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Quote for today

The happiness of your life depends upon the quality of your thoughts.

— Marcus Aurelius

The Art Institute of Chicago, Februray 2020
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Paper:

@ Zhou Fan, Cheng Mao, Yihong Wu, Jiaming Xu, Spectral Graph
Matching and Regularized Quadratic Relaxations: Algorithm
and Theory (ICML 2020).

http://proceedings.mlr.press/v119/fan20a.html
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Introduction (1)

Finding the best matching between two weighted graphs with adjacency
matrices A, B € R"™*" may be formalized as the following NP-hard
combinatorial optimization, quadratic assignment problem (QAP), problem
over the set of permutation S,:

n
TS Zl AijBr(i)n(j)-
ij=
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Special case: Random weighted graph matching

Assumptions:
@ A, B symmetric. We aim to recover 7, from A and B.

@ Suppose that {(Aj, By, (i)x.(j)) : 1 < i <j < n} are independent
pairs of positively correlated random variables, with correlation at
least 1 — o2 where o € [0, 1].

v
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Introduction (2)

@ This problem is related to other branches of mathematics:
information theory (1-sample test), optimal transport (distribution
matching), and group theory (for the general graph isomorphism).

o (Babai et al., 1982) has applied spectral methods in testing graph
isomorphism.




Introduction (2)

@ This problem is related to other branches of mathematics:
information theory (1-sample test), optimal transport (distribution
matching), and group theory (for the general graph isomorphism).

o (Babai et al., 1982) has applied spectral methods in testing graph
isomorphism.

Notable special cases of (special case) random weighted graph matching:

@ Erdos-Renyi graph model: {(Aj, Br,(i),x.(j)) is a pair of standardized
correlated Bernoulli random variables. This is discrete-edge model.

© Gaussian Wigner model: {(Aj;, Br,(i),r.(j)) is @ pair of correlated
Gaussian variables (i.e. A and B are complete graphs with correlated
Gaussian edge weights). This is continuous-edge model.
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Spectral Methods (1)

Write the spectral decompositions of the weighted (complete graph)
adjacency matrices A and B as

n n
— — — vl
A= E Ajuiu . B = E HjVjV;
i=1 j=1

where the eigenvalues are ordered such that A\; > ... > A, and
M1 2 o 2> .
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Spectral Methods (1)

Write the spectral decompositions of the weighted (complete graph)
adjacency matrices A and B as

n n
_ — _ vyl
A= E Ajuiu . B = g HjVjV;
i—1 j=1

where the eigenvalues are ordered such that A\; > ... > A, and
M1 2 o 2> .

Theorem (Informal statement). For the random weighted
graph matching problem, if the two graphs have edge corre-
lation at least 1 — 1 /polylog(n) and average degree at least
polylog(n), then a spectral algorithm recovers the latent
matching m. exactly with high probability.
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Spectral Methods (2)

Algorithm 1 GRAph Matching by Pairwise eigen-
Alignments (GRAMPA)

1:

2:
3:

Input: Weighted adjacency matrices A and B on n
vertices, and a bandwidth parameter 77 > 0.

Qutput: A permutation 7@ € S,,.

Construct the similarity matrix

"
X= Z w(Ai, pj) - uiuiTJ'v_,va eR™  (3)

ij=1

where J € R"*" denotes the all-ones matrix and w is
the Cauchy kernel of bandwidth 7:

w(A, p) = “

1
A=p)? +n*

: Output the permutation estimate 7 by “rounding” X to

a permutation, e.g., by solving the linear assignment
problem (LAP)

n
T = argmaxz }?mr(l)- (5)
€S o




Spectral Methods (3)

This is not the first spectral method. What others have done before:
@ Low-rank methods that use a small number of eigenvectors of A
and B. For example, only the leading eigenvector:

v T
X =uwv

(Kazemi & Grossglauser, 2016; Feizi et al., 2019).



Spectral Methods (3)

This is not the first spectral method. What others have done before:
@ Low-rank methods that use a small number of eigenvectors of A
and B. For example, only the leading eigenvector:

v T
X =uwv

(Kazemi & Grossglauser, 2016; Feizi et al., 2019).
@ Full-rank methods that use all eigenvectors of A and B:

n
X = E S,'U,'V,-T
i=1

for some appropriately chosen signs s; € {1} (Xu & King, 2001)
(Finke et al., 1987) (Umeyama, 1988). Furthermore, (Umeyama,

1988) suggests
X="uillvil”
i=1

where |uj| denotes the entrywise absolute value of u;.



Spectral Methods (4)

About this work graph matching by pairwise eigen-alignments:

e Computational complexity O(n3).
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o Insensitive to the choices of signs for individual eigenvectors.
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Spectral Methods (4)

About this work graph matching by pairwise eigen-alignments:
e Computational complexity O(n3).

