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Paper

Tropical geometry of statistical models
Lior Pachter and Bernd Sturmfels

https://www.pnas.org/content/101/46/16132

Note:

The paper is very dense and contains a number of typos and a
number of flows.

I don’t understand everything in it and decided to present one flow
(that I find the most meaningful).

I keep my comments and fixes in blue color.
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Algebraic variety & Tropicalization

An algebraic variety is defined as the set of solutions of a system of
polynomial equations over the real or complex numbers.

Tropicalization means replacing the arithmetic operations (+,×) by
the operations (min,+):

a + b → min{a, b}

a× b → a + b

For example, polynomial

a3 + 2ab + b2

would become

min{a + a + a, 2 + a + b, b + b}.

Indeed, the tropicalization of an algebraic variety is a
piecewise-linear set.
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Proposal

A unified mathematical framework for probabilistic inference with
statistical models:

1 Statistical models are algebraic varieties. Families of joint probability
distributions pσ1,..,σn = P(Y1 = σ1, ..,Yn = σn) can be characterized
by polynomials.
This seems to be trivial to me, counter-example?

2 Every algebraic variety can be tropicalized. The joint probabilities
pσ1,..,σn are replaced by their logarithms (i.e., multiplication turns into
sum).
Literally, I think what they mean is: the solution or algebraic variety is
expressed in terms of (min,+). For example, the Viterbi algorithm
(dynamic programming) is exactly this.

3 Tropicalized statistical models are fundamental for parametric
inference.
I think parametric inference is an abstraction over existing inference
algorithms.
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Directed graphical model (1)

A directed graphical model (or Bayesian network) is a finite directed
acyclic graph G with two kinds of vertices:

Observed variables Y = {Y1, ..,Yn},
Hidden variables X = {X1, ..,Xm},

where each edge is labeled by a transition matrix whose entries are linear
forms in some parameters. The observed probabilities pσ1,..,σn is expressed
as polynomials of a degree ≤ E in the parameters, where E is the number
of edges of G .
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Directed graphical model (2)

Two types of inference questions from statistical learning theory for
graphical models:

1 The calculation of marginal probabilities:

pσ1,..,σn =
∑

h1,..,hm

P(X1 = h1, ..,Xm = hm,Y1 = σ1, ..,Yn = σn),

2 The calculation of maximum a posteriori (MAP) log probabilities:

δσ1,..,σn = min
h1,..,hm

− logP(X1 = h1, ..,Xm = hm,Y1 = σ1, ..,Yn = σn),

where hi range over all of the possible assignments for the hidden
random variables Xi .
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Directed graphical model (3)

About sum-product algorithm, message passing, belief propagation (exact
algorithm on trees, acyclic graphs and approximate on other topologies) on
graphical models, please see August 14th, 2020 presentation:

http://people.cs.uchicago.edu/~hytruongson/

Discussions-2020/Group_meeting___August_14__2020.pdf
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Algebraic representation of HMMs (1)

A graphical model is an algebraic variety that is presented as the image of
a highly structured polynomial map f : Rd → Rm.

Rd is the space in which coordinates are the model parameters
s1, .., sd .

Rm is the space in which coordinates pσ = pσ1,..,σn are the joint
probabilities for the observed random variables.

Each coordinate fσ = fσ(s1, .., sd) of the map f is a polynomial
function in s1, .., sd .

Important note

The efficient evaluation of these functions relies on the sum-product
algorithm.

But parametric inference shows/analyzes the relationship between
model parameters vs. values of hidden states.

Son (UChicago) Group Meeting September 24, 2021 8 / 28



Algebraic representation of HMMs (2)

A discrete HMM has n observed states Y1, ..,Yn taking on ` possible
values, and n hidden states X1, ..,Xn taking on k possible values. The
HMM can be characterized by the following conditional independence
statements for i = 1, .., n:

P(Xi |X1, ..,Xi−1) = P(Xi |Xi−1),

P(Yi |X1, ..,Xn,Y1, ..,Yi−1) = P(Yi |Xi ).

All transitions Xi → Xi+1 are given by the same k × k matrix S = (sij).
All transitions Xi → Yi are given by the same k × ` matrix T = (tij).
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Algebraic representation of HMMs (3)

I think there is a typo here: d = k(k + `).

The parameter space is R8 with the coordinates:

s00, s01, s10, s11, t00, t01, t10, t11.

It maps to R8 with the coordinates:

p000, p001, p010, p011, p100, p101, p110, p111.
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Algebraic representation of HMMs (4)

The map f : R8 → R8 is given by the following:

The tropicalization of the map f is the map g : Rd → R`n defined by
replacing products by sums and sums by minima in the formula of f . In
the example, the tropicalization is the piecewise-linear map g : R8 → R8:

δσ1,σ2,σ3 = min{uh1h2 +uh2h3 + vh1σ1 + vh2σ2 + vh3σ3 : (h1, h2, h3) ∈ {0, 1}3}.

This minimum is attained by the most likely hidden data (ĥ1, ĥ2, ĥ3), given
the observations (σ1, σ2, σ3) and given the parameters u.. = − log(s..) and
v.. = − log(t..). The sequence (ĥ1, ĥ2, ĥ3) is known as Viterbi sequence.
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Newton polytope & Minkowski sum

Let
f (x) =

∑
k

ckxak

where we use the shorthand notation xa = (x1, .., xn)(a1,..,an) =
∏n

i=1 x
ai
i .

