed 3 trials
per model, then averaged the result over 15 runs. The third set of results (GRAPHRNN (1024), GNF
(1024)) are obtained when evaluating on the test set over all 1024 generated graphs (no sub-sampling
of the generated graphs based on node similarity). In this case, we trained and evaluated the result
over 5 separate runs per model.
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Experiments

(a) Training data (b) GNF samples (c) GRAPHRNN samples

Figure 3: Dataset examples and samples, drawn randomly, from the generative models. Top row:
EGO-SMALL, bottom row: COMMUNITY-SMALL.

Son (UChicago) Group Meeting



MolIGAN: An implicit generative model for small molecular graphs
Nicola De Cao, Thomas Kipf
https://arxiv.org/abs/1805.11973
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Overview (1)

Molecular graph

Generator Discriminator

AN

z ~p(z)

Reward
network

0/1

Figure 1. Schema of MolGAN. A vector z is sampled from a prior
and passed to the generator which outputs the graph representation
of a molecule. The discriminator classifies whether the molecular
graph comes from the generator or the dataset. The reward net-
work tries to estimate the reward for the chemical properties of a
particular molecule provided by an external software.

Note:
@ Improved WGAN: Wesserstein-1 distance (Kantorovich-Rubinstein dual

@ Gradient clipping.
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Overview (2

Adjacency tensor A Sampled A Graph
Discriminator
N N O/Q GCN 0/1
Generator T
= = O\O
AN -
Annotation matrix X Sampled X Molecule
z~p() Reward network
0
o i
N N A
1
B B I NH o
_
=
T T s

Figure 2. Outline of MolGAN. From left: the generator takes a sample from a prior distribution and generates a dense adjacency tensor
A and an annotation matrix X . Subsequently, sparse and discrete A and X are obtained from A and X respectively via categorical
sampling. The combination of Aand X represents an annotated molecular graph which corresponds to a specific chemical compound.
Finally, the graph is processed by both the discriminator and reward networks that are invariant to node order permutations and based on

Relational-GCN (Schlichtkrull et al., 2017) layers.




This is the reason why | couldn’t make the vanilla GAN converge. As this
discretization process is non - differentiable, three options for gradient -
based training:

@ Continuous A and X.

@ Add Gumbel noise to them before passing to the Discriminator (still
continuous).
© Use a straight through gradient based on categorical
re-parameterization with the Gumbel - Softmax.
Note: From the code https:

//github.com/nicola-decao/MolGAN/blob/master/models/gan.py,
| think they actually used option 2.
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Experiments (1)

Objective Algorithm Valid (%) Unique (%) Time (h) Diversity Druglikeliness ~Synthesizability ~ Solubility
Druglikeliness ORGAN 88.2 69.4* 9.63* 0.55 0.52 0.32 0.35
OR(W)GAN 85.0 8.2% 10.06* 0.95 0.60 0.54 047
Naive RL 97.1 54.0* 9.39* 0.80 0.57 0.53 0.50
MolGAN 99.9 2.0 1.66 0.95 0.61 0.68 0.52
MOolGAN (QM9) 100.0 22 4.12 0.97 0.62 0.59 0.53
Synthesizability ORGAN 96.5 45.9* 8.66* 0.92 0.51 0.83 0.45
OR(W)GAN 97.6 30.7* 9.60* 1.00 0.20 0.75 0.84
Naive RL 971.7 13.6* 10.60* 0.96 0.52 0.83 0.46
MolGAN 99.4 2.1 1.04 0.75 0.52 0.90 0.67
MoIGAN (OM9) 100.0 2.1 2.49 0.95 0.53 0.95 0.68
Solubility ORGAN 94.7 54.3% 8.65* 0.76 0.50 0.63 0.55
OR(W)GAN 94.1 20.8* 9.21* 0.90 042 0.66 0.54
Naive RL 92.7 100.0* 10.51% 0.75 0.49 0.70 0.78
MolGAN 99.8 23 0.58 0.97 045 0.42 0.86
MOolGAN (QM9) 99.8 2.0 1.62 0.99 0.44 0.22 0.89
All/Alternated ORGAN 96.1 97.2% 10.2% 0.92 0.52 0.71 0.53
All/Simultaneously ~ MolGAN 97.4 24 2.12 0.91 047 0.84 0.65
All/Simultaneously ~ MolGAN (QM9) 98.0 23 5.83 0.93 0.51 0.82 0.69

Table 2. Gray cells indicate directly optimized objectives. Baseline results are taken from Guimaraes et al. (2017) (Table 1) and * indicates
results reproduced by us using the code provided by the authors.

