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@ Literature review:

o ContraGAN: Contrastive Learning for Conditional Image
Generation (NeurlPS 2020), https://arxiv.org/abs/2006.12681

o PointGMM: a Neural GMM Network for Point Clouds (CVPR
2020), https://arxiv.org/abs/2003.13326

o Next time:

o Energy-Based Processes for Exchangeable Data,
https://arxiv.org/abs/2003.07521
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ContraGAN: Contrastive Learning for Conditional Image Generation
(NeurlPS 2020)
Minguk Kang, Jaesik Park
https://arxiv.org/abs/2006.12681
https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
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Background — (Conditional) GANs

GANSs

The objective of the adversarial training between the discriminator (D) and
the generator (G) is as:

mGin mDaX ]EXNp,ea|(x)[|og(D(x))] + ]EZNp(z) [|Og(1 - D(G(Z)))]

where preai(x) is the real data distribution, and p(z) is a predefined prior
distribution (e.g. multivariate Gaussian). Nash equilibrium is usually hard
to achieve, usually requires regularization and tricks.
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Conditional GANs
Utilizing class label information to advance the performance: concatenate
the latent vector with the label to manipulate the semantic characteristics
of the generated image.
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Background — Contrastive learning

Given a minibatch of images X = {xi,..,xn} and labels y = {y1,..,ym}-
We have a neural network encoder S(x) € R and a projection layer h :
Rk — RY. Let £ = h(S(-)). Contrastive learning considers a transformation
/ data-augmentation T on each individual example of X:

A= {Xl, T(Xl), ey Xm, T(Xm)} = {al, oy agm}
NT-Xent loss:

N exp(@(ai)TE(aj)/t)
Haj, 3 t) = log <Zi21 Liti exp(g(ai)w(ak)/t)>
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o | Adversarialloss
Adversarialloss - Classification loss Adversarialloss  Conditional Contrastive loss
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(a) ACGAN [19] (b) ProjGAN [17] (¢) ContraGAN (Ours)

 Schematic of 2C s |
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Figure 1: Schematics of discriminators of three conditional GANs. (a) ACGAN [19] has an auxiliary
classifier to guide the generator to synthesize well-classifiable images. (b) ProjGAN [17] improves
ACGAN by adding the inner product of an embedded image and the corresponding class embedding.
(c) Our approach extends ACGAN and ProjGAN with a conditional contrastive loss (2C loss).
ContraGAN considers multiple positive and negative pairs in the same batch. ContraGAN utilizes 2C
loss to update the generator as well.
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(a) Triplet [32]  (b) PANCA [33] (c) NT-Xent [34] (d) ACGAN [19] (¢) ProjGAN [17] (f) 2C loss (Ours)

Figure 2: Illustrative figures visualize metric learning losses (a,b.c) and conditional GANs (d.e.f). The
color indicates the class label and the shape represents the role. (Square) the embedding of an image.
(Diamond) the embedding of an augmented image. (Circle) a reference image embedding. Each loss
is applied to the reference. (Star) the embedding of a class label. (Triangle) the one-hot encoding
of a class label. The thicknesses of red and blue lines represent the strength of pull and push force,
respectively. The loss function of ProjGAN lets the reference and the corresponding class embedding
be close to each other when the reference is real, but it pushes far away otherwise. Compared to
ACGAN and ProjGAN. 2C loss can consider both data-to-class and data-to-data relations between
training examples.




Propose to use the embeddings of class labels instead of using data augmenta-
tions. With a class embedding function e(y) : R — R?:

oy exp(¢(x;) Te(yi)/t)
Hox-yist) = —log <exp(e(x,-)Te(y,-)/t) S exp(e(x,-)w(xk)/r)>

that pulls a reference sample x; nearer to the class embedding e(y;) and pushes
the others away. The final loss function:

o exp(£(xi) " e(yi)/t) + > iq L=y exp(£(x:) T 0(xk)/t)
faclxiyiit) = —lo (exp(f(x,-)Te(y,-)/t)+Z$_1 1k¢,-exp(e(x,-)W(xk)/t)>

that reduces the distances between the embeddings of images with the same labels.
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Algorithm

Algorithm 1 : Training ContraGAN

Input: Learning rate: avy, co. Adam hyperparameters [41]: (), 52. Batch size: m. Temperature: {.
# of discriminator iterations per single generator iteration: n.;.. Contrastive coefficient: A.
Parameters of the generator, the discriminator, and the projection layer: (6, ¢. ¢).

Output: Optimized (¢, ¢, ).

1: Initialize (0, ¢, )

2: for {1, ..., # of training iterations} do

3 for {1, ..., ngic } do

& Sample {(, 41}y ~ Preat(,¥)

5: Sample {2}, ~ p(z) and {u e}y ~ ply)

6: E'E" <— 21 L fac (@, y‘"l t) > Eq. (8) with real images.
T Lp e RS (Da(Golz y), ) — Dyl )} + AL

8 By p — Adam(ﬁﬁ ay, By, B2)

9: end for

10: Sample {z;}72, ~ p(z) and {yf*=}7, ~ p(y)

11: Ef%‘.ke L # EmL bac(Golzi, Jfﬁke) yr"‘g t) > Eq. (8) with fake images.
120 Lo e— =L 57 {Dy(Golzi, ), k) } + ALkzke

13: 0 «— Adam(Lgq, a2, 1, f2)

14: end for

Hossl
ia m&

Note: 2C loss is computed using m real images in the discriminator
training step and m generated images in the generator training step.
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Experiments (1)

e 4 4
Figure 4: Examples of generated images using the proposed ContraGAN. (left) CIFAR10 [24], FID:

10.322, (right) ImageNet [18], FID: 19.443. In the case of ImageNet experiment, we select and plot
well-generated images.
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Metric: FID (Frechet Inception Distance) = Wasserstein-2 distance,
the better.

