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Tropical geometry of statistical models
Lior Pachter and Bernd Sturmfels
https://www.pnas.org/content/101/46/16132

Note:

@ The paper is very dense and contains a number of typos and a
number of flows.

@ | don’t understand everything in it and decided to present one flow
(that | find the most meaningful).

o | keep my comments and fixes in blue color.
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Algebraic variety & Tropicalization

@ An algebraic variety is defined as the set of solutions of a system of
polynomial equations over the real or complex numbers.

e Tropicalization means replacing the arithmetic operations (+, x) by
the operations (min, +):

a+ b — min{a, b}
axb—a+b
For example, polynomial
a® + 2ab + b?
would become
min{a+a+a,2+a+ b, b+ b}.

Indeed, the tropicalization of an algebraic variety is a
piecewise-linear set.
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A unified mathematical framework for probabilistic inference with
statistical models:

@ Statistical models are algebraic varieties. Families of joint probability
distributions py, . ,, = P(Y1 =01, .., Y, = 0,) can be characterized
by polynomials.

This seems to be trivial to me, counter-example?

@ Every algebraic variety can be tropicalized. The joint probabilities
Poi....o, are replaced by their logarithms (i.e., multiplication turns into
sum).

Literally, I think what they mean is: the solution or algebraic variety is
expressed in terms of (min, +). For example, the Viterbi algorithm
(dynamic programming) is exactly this.

© Tropicalized statistical models are fundamental for parametric
inference.
| think parametric inference is an abstraction over existing infere
algorithms.
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Directed graphical model (1)

A directed graphical model (or Bayesian network) is a finite directed
acyclic graph G with two kinds of vertices:

o Observed variables Y = {Y1,.., Y,},

e Hidden variables X = {Xi, .., X},
where each edge is labeled by a transition matrix whose entries are linear
forms in some parameters. The observed probabilities p,, ., is expressed

as polynomials of a degree < E in the parameters, where E is the number
of edges of G.
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Directed graphical model (2)

Two types of inference questions from statistical learning theory for
graphical models:

@ The calculation of marginal probabilities:

Po1,...on = Z P(Xl - h17 '-7Xm - hm7 Yl =01, Yn - O'n)a
hi,...;hm

@ The calculation of maximum a posteriori (MAP) log probabilities:

do1,.00n = min —log P(X1 = h1, .., Xm = hm, Y1 =01, .., Yo = 0p),

15-5Mm

where h; range over all of the possible assignments for the hidden
random variables X;. b
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Directed graphical model (3)

About sum-product algorithm, message passing, belief propagation (exact
algorithm on trees, acyclic graphs and approximate on other topologies) on
graphical models, please see August 14th, 2020 presentation:

http://people.cs.uchicago.edu/~hytruongson/
Discussions-2020/Group_meeting___August_14__2020.pdf
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Algebraic representation of HMMs (1)

A graphical model is an algebraic variety that is presented as the image of
a highly structured polynomial map f : RY — R™.

e RY is the space in which coordinates are the model parameters
S1,.+5,5d-

@ R™ is the space in which coordinates p, = py, .o, are the joint
probabilities for the observed random variables.

e Each coordinate f, = f;(s1,..,54) of the map f is a polynomial
function in sy, .., s4.

Important note

@ The efficient evaluation of these functions relies on the sum-product
algorithm.

o But parametric inference shows/analyzes the relationship between
model parameters vs. values of hidden states.

e
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Algebraic representation of HMMs (2)

A discrete HMM has n observed states Y1, .., Y, taking on £ possible

values, and n hidden states X, .., X, taking on k possible values. The
HMM can be characterized by the following conditional independence
statements for i =1, .., n:

P(Xi| X1, .., Xi—1) = P(Xi|Xi-1),

P(Yi| X1, .., Xn, Y1, .., Yic1) = P(Yi| X;).

All transitions X; — Xi;1 are given by the same k x k matrix S = (sj;).
All transitions X; — Y; are given by the same k x ¢ matrix T = (t;).

Son (UChicago) Group Meeting September 24, 2021 9/28



Algebraic representation of HMMs (3)

Proposition 1. The HMM is the image of a map f: R? — R", where
d = k(k + 1) and each coordinate of f is a bihomogeneous
polynomial of degree n — 1 in S and degree n in T.

| think there is a typo here: d = k(k + ).