Then the Newton polytope associated to f is the convex hull of the {ak}k
that is {∑

k

αkak :
∑
k

αk = 1 & ∀j αj ≥ 0

}
.

The Minkowski sum of two sets of position vectors A and B in Euclidean
space is formed by adding each vector in A to each vector in B:

A + B = {a + b|a ∈ A, b ∈ B}

Son (UChicago) Group Meeting September 24, 2021 12 / 28



Normal cone - from Convex optimization (1)

Let S ⊂ Rn be a closed, convex set. The normal cone of S is the
set-valued mapping NS : Rn → 2R

n
, given by

NS(x) =

{
{g ∈ Rn|(∀z ∈ S) gT (z − x) ≤ 0}, if x ∈ S

∅, if x 6∈ S

Note: I was confused by the algebraic geometry definition, but I think
convex definition here still works for this particular case of Newton
polytope (convex hull) and more intuitive. For more, please check the
book of Steven Boyd.
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Normal cone - from Convex optimization (2)
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Normal fans - from Convex optimization (1)

For each vertex v of a polytope, we define the set E of its edges oriented
towards its neighbors. With E = {e1, .., en} we build a polyhedral cone
C (v) named the primal cone of v :

C (v) = {u1e1 + ..+ unen,∀uj ≥ 0}.

Indeed, a polytope can be written as the intersection of all the primal
cones attached to its vertices:

A =
⋃

vi∈VA

C (vi )

where A is a polytope and VA is the set of its vertices.
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Normal fans - from Convex optimization (2)

For each vertex v of a polytope, we define the set N = {n1, .., nk} of the
outer normals of its corresponding facets. We build the dual (polyhedral)
cone CD(v) at v :

CD(v) = {t1n1 + ..+ tknk , ∀ti ≥ 0}.

The normal fan of a polytope A is the set of all the dual cones:

N(A) =
⋃

v∈VA

CD(v),

that forms a partition of the whole space.
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Normal fans - from Convex optimization (3)

Source: Elizalde Sergi and Woods Kevin, Bounds on the number of
inference functions of a graphical model, Statistica Sinica 17 (2006).
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Algebraic representation of HMMs (5) - The key!
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Complexity of Newton polytopes of graphical models (1)

Consider a directed and acyclic graphical model with E edges and n
observed random variables Y1, ..,Yn, each might take ` possible values.
Such a model is given by a polynomial map f : Rd → R`n . Each
coordinate fσ of f is a polynomial of degree at most E in the model
parameters s1, .., sd .

Consider any of the `n possible observations σ. We have

fσ(s1, .., sd) = P(Y = σ)

is the probability of making this particular observation. Let ui = − log(si ).
By tropicalization, we have:

gσ(u1, .., ud) = − logP(X = ĥ|Y = σ)

where ĥ maximizes P(X = h|Y = σ) (e.g., min of negatives turns into
max).
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Complexity of Newton polytopes of graphical models (2)

The domains of linearity of the functions gσ are the cones in the normal
fan of the Newton polytope of fσ. Given observation σ, the explanation is
the hidden values ĥ that maximizes P(X = h|Y = σ) for any of the
parameters (u1, .., ud).

Each logarithmic parameter vector u = (u1, .., ud) defines an inference
function σ → ĥ from the set of observations to the set of explanations.
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Complexity of Newton polytopes of graphical models (3)

For the HMM, each inference function {1, .., `}n → {1, .., k}n takes an
observed sequence σ to the corresponding Viterbi sequence ĥ. There are
(kn)`

n
= kn`

n
such functions, but most of them are not inference function.

This is a generous upper bound (without any knowledge of the graph
topology). The main theme of this paper is to get a tighter bound.

Consider the binary HMM of length 3. There are 88 ≈ 16× 106 Boolean
functions {0, 1}3 → {0, 1}3, but only 398 are inference functions that is
the number of vertices of the Newton polytope of the map f .
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Complexity of Newton polytopes of graphical models (4)
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Complexity of Newton polytopes of graphical models (5)
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Complexity of Newton polytopes of graphical models (6)

The meaning is the number of explanations is a polynomial in terms of
number of observed nodes (values).

The number of inference functions is not bounded by a polynomial (e.g.,
`n). The number of Boolean functions {0, 1}n → {0, 1}n is 2n2

n
, but the

number of inference functions is at most 2poly(n).
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Complexity of Newton polytopes of graphical models (7)
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General Markov Model on Binary Tree (1)

HMM is indeed a binary-tree graphical model!

Directed tree τ with observed random variables Y1, ..,Yn at the leaves.
Each edge e has a different transition matrix Se = [seµv ], an arbitrary
distinct `× ` matrix (the general model given by Allman and Rhodes).
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General Markov Model on Binary Tree (2)

Tropicalization leads to the sum-product algorithm with ordinary
arithmetic (+,×) replaced by tropical arithmetic (min,+):
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General Markov Model on Binary Tree (3)

That means the number of inference functions (the number of vertices of
the Newton polytope) is bounded by a polynomial of the number of
observed variables: good!
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