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Quote for today

The happiness of your life depends upon the quality of your thoughts.

– Marcus Aurelius

The Art Institute of Chicago, Februray 2020
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Content

Paper:

Zhou Fan, Cheng Mao, Yihong Wu, Jiaming Xu, Spectral Graph
Matching and Regularized Quadratic Relaxations: Algorithm
and Theory (ICML 2020).

http://proceedings.mlr.press/v119/fan20a.html
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Introduction (1)

Finding the best matching between two weighted graphs with adjacency
matrices A,B ∈ Rn×n may be formalized as the following NP-hard
combinatorial optimization, quadratic assignment problem (QAP), problem
over the set of permutation Sn:

π∗ = max
π∈Sn

n∑
i ,j=1

Ai ,jBπ(i),π(j).

Special case: Random weighted graph matching

Assumptions:

1 A,B symmetric. We aim to recover π∗ from A and B.

2 Suppose that {(Aij ,Bπ∗(i),π∗(j)) : 1 ≤ i < j ≤ n} are independent
pairs of positively correlated random variables, with correlation at
least 1− σ2 where σ ∈ [0, 1].
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Introduction (2)

Note

This problem is related to other branches of mathematics:
information theory (1-sample test), optimal transport (distribution
matching), and group theory (for the general graph isomorphism).

(Babai et al., 1982) has applied spectral methods in testing graph
isomorphism.

Notable special cases of (special case) random weighted graph matching:

1 Erdos-Renyi graph model: {(Aij ,Bπ∗(i),π∗(j)) is a pair of standardized
correlated Bernoulli random variables. This is discrete-edge model.

2 Gaussian Wigner model: {(Aij ,Bπ∗(i),π∗(j)) is a pair of correlated
Gaussian variables (i.e. A and B are complete graphs with correlated
Gaussian edge weights). This is continuous-edge model.
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Spectral Methods (1)

Write the spectral decompositions of the weighted (complete graph)
adjacency matrices A and B as

A =
n∑

i=1

λiuiu
T
i , B =

n∑
j=1

µjvjv
T
j

where the eigenvalues are ordered such that λ1 ≥ ... ≥ λn and
µ1 ≥ ... ≥ µn.
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Spectral Methods (2)
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Spectral Methods (3)

This is not the first spectral method. What others have done before:

Low-rank methods that use a small number of eigenvectors of A
and B. For example, only the leading eigenvector:

X̂ = u1v
T
1

(Kazemi & Grossglauser, 2016; Feizi et al., 2019).

Full-rank methods that use all eigenvectors of A and B:

X̂ =
n∑

i=1

siuiv
T
i

for some appropriately chosen signs si ∈ {±1} (Xu & King, 2001)
(Finke et al., 1987) (Umeyama, 1988). Furthermore, (Umeyama,
1988) suggests

X̂ =
n∑

i=1

|ui ||vi |T

where |ui | denotes the entrywise absolute value of ui .
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Spectral Methods (4)

About this work graph matching by pairwise eigen-alignments:

Computational complexity O(n3).

Just a new similarity matrix

X̂ =
n∑

i ,j=1

w(λi , µj) · uiuTi JvjvTj ,

where J denotes the all-ones matrix and w is the Cauchy kernel of
bandwidth η:

w(λ, µ) =
1

(λ− µ)2 + η2
.

Insensitive to the choices of signs for individual eigenvectors.

Trivially, the output π̂(A,B) is equivariant.
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A Fourier space algorithm for solving QAPs (1)

Another “spectral” way to look at QAPs

Risi Kondor, A Fourier space algorithm for solving quadratic assignment
problems, SODA 2010

http://people.cs.uchicago.edu/~risi/papers/KondorSODA10.pdf

The Fourier transform of a general function f : Sn → C is the collection of
matrices

f̂ (λ) =
∑
σ∈Sn

f (σ)ρλ(σ)

where λ extends over the integer partitions of n, and ρλ : Sn → Cdλ×dλ is
the corresponding irreducible represetation (irrep) of Sn (given in Young’s
Orthogonal Representation – YOR). The inverse transform:

f (σ) =
1

n!

∑
λ⊢n

dλtrace[ρλ(σ)
−1f̂ (λ)].
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A Fourier space algorithm for solving QAPs (2)

QAP:

σ̂ = argmax
σ∈Sn

n∑
i ,j=1

Aσ(i),σ(j)Bi ,j

The objective function – graph correlation:

f (σ) =
n∑

i ,j=1

Aσ(i),σ(j)Bi ,j

The objective function can be expressed as:

f (σ) =
1

(n − 2)!