@ Just a new similarity matrix

n
X = Z w(Ai, ) - u,-u,-TJvJ-va,
ij=1

where J denotes the all-ones matrix and w is the Cauchy kernel of
bandwidth 7:

L

o Insensitive to the choices of signs for individual eigenvectors.

e Trivially, the output 7(A, B) is equivariant.



A Fourier space algorithm for solving QAPs (1)

Another “spectral” way to look at QAPs

Risi Kondor, A Fourier space algorithm for solving quadratic assignment
problems, SODA 2010

http://people.cs.uchicago.edu/~risi/papers/KondorSODA10.pdf

The Fourier transform of a general function f : S, — C is the collection of
matrices

F) =) f(o)palo)

O’GSn

where )\ extends over the integer partitions of n, and py : S, — CH*% s
the corresponding irreducible represetation (irrep) of S, (given in Young'’s
Orthogonal Representation — YOR). The inverse transform:

f(o) = % S dytracelpa (o) ().
" AFn
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A Fourier space algorithm for solving QAPs (2)

QAP:

6:arggn€as>:. A ()U(j)B,-J
ij=1

The objective function — graph correlation:
n
o) = > Ac(i)a(i)Bi
ij=1
The objective function can be expressed as:
f(o) = Z fa(om)fg(m
ﬂES

where f4 : S, — R is defined as:

fA(U) = Aa(n),cr(n—l)7

and similarly for fg.
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A Fourier space algorithm for solving QAPs (3)

Given a pair of graphs A and B of n vertices with graph Fourier transforms
(that is different from GFT in graph literature) f4 and fg, the Fourier
transform of their graph correltation is:

fF(n) = (n_lz)!l?A()\) ()T, Abn

For any function f : S, — R:

< I
?eaSXf Zd)\Hf M
" Akn

where ||M||; denotes the trace norm of the matrix M.
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A Fourier space algorithm for solving QAPs (4)

Key result — Upper bound:

max f;m’n 1y 7’k+1( )< B(f;n:’n 15 :’k+1)

TESK

where f; : Sk — R is defined as

inyin—1,- 7’k+1
f;'n7l'n71,~~7ik+1 (T) = f([i,,, n][i,,,l, n— 1]"'[ik+17 k + 1]T)

where [/, j] denotes the contiguous cycle.

Efficient computation — Branch & Bound searching algorithm

Each upper bound
B() ZdAHf/ (M2

T Ak

can be computed in O(k3) time.
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Regularized Quadratic Programming (1)

The similarity matrix X corresponds to the solution to a convex relaxation
of the QAP, regularized by an added ridge penalty.

Finding the best matching between two graphs with adjs A, B € R™":

max >, AiBr(i) x(j)

ij=1

that is equivalent to:

max (A, MBNT) < min ||AN — NB||2.
nes, nes,
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Regularized Quadratic Programming (2)

Relaxing the set of permutations to its convex hull (the Birkhoff polytope
of doubly stochastic matrices)

B, 2{XeR™:X1=1X"1=1X;>0Vij}
arrives at the QAP relaxation:
min ||AX — XB||%.
XeB,

This is called doubly stochastic QP.
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Regularized Quadratic Programming (3)

The similarity matrix X is the solution of a regularized futher relaxation
of the doubly stochastic QP:

o X is the minimizer of of

o1
min  —

2
— 2 w2 _ 1T
XcERnxn 2||AX XBHF+ 2 ”XHF 1" X1.
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Regularized Quadratic Programming (3)

The similarity matrix X is the solution of a regularized futher relaxation
of the doubly stochastic QP:

o X is the minimizer of of

o1
min  —

2
— 2 w2 _ 1T
XcERnxn 2||AX XBHF+ 2 ”XHF 1" X1.

e Equivalently, Xis a positive scalar multiple of the solution X to the
constrained program

in ||AX — XB||% + n?||X]|?
XQ“R'L‘M“ 1E + 07| X||E

s.t.17X1=n

X and X are equivalent as far as the rounding step by the Hungarian
matching is concerned.
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The similarity matrix is diagonal dominant (1)

Let consider the Gaussian Wigner model:
B=A+oZ,

where A and Z are independent Gaussian Orthogonal Ensemble (GOE)
matrices with A/(0, 1) off-diagonal and N(0, 2) diagonal. The
permutation solution is indeed 7, = the identity matrix.

