
Geometric Deep Learning for Protein Science and Drug Discovery

Dr. Truong Son Hy, Assistant Professor

Department of Computer Science
The University of Alabama at Birmingham, United States

November 17, 2024

Prof. Truong Son Hy (UAB) HySonLab: AI for Science & Bioinformatics November 17, 2024 1 / 37



Introduction

HySonLab – AI for Science

Advanced machine learning and deep learning for scientific problems.

For our talk today:

1 Introduction to Geometric Deep Learning

▶ Graph neural networks & Equivariant neural networks
▶ Limitations of GNNs and our solutions

2 Multiresolution Graph Transformers

▶ Hierarchical and long-range interactions modeling
▶ Protein, peptide and polymer properties prediction

3 Protein Multimodal Representation Learning, LLM & Generative AI

▶ Unify different modalities of protein representations into a single model
▶ Generate ligands with high binding affinity
▶ Unsupervised symmetry-preserving multimodal pretraining
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Motivation for graph learning & geometric graphs

Molecules Macro-Molecules

Citation network Knowledge Graph
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Graph Neural Networks (GNNs)

DFT = Density Functional Theory

Figure taken from (Gilmer et al., 2017).

Our works:

Predicting molecular properties with covariant compositional networks, Journal of
Chemical Physics, Volume 148, Issue 24.

Cormorant: Covariant Molecular Neural Networks, NeurIPS 2019.
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Message Passing Neural Networks (MPNN)

Given an input graph / network G = (V,E):

1 Initially, each vertex v of the graph is associated with a feature representation
ℓv (label) or f0v . This feature representation can also be called as a message.

2 Iteratively, at iteration t, each vertex collects / aggregates all messages of
the previous iteration {f t−1

v1 , .., f t−1
vk
} from other vertices in its neighborhood

N (v) = {v1, .., vk}, and then produces a new message f tv via some hashing
function ψ(.).

3 The graph representation ϕ(G) is obtained by aggregating all messages in the
last iteration of every vertex. ϕ(G) is then used for downstream application.
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Message Passing Neural Networks (MPNN)

1: for v ∈ V do
2: f0v ← ℓv
3: end for
4: for t = 1→ T do
5: for v ∈ V do
6: f tv ← ψ

(
{f t−1

i }i∈N (v)

)
7: end for
8: end for
9: ϕ(G)← ψ

(
{fTv }v∈V

)

Note
This procedure is used in Weisfeiler–Lehman graph isomorphism test
(NP-complete problem).
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Message Passing Neural Networks (MPNN)

With learnable parameters:

1: for v ∈ V do
2: f0v ← ℓv
3: end for
4: for t = 1→ T do
5: for v ∈ V do
6: f tv ← ψ

(
{f t−1

i }i∈N (v);W
t
)

7: end for
8: end for
9: ϕ(G)← ψ

(
{fTv }v∈V ;W

T+1
)

Given a graph properties y(G) ∈ Rd to
regress, we have the optimization:

min
{W t}T+1

t=1

||y(G)− ϕ(G)||22

The gradient with respect to {W t}T+1
t=1

can be computed via Back-propagation.
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Invariance

We renumber the vertices by a permutation σ : {1, 2, .., 6} 7→ {1, 2, .., 6}. The
adjacency matrices of G (left) and G′ (right) are different, but topologically they
represent the same graph:

Therefore, ϕ must be invariant wrt permutation, i.e. ϕ(G) = ϕ(G′).
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Symmetry preservation for geometric graphs

A permutation group Sn’s action on node order and adjacency matrix.

Molecular data specified by a set of charge-position pairs (Zi, ri) for each atom.
This problem is invariant to rotations - group SO(3).
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Equivariant Neural Networks

Tg is an action of a group G on the space of inputs and outputs.

Invariance: ϕ(Tg(f)) = ϕ(f) Equivariance: ϕ(T
(1)
g (f)) = T

(2)
g (ϕ(f))

Our works:

Predicting molecular properties with covariant compositional networks, Journal of
Chemical Physics, Volume 148, Issue 24. G = Sn

Covariant compositional networks for learning graphs, ICLR 2018. G = Sn

Cormorant: Covariant Molecular Neural Networks, NeurIPS 2019. G = SO(3)
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E(n) Equivariant Graph Neural Networks (ICML 2022)

For example:

(Satorras et al., 2022)
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Limitations of GNNs and Message Passing

GNNs are powerful but have several limitations theoretically and practically:

Long-range modeling (i.e. graphs with large diameters) [1, 2]

Modeling highly symmetric structures [3, 4]

Over-smoothing & Over-squashing (we are working on it on the theoretical
front!)

