
THE UNIVERSITY OF CHICAGO

COVARIANT COMPOSITIONAL NETWORKS FOR LEARNING GRAPHS AND

GRAPHFLOW DEEP LEARNING FRAMEWORK IN C++/CUDA

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER OF COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

HY TRUONG SON

CHICAGO, ILLINOIS

2018

Copyright c© 2018 by Hy Truong Son

All Rights Reserved

For my father, my mother and all my loved ones.

Victory belongs to the most persevering.

– Napoleon Bonaparte

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . viii

ACKNOWLEDGMENTS . ix

ABSTRACT . x

1 INTRODUCTION . 1

2 GRAPH KERNELS AND GRAPH NEURAL NETWORKS 3
2.1 Definition Of Graph Kernel . 3
2.2 Weisfeiler-Lehman Graph Isomorphism Test 4
2.3 Weisfeiler-Lehman Graph Kernel . 6
2.4 Dictionary WL Graph Feature . 7
2.5 Optimal Assignment Kernel And Histogram-Alignment WL Graph Feature . 12
2.6 Shortest Path Graph Kernel . 13
2.7 Graphlet Kernel . 16
2.8 Random Walk Graph Kernel . 17
2.9 Message Passing Framework . 19

2.9.1 Label Propagation Algorithm . 19
2.9.2 Generic Graph Neural Network . 20

2.10 Neural Graph Fingerprint . 21
2.11 Learning Convolutional Neural Networks For Graphs 25
2.12 Gated Graph Neural Networks . 26
2.13 Weisfeiler-Lehman Network . 29
2.14 Message Passing Neural Networks . 30
2.15 Interaction Networks . 31
2.16 Molecular Graph Convolutions . 31
2.17 Deep Tensor Neural Networks . 32
2.18 Laplacian Based Methods . 33
2.19 Graph-based Semi-Supervised Learning . 34

3 COVARIANT COMPOSITIONAL NETWORKS FOR LEARNING GRAPHS . . 36
3.1 Compositional Networks . 36
3.2 Covariance . 37
3.3 First order Message Passing . 38
3.4 Second order Message Passing . 39
3.5 Third and higher order Message Passing . 39
3.6 Tensor aggregation rules . 40
3.7 Second order tensor aggregation with the adjacency matrix 43
3.8 Architecture . 43

v

4 GRAPHFLOW DEEP LEARNING FRAMEWORK IN C++/CUDA 51
4.1 Motivation . 51
4.2 Overview . 52
4.3 Parallelization . 53

4.3.1 Efficient Matrix Multiplication In GPU 53
4.3.2 Efficient Tensor Contraction In CPU 54
4.3.3 Efficient Tensor Contraction In GPU 55
4.3.4 CPU Multi-threading In Gradient Computation 56
4.3.5 Reducing data movement between GPU and main memory 57
4.3.6 Source code . 57

5 EXPERIMENTS AND RESULTS . 59
5.1 Efficiency of GraphFlow framework . 59

5.1.1 Matrix multiplication . 59
5.1.2 Tensor contraction . 59
5.1.3 Putting all operations together . 61
5.1.4 Small molecular dataset . 61

5.2 Experiments . 62
5.2.1 Discussion . 68

6 CONCLUSION AND FUTURE RESEARCH . 71

vi

LIST OF FIGURES

3.1 CCN 1D on C2H4 molecular graph . 48
3.2 CCN 2D on C2H4 molecular graph . 49
3.3 Zeroth, first and second order message passing 50

4.1 GraphFlow overview . 54
4.2 CPU multi-threading for gradient computation 56
4.3 Example of data flow between GPU and main memory 58

