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Original MMF vs. Random-index learnable MMF (1)

Original MMF:

K = 2

For each rotation/resolution, random the first index, and then
exhaustive search to find the optimal second index.

Random-index learnable MMF:

K > 2

For each rotation/resolution, every index is selected randomly.
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Original MMF vs. Random-index learnable MMF (2)

Bigger Ks, the better!
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Original MMF vs. Random-index learnable MMF (3)

The original MMF with K = 2 with exhaustive search outperforms
random-index learnable MMFs with K > 2.
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Original MMF vs. Random-index learnable MMF (4)

In summary, the original MMF outperforms the random-index learnable
one in the case of Cayley tree. Why does that happen?

There exists an optimal strategy of selecting a pair of nodes for Cayley
tree: select 2 nodes of the same level that have exactly the same topology.
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Reinforcement Learning (1)

Gradient policy network (REINFORCE): Use GNNs as RL agents
(policy networks) to learn to select the sequence of indices, that is similar
to learning to solve combinatorics problems (NP-hard).
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Reinforcement Learning (2)

In MMF, we need 2 RL policy networks: (i) one to select the wavelet index
(also to drop it out), and (ii) another one to select the rest of K − 1
indices.
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Reinforcement Learning (3)

The Algorithm 1 is expensive due to the Stiefel manifold optimization in
line 11 to find the optimal rotations that are used to compute the rewards.
In practive, I propose a 2-phase process that is more efficient:

Phase 1: Reinforcement learning to find the sequence of indices as in
Algorithm 1, but instead of Stiefel manifold, we just use the
closed-form solutions to estimate the rewards.

Phase 2: Given a sequence of indices found by Phase 1, we apply
Stiefel manifold optimization with many iterations to actually find the
optimal rotations accordingly.
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Phase 1

The red line is the baseline of the original MMF. The black line is the
learnable MMF but with completely random indices. The RL training is
unstable, but by-average it is better than the random choices.
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Learning to solve combinatorics problems

Because the problem is an NP-hard one, so the optimal solution is
only guaranteed by an exhaustive brute-force search over all
possibilities. Given a limited number of tries (each epoch is a try or
sample sequence of the policy), the question is how close we can get
to the optimal solution.

In our case, the RL reached to a solution better than the original
baseline after 10 tries.

Fundamentally, learning to solve combinatorics problems is different
from learning to solve convex problems: one has the discrete search
space, the another one continuous. Maybe the convergence behavior
is only observable when we solve convex problems and the search
space is continuous.
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Phase 2

The best loss found from Phase 1 is 4.4. Stiefel manifold optimization
further improves into 3.6. It can go down further given more epochs.

In summary, after Phase 2, we get 32% improvement comparing to the
original MMF (e.g, 3.6 vs 5.2) in the case of Cayley tree.
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