Our works:

1 On the Connection Between MPNN and Graph Transformer, ICML 2023.

2 Multiresolution graph transformers and wavelet positional encoding for learning
long-range and hierarchical structures, Journal of Chemical Physics, Volume 159,
Issue 3.

3 Predicting molecular properties with covariant compositional networks, Journal of
Chemical Physics, Volume 148, Issue 24.

4 Covariant compositional networks for learning graphs, ICLR 2018.

Prof. Truong Son Hy (UAB) HySonLab: AI for Science & Bioinformatics November 17, 2024 12 / 37



Long-range graphs

(a) Peptide (b) Polymer (c) Protein-Ligand

Figure: Macromolecules that are actually long-range graphs.

Macromolecules have hierarchical structures and comprise multiple
long-range dependencies among distant atoms.

We want to predict functions of peptides, properties of polymers calculated
from Density Functional Theory (DFT), and protein-ligand binding affinity.

Conventional GNNs fail with long-range graphs (I will discuss our solutions
and theoretical results!).
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Multiresolution Graph Networks (MGN)

Aspirin C9H8O4, its 3-cluster partition and the coarsen graph.

3-level Multiresolution Graph Networks learning to cluster on Aspirin.

Our work: Multiresolution equivariant graph variational autoencoder, Machine Learning:

Science and Technoglogy, Volume 4, Number 1.
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New proposal for long-range graphs

Wavelet positional encoding Multiresolution Graph Transformer

Transformers are effective for computing the interactions between distant atoms via
self-attention mechanisms.

To adapt Transformer-like architectures to graphs, we need positional encoding
(PE) schemes that embody the local structures.

Our work: Multiresolution Graph Transformers and Wavelet Positional Encoding for

Learning Long-Range and Hierarchical Structures, Journal of Chemical Physics, Volume

159, Issue 3

Prof. Truong Son Hy (UAB) HySonLab: AI for Science & Bioinformatics November 17, 2024 15 / 37



Wavelet Positional Encoding

scale = 6 scale = 10

scale = 4scale = 2

Graph wavelets with scaling parameters on Aspirin molecular graph

Concatenation Equivariant  
Encoding

Wavelet Positional  
Representations

K scales

Encode the wavelet tensor into node-level PE via Sn-equivariant neural networks
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Multiresolution Graph Transformer (MGT)

Wavelets 
PE

L GPS layers
Transformer Encoder

We propose a learning-to-cluster algorithm that coarsens graphs iteratively
to build a multiresolution (i.e. multiple of resolutions) representation of the
input graph.

We employ the graph transformer model learning on each resolution and
we integrate our wavelet positional encoding.
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Peptides Property Prediction

Model Params
Peptides-struct Peptides-func

MAE ↓ AP ↑

GCN 508k 0.3496 ± 0.0013 0.5930 ± 0.0023
GINE 476k 0.3547 ± 0.0045 0.5498 ± 0.0079
GatedGCN 509k 0.3420 ± 0.0013 0.5864 ± 0.0077
GatedGCN + RWPE 506k 0.3357 ± 0.0006 0.6069 ± 0.0035

Transformer + LapPE 488k 0.2529 ± 0.0016 0.6326 ± 0.0126
GPS — 0.2500 ± 0.0005 0.6535 ± 0.0041
SAN + LapPE 493k 0.2683 ± 0.0043 0.6384 ± 0.0121
SAN + RWPE 500k 0.2545 ± 0.0012 0.6562 ± 0.0075

MGT + WavePE (ours) 499k 0.2453 ± 0.0025 0.6817 ± 0.0064

Peptides-func: a multi-label graph classification dataset with 10 classes based on
the peptide function: Antibacterial, Antiviral, cell-cell communication, etc.

Peptides-struct: a multi-label graph regression dataset based on the 3D structure
of the peptide: inertia mass, inertia valence, length, sphericity, and plane best fit.
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Polymer Property Prediction
We achieve the chemical accuracy in estimating the molecular properties of polymers that
are calculated from Density Functional Theory, while outperforming all other competitive
baselines.