The parameter space is R® with the coordinates:

500, S015 5105 S11, t00, to1, t10, t11-

It maps to R® with the coordinates:

Pooo, Poo1, Po10, Po11, P1005 P101, P1105 P111-
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Algebraic representation of HMMs (4)

The map f : R® — RR8 is given by the following:
Forraaar; = S0S00f0a foatoas T So0S01toa toatoa, S0t 10f0a,t 1ot 00,
+ 505 11toe 105 10y T S10500f 10 L0 foa, T S10S018 10 foe T 1oy
+ 818108 1o 1000, T S1511 1o 1o 16y
. . . . n .
The tropicalization of the map f is the map g : RY — R*" defined by

replacing products by sums and sums by minima in the formula of f. In
the example, the tropicalization is the piecewise-linear map g : R® — R8:

501702703 = min{uhth + Uhyhy + Vhyoy + Viyoo T Vhzos (hla ha, h3) € {Ov 1}3}'

This minimum is attained by the most likely hidden data (hy, ho, h3), g
the observations (01,02,03) and given the parameters u_ = — log(s, )
v, = —log(t.). The sequence (hl, ho, h3) is known as Viterbi seque
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Newton polytope & Minkowski sum

Let

f(x)= Z crx
k
aj

where we use the shorthand notation x? = (x1, .., x,) (@) = T, x7.

i

Then the Newton polytope associated to f is the convex hull of the {ay}«

that is
{Zakak:Zakzl & Vj OéjZO}.
k k

The Minkowski sum of two sets of position vectors A and B in Euclidean
space is formed by adding each vector in A to each vector in B:

A+B={a+blac A be B}
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Normal cone - from Convex optimization (1)

Let S C R" be a closed, convex set. The normal cone of S is the
set-valued mapping Ns : R” — 28" given by

{gcR"(Vz€S) gT(z—x) <0}, ifxeS$S
s =1y ifxgs

Note: | was confused by the algebraic geometry definition, but | think
convex definition here still works for this particular case of Newton
polytope (convex hull) and more intuitive. For more, please check the
book of Steven Boyd.
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Normal cone - from Convex optimization (2)

T
o Q-

oh 2 3)

1. Let S = {z}.
. R ifr==z
Ns(z) = { 0 otherwise

2. Let S =0,1].

otherwise

3. Let S={z | ||z|| <1, x e R"}.

Exor if [|z]| =1
{0} if =l <1

otherwise

Rep if =0

R)n ?'fI:]

{n} if z€(0,1)
\‘S(I {
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Normal fans - from Convex optimization (1)

For each vertex v of a polytope, we define the set E of its edges oriented
towards its neighbors. With E = {ey, .., €5} we build a polyhedral cone
C(v) named the primal cone of v:

C(V) = {u161 + ..+ unen,Vuj > 0}

Indeed, a polytope can be written as the intersection of all the primal
cones attached to its vertices:

A= ] C(w)

Vi€EVA

where A is a polytope and V, is the set of its vertices.
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Normal fans - from Convex optimization (2)

For each vertex v of a polytope, we define the set N = {ny, .., ng} of the
outer normals of its corresponding facets. We build the dual (polyhedral)
cone Cp(v) at v:

CD(V) = {tlnl + ..+ teng, Vt; > 0}.

The normal fan of a polytope A is the set of all the dual cones:

N(A): U CD(V)a

vEVa

that forms a partition of the whole space.
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Normal fans - from Convex optimization (3)

Source: Elizalde Sergi and Woods Kevin, Bounds on the number of
inference functions of a graphical model, Statistica Sinica 17 (2006).
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Algebraic representation of HMMs (

The key observation, which we discuss in more detail in section
4, is that the set of parameters (U, V) that selects the Viterbi
sequence (hy, ha, h3) is the normal cone at a vertex of the Newton
polytope of the polynomlal fayooy- This polytope is four-
dimensional, it has elght vertices, and its normal fan represents the
solution to problem 4 in section 1 when o = om0 s fixed.

We can also consider an extension of problem 4 in which o =
010,073 ranges over all possible observations. The solution is given
by the Newton polytope of the map f. In our example, it is a
five-dimensional polytope with 398 vertices, 1,136 edges, 1,150
two-faces, 478 three-faces, and 68 facets, namely, the Minkowski
sum of eight copies of the earlier four-dimensional polytope for (o1,
o, o3) € {0, 1}% For a concrete numerical example, fix the
parameters U* = (¢3) and V* = (3§). We find the following:

If the observed string at Y,Y,Y7; is
o3 =000 001 010 011 100 101 110 111,
then the Viterbi sequence at X, X,X; is
hihohis =000 001 000 011 000 111 110 111.
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Complexity of Newton polytopes of graphical models (1)

Consider a directed and acyclic graphical model with E edges and n
observed random variables Yi, .., Y,, each might take ¢ possible values.
Such a model is given by a polynomial map f : R — R*". Each
coordinate f, of f is a polynomial of degree at most E in the model
parameters si, .., Sq.

Consider any of the £ possible observations . We have
fy(s1,..,54) = P(Y = o)

is the probability of making this particular observation. Let u; = — log(s;).
By tropicalization, we have:

g (u1, .., ug) = —log P(X = h|Y = 0)

where h maximizes P(X = h|Y = o) (e.g., min of negatives turns i
max).
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Complexity of Newton polytopes of graphical models (2)

The domains of linearity of the functions g, are the cones in the normal
fan of the Newton polytope of f,. Given observation o, the explanation is
the hidden values h that maximizes P(X = h|Y = o) for any of the
parameters (uy, .., Uq).