5.1 GPU vs CPU matrix multiplication running time (milliseconds) in log10 scale . 60
5.2 GPU vs CPU tensor contraction running time (milliseconds) in log10 scale . . . 60
5.3 GPU implementations of tensor contractions in CCN 2D 61
5.4 Molecules C18H9N3OSSe (left) and C22H15NSeSi (right) with adjacency matrices 63
5.5 2D PCA projections of Weisfeiler-Lehman features in HCEP 66
5.6 2D PCA projections of CCNs graph representations in HCEP 66
5.7 2D t-SNE projections of Weisfeiler-Lehman features in HCEP 67
5.8 2D t-SNE projections of CCNs graph representations in HCEP 67
5.9 Molecular graph of C2H4 (left) and its corresponding line graph (right). 68
5.10 Distributions of ground-truth and prediction of CCN 1D & 2D in HCEP 70

vii

LIST OF TABLES

5.1 GPU vs CPU matrix multiplication running time (milliseconds) 59
5.2 GPU vs CPU tensor contraction running time (milliseconds) 60
5.3 GPU and CPU network evaluation running time (milliseconds) 61
5.4 Single thread vs Multiple threads running time 62
5.5 HCEP regression results . 68
5.6 QM9(a) regression results (MAE) . 69
5.7 QM9(b) regression results (MAE) . 69

viii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Risi Kondor – who

has supported me, helped me, guided me, and conveyed continually and convincingly to

all of us, his students, a spirit of discovery in regard to research and scholarship. A very

special thanks to the entire UChicago Machine Learning group and Department of Computer

Science. Finally, I would like to thank Google Inc., especially Networking SRE, Security &

Privacy and Brain teams, for their inspiration and the internship opportunities for me to

apply my research into practice.

ix

ABSTRACT

In this paper, we propose Covariant Compositional Networks (CCNs), the state-of-the-art

generalized convolution graph neural network for learning graphs. By applying higher-order

representations and tensor contraction operations that are permutation-invariant with re-

spect to the set of vertices, CCNs address the representation limitation of all existing neural

networks for learning graphs in which permutation invariance is only obtained by summa-

tion of feature vectors coming from the neighbors for each vertex via well-known message

passing scheme. To efficiently implement graph neural networks and high-complexity tensor

operations in practice, we designed our custom Deep Learning framework in C++ named

GraphFlow that supports dynamic computation graphs, automatic and symbolic differentia-

tion as well as tensor/matrix implementation in CUDA to speed-up computation with GPU.

For an application of graph neural networks in quantum chemistry and molecular dynam-

ics, we investigate the efficiency of CCNs in estimating Density Functional Theory (DFT)

that is the most successful and widely used approach to compute the electronic structure of

matter but significantly expensive in computation. We obtain a very promising result and

outperform other state-of-the-art graph learning models in Harvard Clean Energy Project

and QM9 molecular datasets.

Index Terms: graph neural network, message passing, density functional theory, deep

learning framework

x

CHAPTER 1

INTRODUCTION

In the field of Machine Learning, standard objects such as vectors, matrices, tensors were

carefully studied and successfully applied into various areas including Computer Vision, Nat-

ural Language Processing, Speech Recognition, etc. However, none of these standard objects

are efficient in capturing the structures of molecules, social networks or the World Wide Web

which are not fixed in size. This arises the need of graph representation and extensions of

Support Vector Machine and Convolution Neural Network to graphs.

To represent graphs in general and molecules specifically, the proposed models must be

permutation-invariant and rotation-invariant. In addition, to apply kernel methods on

graphs, the proposed kernels must be positive semi-definite. Many graph kernels and graph

similarity functions have been introduced by researchers. Among them, one of the most suc-

cessful and efficient is the Weisfeiler-Lehman graph kernel which aims to build a multi-level,

hierarchical representation of a graph (Shervashidze et al., 2011). However, a limitation of

kernel methods (see section 2) is quadratic space usage and quadratic time-complexity in

the number of examples. In this paper, we address this drawback by introducing Weisfeiler-

Lehman graph features in combination with Morgan circular fingerprints in sections 2.4 and

2.5. The common idea of family of Weisfeiler-Lehman graph kernel is hashing the sub-

structures of a graph. Extending this idea, we come to the simplest form of graph neural

networks in which the fixed hashing function is replaced by a learnable one as a non-linearity

mapping (see sections from 2.9 to 2.19). We detail the graph neural network baselines such

as Neural Graph Fingerprint (Duvenaud et al., 2015) and Learning Convolutional Neural