Note: | think all the Wigner models mentioned in this paper do not reflect
any realistic examples.
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The similarity matrix is diagonal dominant (2)

The population version of the doubly stochastic quadratic programming is:

min E{HAX — XBH?F}
X€eB,
© min (2+ o) (n+1)||X||% — 2trace(X)? — 2(X, XT)
ebn
has solution
_ 2 2
X2el+(1-€F -~
d+1-oF, e 2+ (n+1)0?  no?

that is a convex combination of the true permutation matrix (identity) and
the center of the Birkhoff polytope F = %J, a very flat matrix. The
authors claim it is reasonable to expect that X inherits the diagonal
dominance property from the population solution X:

Xino(y > Xijy  J # mei).



The similarity matrix is diagonal dominant (3)
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(a) Histogram of diagonal (blue) (b) Heat map of X.
and oft-diagonal (yellow with a
normal fit) entries of X .

Note: If the similarity matrix is diagonal dominant, the task of the
Hungarian matching (rounding step) is trivial.
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Correlated Wigner Model (1)

To model a general random weighted graph, we consider the
following Wigner model: Let A = (A;;) be a symmetric
random matrix in R®*", where the entries (A;;);<; are
independent. Suppose that

E[A;] =0, E [A?] = 1/nfori # j, and (13)
E[[A;["] € S foralli,jand k > 2, (14)

where d = d(n) is an n-dependent sparsity parameter and
C' is a positive constant.

Note: All the element-wise moments are bounded.
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Correlated Wigner Model (2)

Definition 2.1 (Correlated Wigner model). Ler n be a pos-
itive integer, o € [0, 1] an (n-dependent) noise parameter,
7. a latent permutation on [n], and IL, € {0, 1}"*" the
corresponding permutation matrix such that (IL) ;= ;) = L.
Suppose that { (A, Bx_(iyx.(;)) - 1 < j} are independent
pairs of random variables such that both A = (Ay;) and
B = (Bi;) satisfy (13) and (14),

1— o2

E I:AIJBTfm(A‘-)'Nx(j):I = fOl" all ¢ # j., (15)

and for a constant C > 0, any D > 0, and all n > ng(D),
P{|A-ILBI||<Co} 21-n""  (16)

where || - || denotes the spectral norm.

Note: It is likely (high probability) that the optimal objective is small.
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Correlated (sparse) Erdos-Renyi graphs (1)

Equivalently, we may first sample an ErdGs-Rényi graph
A ~ G(n,p), and then define B’ by

, Bern(s) ifA; =1
B, ~ ’

& Bem(p(1 d)) ifA;; =0.
Suppose that we observe a pair of graphs A and B =
II] B'TL,, where II, is the latent permutation matrix. We

then wish to recover 11, or, equivalently, the corresponding
permutation 7.

We first normalize the adjacency matrices A and B so that
they satisfy the moment conditions (13) and (14). Define
the centered, rescaled versions of A and B by

A2 (np(1-p))”"*(A -E[A])
and B2 (np(1-p)~Y3B-EB]). (19
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Correlated (sparse) Erdos-Renyi graphs (2)

Lemma 2.3. For all large n, the matrices A = (A;;) and
B = (Byj) satisfy conditions (13), (14), (15), and (16) with

1—s (log‘nj )

d = np(l — p) and 0* = max ({=% =,

Note: This lemma literally says the two models correlated Wigner and
correlated Erdos-Renyi are more-or-less the same. Fundamentally, the
authors only provide the theoretical analysis of recovery for the case of
Wigner model that is in Remark 2.5.

Remark 2.5. From Theorem 2.2, we can obtain similar ex-
act recovery guarantees for the correlated Gaussian Wigner
model B = /1 — o2II] ATl, + o Z, where A and Z are
independent GOE matrices and o < (logn) =%, In fact,
GRAMPA recovers the latent permutation IL. under a milder
condition o < ¢(logn) ™! for a small constant ¢ > 0. How-
ever, this refined result requires a dedicated analysis dif-
ferent from the proof of Theorem 2.2, so we defer it to a
companion work.
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Experiments (1)
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Erdés-Rényi graphs with 100 Erd&s-Rényi graphs with 500
vertices vertices

Figure 2: Comparison of GRAMPA to existing methods for
matching Erdés-Rényi graphs with expected edge density
0.5. Each experiment is averaged over 10 repetitions.




Experiments (2)
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Figure 3: Comparison of GRAMPA with DegreeProfile
for matching networks of autonomous systems on nine days

to that on the first day




Experiments (

(a) Visualization of the (b) Empirical distribution function
correspondence by GRAMPA  of normalized geodesic error.

Figure 4: Comparison of GRAMPA to existing methods on
SHREC"’ 16 dataset.

Summary: | think the special cases, such as Wigner models and
Erdos-Renyi, have been well-studied already.
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