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@ Literature review:

o Energy-Based Processes for Exchangeable Data,
https://arxiv.org/abs/2003.07521

@ Research update:
o Conditional contrastive generation for 3D structure: MD17, ShapeNet.
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Mengjiao Yang, Bo Dai, Hanjun Dai, Dale Schuurmans
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Introduction (1)

Two key considerations

Modeling a distribution over a space of instances, where each instance is an
unordered set of elements involves:

© the elements within a single instance are exchangeable (i.e. the ele-
ments are order invariant).

@ the cardinalities of the instances (sets) vary (i.e. instances don't need
to have the same cardinality).
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Introduction (2)

Autoregressive approach

Use RNNs to model distributions over instances x = {xi, .., X, } without
assuming fixed cardinality in an autoregressive manner:

p(x) = HP(Xi|X1:i—1)
il

for a permutation of its elements.

| A

Exchangeability

RNNs has been empirically successful, but does not respect exchangeabil-

ity.
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Introduction (3)

De Finetti's theorem

To explicitly ensure exchangeability, we exploits the De Finetti’s theorem,
which assures us that for any distribution over exchangeable elements x =
{x1,..,xn} the instance probability can be decomposed as:

p(x) = [ TLpxl)p(6)a
i=1

for some latent variable 0.

v

Proposal

Energy-Based Processes £5Ps:
o Combines energy-based models (EBMs) and stochastic processes.
@ Obtains exchangeability and varying-cardinality.
o Neural Collapsed Inference (NCI) to train EBPs.

v
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Energy-based models

EBM
An EBM over Q c R? with fixed dimension d is defined as:

pr(x) = exp(f(x) — log Z(f)) = Z?f) exp(f(x))

for x € Q, where f(x) : @ — R is the energy function, and:

Z(f):/ﬂexp(f(x))dx

is the partition function. Let: F = {f(-) : Z(f) < oo}.

Adversarial dynamics embedding (ADE)

max _min BIF(:)] - H(a(x. 1)) ~ Eqgepy | 70) = 5v7Y]
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Stochastic Processes (1)

Stochastic Processes

Consider a stochastic process given by a collection of random variables
{Xt;t € T} indexed by t, where the marginal distribution for any finite
set of indices {t1,..,t,} € T (without order) is specified:

p(thrtn) = P(th, --:th‘{ti};;l)
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Stochastic Processes (2)

Kolmogorov extension theorem

Sufficient conditions for designing a valid stochastic processes:

o Exchangeability: The marginal distribution for any finite set of ran-
dom variables is invariant to permutation order.

p(Xtys s Xty | {ti} /1) = p(m(xey:t,) I ({ 8} 21))

where p(m(xt;:t,)) = P(Xr(t1)s - Xn(ta))-

o Consistency: The partial marginal distribution, obtained by marginal-
izing additional variables in the finite sequence, is the same as the one
obtained from the original infinite sequence. For n > m > 1:

Pl {1} ) = / ORI LI Y

v

) ™ 4
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Stochastic Processes (3)

Representation of Stochastic Processes

For any stochastic process (xt, X,,..) ~ SP that can be constructed via
Kolmogorov extension theorem, the process can be equivalently represented
by a latent variable model:

0 ~ p(9), xe, ~ p(x10, t;),Vi € {1,..,n}Vn

where 6 can be finite or infinite dimensional. )
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EBP Construction (1)

Let the energy function f parameterized by learnable w:

exp(fw(x, t;0))

PulXl0:t) = =7 =)

where Z(f,, t;0) = [ exp(fw(x, t; 0))dx.

EBP on arbitrary finite marginals

exp (Z?:l fu (Xt tis 9))
ol {8}i) = [ —— P00
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EBP Construction (2)

Gaussian Processes

0 ~ N(0, Iy)

1
m&ﬁﬂ%=—igw—ﬂnﬂﬂw

where w = {0, ¢(-)}, with ¢(-) denotes the feature mapping. Let
k(t,t') = o(t)Tp(t'), the marginalized distribution:

p(th;tht,'}?:l) = N(O’ K(tl:n) = 0'2ln)

where K(t1.n) = [k(t;, t;j) D

X: ~ GP(0, K(t1.n) + o21,)

O

Son (UChicago) Group Meeting March 12, 2021 12/21



EBP Construction (3)

eural Processes
Neural processes (NPs) are explicitly defined by a latent variable model:

p(xtyot, {ti1}i) = /HN(X\hw(ti:9))P(9)d9
i=1

where hy,(+;0) is a neural network.