Networks (Niepert et al., 2016) in sections 2.10 and 2.11. In the context of graphs, the sub-

structures can be considered as a set of vertex feature vectors. We ultilize the convolution

operation by introducing higher-order representations for each vertex, from zeroth-order as

1

a vector to the first-order as a matrix and the second-order as a 3rd order tensor in chapter

3. Also in this chapter, we introduce the notions of tensor contractions and tensor products

(see section 3.6) to keep the orders of tensors manageable without exponentially growing.

Our generalized convolution graph neural network is named as Covariant Compositional

Networks (CCNs) (Kondor et al., 2018; Hy et al., 2018). We propose 2 specific algorithms

that are first-order CCN in section 3.3 and second-order CCN in section 3.4. It is trivial that

high-order tensors cannot be stored explicitly in memory of any conventional computers. To

make tensor computations feasible, we build Virtual Indexing System that returns value of

each tensor element given the corresponding index, and allows efficient GPU implementation

(see section 3.8).

Current Deep Learning frameworks including TensorFlow (Abadi et al., 2016), PyTorch

(Paszke et al., 2017), Mxnet (Chen et al., 2016), Theano (Al-Rfou et al., 2016), etc. showed

their limitations for constructing dynamic computation graphs along with specialized ten-

sor operations. It leads to the need of a flexible programming framework for graph neural

networks addressing both these drawbacks. With this motivation, we designed our Deep

Learning framework in C++ named GraphFlow for our long-term Machine Learning re-

search. All of our experiments have been implemented efficiently within GraphFlow. In

addition, GraphFlow is currently being parallelized with CPU/GPU multi-threading. Im-

plementation of GraphFlow is mentioned in chapter 4. Finally, we apply our methods to the

Harvard Clean Energy Project (HCEP) (Hachmann et al., 2011) and QM9 (Ramakrishnan

et al., 2014) molecular dataset. The visualizations, experiments and empirical results are

detailed in chapter 5. Section 6 is our conclusion and future research direction.

2

CHAPTER 2

GRAPH KERNELS AND GRAPH NEURAL NETWORKS

2.1 Definition Of Graph Kernel

Kernel-based algorithms, such as Gaussian processes (Mackay, 1997), support vector ma-

chines (Burges, 1998), and kernel PCA (Mika et al., 1998), have been widely used in the

statistical learning community. Given the input domain X that is some nonempty set, the

common idea is to express the correlations or the similarities between pairs of points in X

in terms of a kernel function k : X × X → R (Hofmann et al., 2008). The kernel function

k(·, ·) is required to satisfy that for all x, x′ ∈ X ,

k(x, x′) = 〈Φ(x),Φ(x′)〉 (2.1)

where Φ : X → H maps from the input domain X into some dot product space H. We call

Φ as a feature map and H as a feature space. Given a kernel k and inputs x1, .., xn ∈ X ,

the n× n matrix

K , (k(xi, xj))ij (2.2)

is called the Gram matrix (or kernel matrix) of kernel function k with respect to x1, .., xn.

A symmetric matrix K ∈ Rn×n satisfying

cTKc =
∑
i,j

cicjKij ≥ 0 (2.3)

for all c ∈ Rn is called positive definite. If equality in 2.3 happens when c1 = .. = cn = 0,

then K is called strictly positive definite. A symmetric function k : X × X → R is called a

positive definite kernel on X if ∑
i,j

cicjk(xi, xj) ≥ 0 (2.4)

3

holds for any n ∈ N, {x1, .., xn} ⊆ Xn and c ∈ Rn. The inequality 2.4 is equivalent with

saying the Gram matrix K of kernel function k with respect to inputs x1, .., xn ∈ X is posi-

tive definite.

A graph kernel Kgraph : X × X → R is a positive definite kernel having the input do-

main X as a set of graphs. Given two undirected graphs G1 = (V1, E1) and G2 = (V2, E2).