Model Params
Property

GAP HOMO LUMO

DFT error 1.2 2.0 2.6
Chemical accuracy 0.043 0.043 0.043

GCN 527k 0.1094 ± 0.0020 0.0648 ± 0.0005 0.0864 ± 0.0014
GCN + Virtual Node 557k 0.0589 ± 0.0004 0.0458 ± 0.0007 0.0482 ± 0.0010
GINE 527k 0.1018 ± 0.0026 0.0749 ± 0.0042 0.0764 ± 0.0028
GINE + Virtual Node 557k 0.0870 ± 0.0040 0.0565 ± 0.0050 0.0524 ± 0.0010

GPS 600k 0.0467 ± 0.0010 0.0322 ± 0.0020 0.0385 ± 0.0006
Transformer + LapPE 700k 0.2949 ± 0.0481 0.1200 ± 0.0206 0.1547 ± 0.0127

MGT + LapPE (ours) 499k 0.0378 ± 0.0004 0.0270 ± 0.0010 0.0300 ± 0.0006
MGT + RWPE (ours) 499k 0.0384 ± 0.0015 0.0274 ± 0.0005 0.0290 ± 0.0007
MGT + WavePE (ours) 499k 0.0387 ± 0.0011 0.0283 ± 0.0004 0.0290 ± 0.0010

HOMO: Highest Occupied Molecular Orbital, energy of the highest occupied
electronic state (eV)

LUMO: Lowest Unoccupied Molecular Orbital, energy of the lowest unoccupied
electronic state (eV)

GAP: difference / gap between HOMO and LUMO (eV)
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Protein-Ligand Binding Affinity Prediction: ATOM3D

Understanding the multiscale structure of protein complexes is important in
estimating their fitness and functionality.

Method 3D-CNN GNN ENN GVP-GNN MGT + WavePE

RMSE ↓ 1.416 ± 0.021 1.570 ± 0.025 1.568 ± 0.012 1.594 ± 0.073 1.436 ± 0.066

We show the effectiveness of our model in capturing the long-range and hierarchical
structures of proteins. Our multiresolution graph transformer is competitive on
ATOM3D benchmark in predicting protein-ligand binding affinity (i.e. estimating
pK = − log(K), where K is the binding affinity in Molar units), even without
knowing the 3D structure.

Software & Datasets
https://github.com/HySonLab/Multires-Graph-Transformer
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Is there an alternative to Graph Transformer?

VN

Transformer

(a) (b)

(a) MPNN + VN = we augment the graph with a virtual node (VN) connecting
to all other nodes. VN acts as a “bridge” that reduces the maximum shortest
path to 2.
(b) Graph Transformer = we treat each node embedding as a token and apply a
Transformer on the sequence of node embeddings/tokens.
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Our theoretical results

From our paper On the Connection Between MPNN and Graph Transformer
at ICML 2023:

Theorem 1

MPNN + VN can simulate (not just approximate) equivariant DeepSets: Rn×d → Rn×d.
This implies that MPNN + VN of O(1) depth and O(nd) width is permutation
equivariant universal, and can approximate self-attention layer and transformers
arbitrarily well.

Theorem 2
Given any graph G of size n with node features X ∈ X , and a self-attention layer L on
G (fix WK ,WQ,WV ), there exists a O(n) layer of heterogeneous MPNN + VN with
the specific aggregate/update/message function that can approximate L on X arbitrarily
well.
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MPNN + VN on Long-Range Graph Benchmark (LRGB)

AP = Average Precision MAE = Mean Average Error

Peptides-functional and Peptides-structural are two datasets of LRGB.

Previously GT shows a large margin over MPNN.

Simply adding VN is enough to make simple MPNN outperform Graph
Transformers!
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Limitation of GNNs on highly symmetric structures

The summing operator limits the representative power of MPNNs such that each node
loses their identity after being aggregated. For example:

These two graphs are not isomorphic, but

message passing scheme fails to distinguish

whether 5 and 5’ are the same vertex or not.

Weisfeiler-Lehman isomorphism test fails for

highly symmetric structures such as regular

graphs.

Solution: Higher-order equivariant models

Covariant compositional networks for learning graphs, ICLR 2018.

Predicting molecular properties with covariant compositional networks, Journal of
Chemical Physics, Volume 148, Issue 24.
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Protein Multimodal Representation Learning

Each of these structural levels corresponds to a specific modality of
representation:

Primary & Secondary:

Sequence → Large Language Models

Tertiary & Quaternary:
2D/3D graph, 3D point cloud → Geometric Deep Learning
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Protein Multimodal Representation Learning (Supervised)

Our Protein Multimodal Network (PMN) learns to produce a unified representa-
tion of the protein structures including primary structure (i.e. amino-acid sequence)
and tertiary structure (i.e. 3D structure) by Large Language Models and E(3)-
Equivariant Graph Neural Networks.