∑
π∈Sn

fA(σπ)fB(π)

where fA : Sn → R is defined as:

fA(σ) = Aσ(n),σ(n−1),

and similarly for fB .
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A Fourier space algorithm for solving QAPs (3)

Given a pair of graphs A and B of n vertices with graph Fourier transforms
(that is different from GFT in graph literature) f̂A and f̂B , the Fourier
transform of their graph correltation is:

f̂ (λ) =
1

(n − 2)!
f̂A(λ) · (f̂B(λ))T , λ ⊢ n.

For any function f : Sn → R:

max
σ∈Sn

f (σ) ≤ 1

n!

∑
λ⊢n

dλ||f̂ (λ)||1

where ||M||1 denotes the trace norm of the matrix M.

12 / 26



A Fourier space algorithm for solving QAPs (4)

Key result – Upper bound:

max
τ∈Sk

fin,in−1,..,ik+1
(τ) ≤ B(f̂in,in−1,..,ik+1

)

where fin,in−1,..,ik+1
: Sk → R is defined as

fin,in−1,..,ik+1
(τ) = f ([in, n][in−1, n − 1]...[ik+1, k + 1]τ)

where [i , j ] denotes the contiguous cycle.

Efficient computation – Branch & Bound searching algorithm

Each upper bound

B(f̂ kI ) =
1

n!

∑
λ⊢k

dλ||f̂ kI (λ)||1

can be computed in O(k3) time.
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Regularized Quadratic Programming (1)

Claim

The similarity matrix X̂ corresponds to the solution to a convex relaxation
of the QAP, regularized by an added ridge penalty.

Finding the best matching between two graphs with adjs A,B ∈ Rn×n:

max
π∈Sn

n∑
i ,j=1

Ai ,jBπ(i),π(j),

that is equivalent to:

max
Π∈Sn

⟨A,ΠBΠT ⟩ ⇔ min
Π∈Sn

||AΠ− ΠB||2F .
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Regularized Quadratic Programming (2)

Relaxing the set of permutations to its convex hull (the Birkhoff polytope
of doubly stochastic matrices)

Bn ≜ {X ∈ Rn×n : X1 = 1,XT1 = 1,Xij ≥ 0∀i , j}

arrives at the QAP relaxation:

min
X∈Bn

||AX − XB||2F .

This is called doubly stochastic QP.
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Regularized Quadratic Programming (3)

The similarity matrix X̂ is the solution of a regularized futher relaxation
of the doubly stochastic QP:

X̂ is the minimizer of of

min
X∈Rn×n

1

2
||AX − XB||2F +

η2

2
||X ||2F − 1TX1.

Equivalently, X̂ is a positive scalar multiple of the solution X̃ to the
constrained program

min
X∈Rn×n

||AX − XB||2F + η2||X ||2F

s.t.1TX1 = n

X̂ and X̃ are equivalent as far as the rounding step by the Hungarian
matching is concerned.
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The similarity matrix is diagonal dominant (1)

Let consider the Gaussian Wigner model:

B = A+ σZ ,

where A and Z are independent Gaussian Orthogonal Ensemble (GOE)
matrices with N (0, 1n ) off-diagonal and N (0, 2n ) diagonal. The
permutation solution is indeed π∗ = the identity matrix.

Note: I think all the Wigner models mentioned in this paper do not reflect
any realistic examples.
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The similarity matrix is diagonal dominant (2)

The population version of the doubly stochastic quadratic programming is:

min
X∈Bn

E
{
||AX − XB||2F

}
⇔ min

X∈Bn

(2 + σ2)(n + 1)||X ||2F − 2trace(X )2 − 2⟨X ,XT ⟩

has solution

X̄ ≜ ϵI + (1− ϵ)F , ϵ =
2

2 + (n + 1)σ2
≈ 2

nσ2

that is a convex combination of the true permutation matrix (identity) and
the center of the Birkhoff polytope F = 1

nJ , a very flat matrix. The

authors claim it is reasonable to expect that X̂ inherits the diagonal
dominance property from the population solution X̄ :

X̂i ,π∗(i) > X̂i ,j , j ̸= π∗(i).
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The similarity matrix is diagonal dominant (3)

Note: If the similarity matrix is diagonal dominant, the task of the
Hungarian matching (rounding step) is trivial.
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Correlated Wigner Model (1)

Note: All the element-wise moments are bounded.
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Correlated Wigner Model (2)

Note: It is likely (high probability) that the optimal objective is small.
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Correlated (sparse) Erdos-Renyi graphs (1)
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Correlated (sparse) Erdos-Renyi graphs (2)

Note: This lemma literally says the two models correlated Wigner and
correlated Erdos-Renyi are more-or-less the same. Fundamentally, the
authors only provide the theoretical analysis of recovery for the case of
Wigner model that is in Remark 2.5.
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Experiments (1)
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Experiments (2)
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Experiments (3)

Summary: I think the special cases, such as Wigner models and
Erdos-Renyi, have been well-studied already.
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