Assume that each vertex is associated with a feature vector f : V → Ω where Ω is a vector

space. A positive definite graph kernel Kgraph between G1 and G2 can be written as:

Kgraph ,
1

|V1|
· 1

|V2|
·
∑
v1∈V1

∑
v2∈V2

kbase(f(v1), f(v2)) (2.5)

where kbase is any base kernel defined on vector space Ω, and can be:

• Linear: kbase(x, y) , 〈x, y〉norm , xT y/(‖x‖ · ‖y‖)

• Quadratic: kbase(x, y) , (〈x, y〉norm + q)2 where q ∈ R

• Radial Basis Function (RBF): kbase(x, y) , exp(−γ‖x− y‖2) where γ ∈ R

2.2 Weisfeiler-Lehman Graph Isomorphism Test

Given two undirected graphs G1 = (V1, E1) and G2 = (V2, E2) where V1 and V2 are the sets

of vertices, E1 and E2 are the sets of edges. Suppose we have a mapping l : V1∪V2 → Σ that

is a vertex labeling function giving label l(v) ∈ Σ from the set of all possible labels Σ for each

vertex v ∈ V1 ∪ V2. Assuming that |V1| = |V2| and |E1| = |E2|, the graph isomorphism test

is defined as: Determine whether there exists a permutation on the vertex indices such that

two graphs G1 and G2 are identical. Formally saying, we have to find a bijection between

4

the set of vertices of G1 and G2, σ : V1 → V2, such that

∀(u, v) ∈ E1 : (σ(u), σ(v)) ∈ E2 (2.6)

In addition, we can add one more contraint on the vertex labels such that

∀v ∈ V1 : l(v) = l(σ(v)) (2.7)

The algorithm of Weisfeiler-Lehman (WL) graph isomorphism test (Weisfeiler & Lehman,

1968) is described as follows. We can see that if G1 and G2 are isomorphic then the WL test

Algorithm 1: Weisfeiler-Lehman iterations

Data: Given an undirected graph G = (V,E), vertex labels l(v) ∈ Σ for all v ∈ V ,
and T ∈ N as the number of Weisfeiler-Lehman iterations. Assuming that we
have a perfect hashing function h : Σ∗ → Σ.

Result: Return fi(v) ∈ Σ∗ for all v ∈ V and i ∈ [0, T].
1 for i = 0→ T do
2 Compute the multiset of labels Mi(v), string si(v) and compressed label fi(v)
3 for v ∈ V do
4 if i = 0 then
5 Mi(v)← ∅
6 si(v)← l(v)
7 fi(v)← h(si(v))

8 else
9 Mi(v)← {fi−1(u)|u ∈ N (v)} where N (v) = {u|(u, v) ∈ E}

10 Sort Mi(v) in ascending order and concatenate all labels of Mi(v) into
string si(v)

11 si(v)← si(v)⊕ fi−1(v) where ⊕ is concatenation operation.
12 fi(v)← h(si(v))

13 end

14 end

15 end

always returns true. In the case G1 and G2 are not isomorphic, the WL test returns true with

a small probability. In particular, the WL algorithm has been shown to be a valid isomor-

phism test for almost all graphs (Babai & Kucera, 1979). Suppose that we have an efficient

5

Algorithm 2: Weisfeiler-Lehman graph isomorphism test

Data: Given two undirected graphs G1 = (V1, E1) and G2 = (V2, E2) with vertex
labels l : V1 ∪ V2 → Σ.

Result: Return whether G1 and G2 are isomorphic.

