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Original MMF vs. Random-index learnable MMF (1)

Original MMF:
e K=2
@ For each rotation/resolution, random the first index, and then
exhaustive search to find the optimal second index.
Random-index learnable MMF:
e K>2

@ For each rotation/resolution, every index is selected randomly.
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Original MMF vs. Random-index learnable MMF (2)
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Original MMF vs. Random-index learnable MMF (3)

Cayley tree: order = 3, depth = 4, nodes = 161
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The original MMF with K = 2 with exhaustive search outperform
random-index learnable MMFs with K > 2.
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Original MMF vs. Random-index learnable MMF (4)

In summary, the original MMF outperforms the random-index learnable
one in the case of Cayley tree. Why does that happen?
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Reinforcement Learning (1)

Gradient policy network (REINFORCE): Use GNNs as RL agents
(policy networks) to learn to select the sequence of indices, that is similar
to learning to solve combinatorics problems (NP-hard).

function REINFORCE
Initialise @ arbitrarily
for each episode {s1,a1,r,...,ST—1,37-1, T} ~ M9 dO
fort=1to T —1do
0+ 8 + aVglog mg(st, at)ve
end for
end for
return 0
end function
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Reinforcement Learning (2)

In MMF, we need 2 RL policy networks: (i) one to select the wavelet index
(also to drop it out), and (ii) another one to select the rest of K — 1
indices.

Algorithm 1 MMF learning algorithm optimizing problem

1: Given matrix A, number of resolutions L, and constants k, -y, 7, and w.
2: Initialize the policy parameter 6 at random.
3: while true do

17: end while

4
5
6:
T
8:
9:
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11:

Start from state s > so = (A,[n],0)
Initialize S < [n] > All rows/columns are active at the beginning.
for (=0,..,L-1do
Sample action ag = (Ips1, Tos1) from mg(ag|se). > See Section
Sps1 < Se N Topq > Eliminate the wavelet index (indices).
ses1 < (Asy, Sevry Sex1, L+ 1) > New state with a smaller active set.
end for

Given {]Ig}f:r, minimize objectiveby Stiefel manifold optimization to find {O[}f‘:r >U; =1, @1, Oy
for (=0,..,L-1do

Estimate the return g, based on Eq.[I3] Eq.[I4] and Eq.

0 « 0+ 9y geVelog mo(aelse) > REINFORCE policy update in Eq.
end for Vita TN
Terminate if the average error of the last w iterations increases. > Early stopping. [

coy
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Reinforcement Learning (3)

The Algorithm 1 is expensive due to the Stiefel manifold optimization in
line 11 to find the optimal rotations that are used to compute the rewards.
In practive, | propose a 2-phase process that is more efficient:

@ Phase 1: Reinforcement learning to find the sequence of indices as in
Algorithm 1, but instead of Stiefel manifold, we just use the
closed-form solutions to estimate the rewards.

@ Phase 2: Given a sequence of indices found by Phase 1, we apply
Stiefel manifold optimization with many iterations to actually find the
optimal rotations accordingly.
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Reinforcement learning loss for MMF (K = 16)

—— Reinforcement learning loss for MMF (K = 16)
—— Original MMF
—— Random-index learnable MMF (K = 16)
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The red line is the baseline of the original MMF. The black line is %&?@
learnable MMF but with completely random indices. The RL training %
unstable, but by-average it is better than the random choices.
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Learning to solve combinatorics problems

@ Because the problem is an NP-hard one, so the optimal solution is
only guaranteed by an exhaustive brute-force search over all
possibilities. Given a limited number of tries (each epoch is a try or
sample sequence of the policy), the question is how close we can get
to the optimal solution.

@ In our case, the RL reached to a solution better than the original
baseline after 10 tries.

@ Fundamentally, learning to solve combinatorics problems is different
from learning to solve convex problems: one has the discrete search
space, the another one continuous. Maybe the convergence behavior
is only observable when we solve convex problems and the search
space is continuous.
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Total Loss
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The best loss found from Phase 1 is 4.4. Stiefel manifold optimization

In summary, after Phase 2, we get 32% improvement comparing to th§
original MMF (e.g, 3.6 vs 5.2) in the case of Cayley tree.

Son (UChicago) Group Meeting October 1, 2021 11/11