Son (UChicago) Group Meeting March 5, 2021



Table 1: Experiments on the effectiveness of 2C loss. Considering both data-to-data and data-to-class

relations largely improves image generation results based on FID values. Mean=+variance of FID is
reported, and lower is better.

Dataset Uncond. GAN [6]  with P-NCA loss [33]  with NT-Xent loss [34]  with Eq.7 loss  with 2C loss (ContraGAN)
CIFARIO [24] 15.550+1.955 153500017 14.832:£0.695 10.886+0.072 10.597+0.273
Tiny ImageNet [25]  56.297+1.499 47.867+1.813 54.394£9.982 33.488+1.006 3272041084

Table 2: Experiments using CIFAR10 and Tiny ImageNet datasets. Using three backbone architectures
(DCGAN, ResGAN, and BigGAN), we test three approaches using different class conditioning
models (ACGAN, ProjGAN, and ContraGAN (ours)).

Method for class information conditioning
ACGAN [19]  ProjGAN[17]  ContraGAN (Ours)

DCGAN [2,4]  21.439+0.581 19.524+ 0.249 18.788+0.571
CIFARIO [24] ResGAN [26, 16]  11.588+£0.093 11025+ 0.177 11.334:0.126
BigGAN [6] 10.697+0.129  10.739+0.016 10.597+0.273

Tiny ImageNet [25]  BigGAN [6]  88.62845523 37.563+4.300  32.720+1.084

Dataset Backbone

Table 3: Comparison with state-of-the-art GAN models. We mark “*’ to FID values reported in the
original papers [4, 5, 7]. The other FID values are obtained from our implementation. We conduct
ImageNet [18] experiments with a batch size of 256.

Dataset SNResGAN [4]  SAGAN [5] BizGAN [6] ContraGAN (Ours)  Improvement
CIFARI0 [24] 17,5 1712740220 *1473/10.739+0016  10.597+0.273  *+28.1%/+1.3%
Tiny ImageNet [25] 47.055+3.234  46.2214+3.655 31.7714+3.968 29.492-+1.296 +1.2%

ImageNet [18] - - 21.072 19.443 +17%




PointGMM: a Neural GMM Network for Point Clouds (CVPR 2020)
Amir Hertz, Rana Hanocka, Raja Giryes, Daniel Cohen-Or
https://arxiv.org/abs/2003.13326

| have not checked all the technical details of this paper yet, but the idea
seems to be applicable to our case.
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Overview
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Figure 2: Method Overview. PointGMM learns a hierarchi-
cal GMM representation of the input X. Each depth d of the
tree corresponds to a group of GMMs (with parameters ©%)
representing the input distribution at different resolutions.
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Shape generation
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Figure 3: Registration overview. The input point cloud
X (green) is disentangled into two different embeddings:
transformation (Z,) and the shape (Z,.); via two parallel en-
coders Fy and E,.

Can we apply into molecules? For example, given a part of the molecule,
we have a generative model to fill out the rest such that the whole
molecule is a valid one.
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Experiments (1)

shape |Easeline Point Decoder PointGMM

chair 0.0612 0.1185 0.0382
car 0.1514 0.2073 0.0447
airplane | 0.1688 0.1817 0.0447

Table 1: Decoder ablation. The registration results improve
when adding a PointGMM decoder (compared to baseline),
and excel compared to a vanilla point decoder.

Figure 5: Randomly sampled shapes using a PointGMM generative model.

Son (UChicago) Group Meeting March 5, 20



Experiments (2)

oy

Source

L g
Target FPFH [37] S4PCS [30] GMMREG [27] ICP [6] PointNetLK [3]  PointGMM

Figure 6: Qualitative results from the rigid registration comparison.
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Experiments (3)

max sampling RANSAC . . . . Ours
shape rotation (°) coverage % FPFH [27] S4PCS [30] GMMREG [22] ICP[6] PointNetLK [3] PointGMM
chair 30 50 - 80 0.2113 0.3343 0.0434 0.0430 0.1665 0.0226
chair 30 30-50 0.2804 0.3500 0.0842 0.0824 0.2617 0.0496
chair 180 50-80 0.2481 0.3479 0.2586 0.2578 0.2768 0.0232
chair 180 30-50 0.3132 0.3732 0.2829 0.2817 0.3386 0.0574
car 30 50-80 0.1352 0.2344 0.0399 0.04003 0.0566 0.0246
car 30 30-50 0.2134 0.2573 0.0884 0.08774 0.1647 0.0552
car 180 50 - 80 0.1754 0.2411 0.2134 0.2134 0.2288 0.0290
car 180 30-50 0.2357 0.2593 0.2354 0.2350 0.2548 0.0702
airplane 30 50 - 80 0.0765 0.1254 0.0632 0.0661 0.0798 0.0312
airplane 30 30-50 0.1501 0.1637 0.1052 0.1070 0.1301 0.0490
airplane 180 50 - 80 0.1485 0.1768 0.1983 0.1979 0.2023 0.0350
airplane 180 30-50 0.1961 0.2084 0.2293 0.2302 0.2308 0.0489

Table 2: Quantitative comparisons for rigid registration on partial shapes.
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