Each logarithmic parameter vector u = (u, .., uy) defines an inference
function ¢ — h from the set of observations to the set of explanations.
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Complexity of Newton polytopes of graphical models (3)

For the HMM, each inference function {1,..,¢}" — {1, .., k}" takes an
observed sequence o to the corresponding Viterbi sequence h. There are
(k™) = k™" such functions, but most of them are not inference function.

This is a generous upper bound (without any knowledge of the graph
topology). The main theme of this paper is to get a tighter bound.

Consider the binary HMM of length 3. There are 8% ~ 16 x 10° Boolean
functions {0,1}> — {0,1}3, but only 398 are inference functions thatgs
the number of vertices of the Newton polytope of the map f. >
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Complexity of Newton polytopes of graphical models (4)

Proposition 6. The inference functions o — h of a graphical model
[ are in bijection with the vertices of the Newton polytope of the map
f. The explanations h for a fixed observation o in a graphical model
are in bijection with the vertices of the Newton polytope of the
polynomial f,.

Theorem 7. Consider graphical models f whose number of param-
eters d is fixed and whose number n of observed random variables
and number of edges E varies. (Typically, E is a linear function of
n.) Then, the number of vertices of the Newton polytope NP(f) of
fo is bounded above by the following:

No. of vertices (NP(f,)) = constant-E4d=1/d+1)

< constant-E9 "
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Complexity of Newton polytopes of graphical models (5)

Proposition 6. The inference functions o — h of a graphical model
[ are in bijection with the vertices of the Newton polytope of the map
f. The explanations h for a fixed observation o in a graphical model
are in bijection with the vertices of the Newton polytope of the
polynomial f,.

Theorem 7. Consider graphical models f whose number of param-
eters d is fixed and whose number n of observed random variables
and number of edges E varies. (Typically, E is a linear function of
n.) Then, the number of vertices of the Newton polytope NP(f) of
fo is bounded above by the following:

No. of vertices (NP(f,)) = constant-E4d=1/d+1)

< constant-E9 "
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Complexity of Newton polytopes of graphical models (6)

Corollary 8. For any fixed observation in the homogeneous HMM,
the number of explanations is at most Cyn** . If all random
variables are binary, then the upper bound C-n'%/3 holds.

The meaning is the number of explanations is a polynomial in terms of
number of observed nodes (values).

Corollary 10. The number of inference functions of a graphical
model is at most I"C“E4~1; hence, this number scales at most singly
exponentially in the complexity (n, E) of the graphical model.

The number of inference functions is not bounded by a polynomial (e.g.,
¢™). The number of Boolean functions {0,1}" — {0,1}" is 2", but the
number of inference functions is at most 2P°¥(n), e
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Complexity of Newton polytopes of graphical models (7)

In practical applications of graphical models, it may be
infeasible to compute all (singly exponentially many) inference
functions. Nonetheless, we believe that important insight can be
gained by computing and classifying the Newton polytopes of
graphical models f on few random variables. Such a study would
be the polyhedral analog to the algebraic classification of ref. 1.

However, for a fixed observation o, the size of the Newton
polytope of f, grows polynomially with the size of the graphical
model, and therefore, there is hope that the polytopes can be
computed efficiently. Despite the fact that the Newton polytope of
fo has polynomially many vertices in the size of the graphical model,
the number of terms in f,, grows exponentially. This is a potential
problem because the computation of the Newton polytope requires
the inspection of these terms. The following result states that the
convex hull computations scale with _the running time of the
sum-product algorithm, which for many models of interest scales
polynomially with the size of the graphical model.

Proposition 11 (Polytope Propagation). The Newton polytopes of the
polvnomials f, can be computed recursively by using the decom-
position of f according to the sum-product algorithm.
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General Markov Model on Binary Tree (1)

1 2 3 4

Fig. 3. A directed binary tree with n = 4 leaves.
HMM is indeed a binary-tree graphical model!

Each edge e has a different transition matrix S¢ = [sg,], an arbitrary ﬁi@
distinct ¢ x ¢ matrix (the general model given by Allman and Rhodes).

Directed tree 7 with observed random variables Y, .., Y, at the leave§
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General Markov Model on Binary Tree (2)

Proposition 12. The general Markov model for the binary tree 7 is the
image of a map f: R2"=20" — RI', where each coordinate of f is a
multilinear polynomial in the unknowns {(s,,), e edge of 1}.

If we denote an edge between nodes i and j by (if), and 7' is
the tree 7 without the leaves, then the coordinate of the
multilinear map f indexed by an observed sequence (o1, ... .0,)
can be written as follows:

=2 1L s [5]

h with Chl]dleﬂj k

Tropicalization leads to the sum-product algorithm with ordinary
arithmetic (+, x) replaced by tropical arithmetic (min, +):

- 7 k)
8yp.g,=min >, (Vi) + vik). [9]

ier
with children j,k
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General Markov Model on Binary Tree (3)

Proposition 14. The number of vertices of the Newton polytope of any
caordmate fo in the homogeneous tree model is bounded above by
~! times a constant depending only on 1.

That means the number of inference functions (the number of vertices of
the Newton polytope) is bounded by a polynomial of the number of
observed variables: good!
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