Group Meetir January 8, 2




Experiments (2)

Algorithm Valid Unique Novel
CharacterVAE 10.3 67.5 90.0
GrammarVAE 60.2 9.3 80.9
GraphVAE 55.7 76.0 61.6

GraphVAE/imp 56.2 42.0 75.8
GraphVAE NoGM  81.0 24.1 61.0

MolGAN 98.1 10.4 94.2

Table 3. Comparison with different algorithms on QM9. Values
are reported in percentages. Baseline results are taken from Si-
monovsky & Komodakis (2018).

Note: | think this model suffers the mode collapse phenomenon of "éﬁd:ﬁ’
high validity and high novel but actually few molecules are generated,
many are just redundant. % 7

Son (UChicago) Group Meeting January 8, 2021 18 /22



Research update (1)

Move to autoregressive approach (not RL) — Constrained Graph
Variational Autoencoders for Molecule Design (NeurlPS 2018):

Node Initialization Edge Selection

=
N B h(v") © sample
T, = f(z,) WHHR N © 5 he| C(e)
e —_— ! | e OuO - N -
g o o o
. " °° o °
Z, Zy u}

— Ly (¢)
Edge Labelling Node Update Termmanon

h(r+1]

score

o wal.
N$

sample

@"’\o
o D\

0® o°

node stop refocus global stop

At first, we sample the each vertex latent z independently (so this is the
first order), then iteratively we add new edge to the existing graph (given
randomly selected node as the start). We apply second-order message
passing (with gated recurrent architecture) to produce the probability 3@
(u, v) where one vertex is in the existing graph and the another one i

outside; and also the probability of its label.

GNN

A

°
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Research update (2)

The difference between this architecture and RL approach is:
© It uses VAE.

@ In the generation process, the RL selects a new atom type during the
construction but this one basically has the atom types fixed at the
beginning, we only select a new edge/bond.

© RL is unstable and hard to train; only after we construct the whole
molecular graph, we might get some rewards. And in RL, atom labels
are not known, the model must decide to add an atom into the
canvas or terminate.

@ It is more like intimidation learning in Eric Jonas's paper: actually
we break down the generation process into multiple classifications,
each classification is given an input as a partial graph and we hayeto
predict the next edge (only the next edge, because the vertex/at iy
labels are known already).
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Research update (3)

| think it is easier for a graph nets in general to do the classification tasks
rather than all-at-once generation.

| .
N

Examples generated with (global) Sn/Maron

Examples generated with (global) Sn/Maron + (local) CCN 1D
It seems to like Benzen rings (in almost every generated moleculefff:

I am going to wrap PCCN into TensorFlow for CCN 2D, and more.
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Research update (4) — Need for higher order

A Generative Model for Molecular Distance Geometry (ICML 2020):

o
H
H x:

H H x) 4 x

Nz H:> W A
H——H

H X5

X2

0
G
Figure 1. Standard graph representation (7 of a molecule (left)
with a set of possible conformations {x; } (right). It is the goal of
this work to generate such conformations from the graph represen-
tation of a molecule. Conformations feature the same atom types
and bonds but the atoms are arranged differently in space. These
differences arise from rotations around and stretching of bonds in

the molecule. Hydrogen (H), carbon (C), and oxygen (O) atoms
are colored white, gray, and red, respectively.

B d_ 4,
dy
x
N ey
e
g
Figure 2. A) The structural formula of a molecule G is converted to an extended graph G isting of nodes

atoms (circles, e.g., v1) and edges representing molecular bonds (solid lines, e.g., e1 € Fyona) and auxiliary edges (dotted lines, e.g.,
€2 € Euge and €3 € Eaineara). B) The distances d are extracted from a conformation x based on the edges E. C) Graphical model of the
variational autoencoder: generative model po(d|z, G)ps (2|G) (solid lines) and variational approximation g4 (z|d, G) (dashed lines).
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