Ground Truth EBP

E “
ol By
o %

Figure 1: The ground truth data and learned energy functions of GP, N'P, VIP, and EBP (from left to [
right). £BP successfully captures multi-modality of the toy data as GP and NP exhibiting only a single [ i

mode; see Section 5 for details.
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Unconditional £BPs Extension (1)

When the indices {t;}7_; are not observed:

P (1) = / Doy | {810 ) ({81} )l

=/Pw(Xrl:rnl{ti}f’:p9)P(9)P({tf}?:1)d9dt1:n

If n > m > 1, and the prior is exchangeable and consistent, then the
marginal distribution p(xi.,) will be exchangeable and consistent.
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Unconditional £BPs Extension (2)

C Proof Details of Theorem 2

Theorem 2 Ifn > m > 1, and prior is exchangeable and consistent, then the marginal distribution p (z1.,)
will be exchangeable and consistent.
Proof We simply verify the consistency of p (z1.,) under the consistency of p ({#;}-,).

[r@n)dznn,

[ ool @) a ity oy
= /(fp(‘%:tn
=[Gty ([ e ) o,
= [Pt D P (YL dtrm = i)

The exchangeability of p (x1.,) directly comes from the exchangeablity of p (z4,:4,) and p ({t:}/—,),

{m}:;l)dxmﬂvn)p(m?:nd{zi}:;l

pa) = [ oG, @YD pUFLY) A,
= [ I EL D) P ()

= p((z4:,))
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Neural Collapsed Reparameterization (1)

Given samples D = {xi.} ¥ ,:
mvax]Ep[Iog Pw(x1:n)]

Integrations that are not tractable:

@ The partition function
Z(fw,t,0) = /exp(fw(x, t; 0)dx

where f,,(x, t; @) is a parameterized neural net.

@ The integration over 0 for:

uﬂgy—/em(%igﬁ?;m@)mmw

© Integration over {t;}7_, for:

wMﬁ=/m%ﬂ&ﬁMﬂﬂLMu

pw (th:t,,
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Neural Collapsed Reparameterization (2)

Algorithm 1 Neural Collapsed Inference

1: Initialize W) randomly, set length of steps T'.
2: for iteration k=1,..., K do

3:  Sample mini-batch {:c{m) }:71 from dataset D.
4 Sample 07 ~ g, (0]z1.0), Vi =1,....b.

5. Sample @}.,,, 97 ~ gs (T1m,v|0), Vi =1,...,b.
6 {Bre1} = Be — 1Val (o, B, w})
T

8

¢ Ao, w't = {aw') + 'ka{mw:)L (ag, Br; wy)-
: end for
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Experiments (1)

pixels in black and white. The « are two different generated samples given the observed
pixels from the first row. Generations are based on randomly selected pixels or the top half of an image.

Figure 3: Image completion on CelebA. The first row shows the unobserved pixels in black with an increasing
number of observed pixels from left to right (column 1-5). The second row shows the completed image given
the observed pixels from the first row.
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Experiments (2)

Figure 4: Example point clonds of airplane, chair, and car generated from the learned model.

Airplane Chair Car
fake|..|
real |..

fake!
real

Figure 5: Energy distributions of the generated samples (fake) and training data (real). x-axis is the energy
value and y axis is the count of examples. The energy distributions of the generated and real point clouds
show significant overlap.




Experiments (3)

Table 1: Generation results. 1: the higher the better. |: the lower the better. The best scores are highlighted
in bold. JSD is scaled by 102, MMD-CD by 10%, and MMD-EMD by 10%. Each number for -GAN is from
the model trained using either CD or EMD loss, whichever one is better.

r (0

JSD () MMD ) COV (%1
Category Model CD EMD CD EMD
-GAN 3.61 0.239 3.29 47.90 50.62
PC-GAN 4.63 0.287 3.57 36.46 40.94
PointFlow 492 0.217 324 4691 4840
EBP (ours) 3.92 0.240 3.22 49.38 51.60

-GAN 2.27 246 T7.85 41.39 41.69
PC-GAN 3.90 2.75 820 36.50 38.98

Airplane

Chair b WFlow 174 2.42 T.87 1683 16.08
EBP (ours) 1.53 259 7.92 47.73 49.84
LGAN 221 148 543 3920 39.77
Car PC-GAN 585 112 583 2356 30.29

PointFlow 0.87 0.91 5.22 44.03 46.59
EBP (ours) 0.78 095 524 51.99 51.70
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Experiments (4)

Table 2: Classification act
features on ModelNet40. Li

iracy on ModelNetd0. Models are pre-trained on ShapeNet before extracting
SVMs are then trained using the learned representations.

Model
VConv-DAE (Sharma et al., 2016)
3D-GAN (Wu et al., 2016)
L-GAN (EMD) (Achlioptas et al., 2017)
L-GAN (CD) (Achlioptas et al., 2017)
PointGrow (Sun et al., 2018)
MRTNet-VAE (Gadelha et al., 2018)
PointFlow (Yang et al.. 2019)
PC-GAN (Li ct al., 2018)
FoldingNet (Yang et al., 2018)

EBP (ours)

Examples of point cloud denoising using MCMC sampling. From left to right: original, perturbed,
ed point clouds.