Our work: Multimodal Protein Representation Learning and Target-aware Variational
Auto-encoders for Protein-binding Ligand Generation, Machine Learning: Science and
Technology, Volume 5, Number 2.
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Protein-Ligand Binding Affinity Prediction: Architecture

A framework for predicting binding affinities between proteins and ligands.

PMN = Protein Multimodal Networks
MPNN = Message Passing Neural Networks
FFN = Feed-Forward Networks
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Protein-Ligand Binding Affinity Prediction: DAVIS & KIBA

Experimental results on DAVIS and KIBA dataset. Our results are averaged over
five runs. Combining both sequential and topological information of proteins (i.e.

multimodal) is necessary!

MSE = Mean Square Error
CI = Concordance Index
r2m = Correlation Score
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Generative AI: Protein-binding Ligand Generation

TargetVAE - a Conditional Variational Autoencoder - with an encoder, decoder, and a
prior network. The PMN prior network computes the conditions from protein structures

for constructing the latent space of the VAE framework, which learns to generate
SELFIES representations of molecules.

Our work: Multimodal Protein Representation Learning and Target-aware Variational
Auto-encoders for Protein-binding Ligand Generation, published at Machine Learning:
Science and Technology, Volume 5, Number 2; and presented at NeurIPS 2023.
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Generative AI: Multiresolution Equivariant Graph VAE
Instead of string-based VAE (generating SELFIES / SMILES), we also proposed
graph-based VAE (generating molecular graph) to:

Generate molecules in multiple levels of resolutions (i.e. multiresolution),

While preserving the permutation symmetry.

Our works:

Multiresolution Equivariant Graph Variational Autoencoder, Machine Learning: Science
and Technology, Volume 4, Number 1.

The general theory of permutation equivarant neural networks and higher order graph
variational encoders, Preprint, 2020.
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Generative AI: Protein-binding Ligand Generation

Each figure is associated with the name of each target protein, synthetic
accessibility, and binding affinity in kcal/mol of the generated ligand.
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Generative AI: Protein-binding Ligand Generation

Some generated ligands with high QED (i.e. Drug-likeness score).
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Generative AI: Protein-binding Ligand Generation

Multiple generated ligands with different poses bind to a given target protein. Our
TargetVAE can generate ligands for a protein without the prior knowledge of the

binding pocket.

Our source code & datasets:

https://github.com/HySonLab/Ligand_Generation
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Drug discovery pipeline

1 In-silico: HySonLab is working on generative AI, molecular dynamic
simulations.

2 In-vitro & In-vivo: HySonLab is collaborating with Department of Biology at
Indiana State University. We are testing generated drug candidates (by AI) on
fruit flies. We are interested in mutant proteins of KRAS, NRAS and HRAS.

3 Later stages: preclinical research, clinical research, FDA review, and safety
monitoring.

We are working hard on Stage 1 and Stage 2. We aim to deliver novel AI methods
with ready-to-use software packages for pharmaceutical industry, while finding new
potential drugs.
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Unsupervised Protein Representation Learning

We combine three pretraining models to exploit the vast amount of unannotated / unla-

beled protein data: ESM-2: Evolutionary Scale Modeling (without MSA), VGAE: Graph

Variational Autoencoder, and PAE: PointNet Autoencoder.

Our work: Multimodal Pretraining for Unsupervised Protein Representation Learning,
Biology Methods & Protocols, Volume 9, Issue 1.
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Unsupervised Protein Representation Learning
1 We extract the protein embedding of proteins from PDB v2020 from our unsupervised

pretraining model.

2 Then, we apply a simple Gaussian Process for predicting protein-ligand binding affinity.
Better than several supervised methods!

Our source code & pretrained model:

https://github.com/HySonLab/Protein_Pretrain
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Thank you for your attention!
Summary of our talk today:

1 Introduction to Geometric Deep Learning

2 Multiresolution Graph Transformers for Long-Range Interactions

3 Protein Multimodal Network & Generative AI

4 Unsupervised Protein Foundation Model

HySonLab is also working on several other interesting directions:

Drug repurposing

Biomedical NLP & Knowledge Graph

Protein Optimization

ML for Operations Research

Materials discovery by Generative AI

· · ·

Please visit my group’s github for many useful packages:

https://github.com/HySonLab/
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