1 Apply algorithm 1 on graph G1 to get {fG1
i (v)}

2 Apply algorithm 1 on graph G2 to get {fG2
i (v)}

3 for i = 0→ T do

4 FG1
i ← {fG1

i (v)|v ∈ V1}
5 FG2

i ← {fG2
i (v)|v ∈ V2}

6 Sort FG1
i in ascending order

7 Sort FG2
i in ascending order

8 if FG1
i 6≡ FG2

i then
9 return G1 and G2 are not isomorphic

10 end

11 end
12 return G1 are G2 are isomorphic

sorting algorithm O(N log2N) for a sequence of N items, and the time complexities for con-

catenation operations and computing the hashing functions are negligible. In algorithm 1,

for each iteration i-th, each edge (u, v) is considered twice and |N (v)| ≤ |V |. Thus the time

complexity of algorithm 1 is O(T (|V |+ |E| log2 |V |)). In algorithm 2, |FG1
i | = |V1|, the time

complexity to sort FG1
i is O(|V1| log2 |V1|), and similarly for G2. Therfore, the total time

comlexity of WL isomorphism test is O(T (|V | + |E|) log2 |V |) where |V | = max{|V1|, |V2|}

and |E| = |E1|+ |E2|.

2.3 Weisfeiler-Lehman Graph Kernel

Based on algorithms 1 2 and equation 2.5, we introduce the following algorithm to compute

the Weisfeiler-Lehman kernel between the two input graphs G1 and G2. In this case, G1

and G2 can have different numbers of vertices. The remaining question is: what would be

the possible choices of vertex labels l(v)? One way to define the vertex labels is using the

6

vertex degrees:

l(v) , |{u|(u, v) ∈ E}| = |N (v)| (2.8)

Suppose that the time complexity to compute the base kernel value between fG1(v1) and

fG2(v2) is O(T) for every pair of vertices (v1, v2). Thus the time complexity to compute

the WL kernel value is O(T |V |2) where |V | = max{|V1|, |V2|}. Therefore, the total time

complexity of WL graph kernel algorithm is O(T (|V |2+|E| log2 |V |)) where |E| = |E1|+|E2|.

Algorithm 3: Weisfeiler-Lehman graph kernel (Shervashidze et al., 2011)

Data: Given two undirected graphs G1 = (V1, E1) and G2 = (V2, E2) with vertex
labels l : V1 ∪ V2 → Σ.

Result: Return the WL kernel value.
1 Apply algorithm 1 on graph G1 to get {fG1

i (v)}
2 Apply algorithm 1 on graph G2 to get {fG2

i (v)}
3 for v ∈ V1 do

4 fG1(v)←
T⊕
i=0

fG1
i (v)

5 end
6 for v ∈ V2 do

7 fG2(v)←
T⊕
i=0

fG2
i (v)

8 end

9 Kgraph(G1, G2)← 1
|V1|
· 1
|V2|
·
∑

v1∈V1

∑
v2∈V2

kbase(f
G1(v1), fG2(v2))

10 return Kgraph(G1, G2)

2.4 Dictionary WL Graph Feature

We combine the Weisfeiler-Lehman graph kernel and Morgan circular fingerprints into the

Dictionary Weisfeiler-Lehman graph feature algorithm. To capture the local substructures

of a graph, we define a Weisfeiler-Lehman substree at level/iteration n-th rooted at a vertex

v to be the shortest-path subtree that includes all vertices reachable from v by a path of

length at most 2n. Each subtree is represented by a multiset of vertex labels. We build

7

the Weisfeiler-Lehman dictionary by finding all subtree representations of every graph in

the dataset (as in algorithm 6). The graph feature or fingerprint is a frequency vector in

which each component corresponds to the frequency of a particular dictionary element (as

in algorithm 7).

The remaining question is: How to construct the subtree representation properly? We

propose the following solution. Given a multiset of vertex labels M of a subtree, we sort

all vertex labels of M in ascending lexicographic order, and concatenate all of them into a

string s(M). Finally, we update the dictionary with an element s(M).

One problem of this approach is: Two subtrees with different structures can have the same

representing multiset of vertex labels, and is represented by the same element in the dictio-

nary. Definitely we need a more sophisticated representation that is permutation-invariant

with respect to the ordering of vertices, while being able to capture the local structures of

a graph. This will be fully addressed and discussed in the next chapter with our proposed

model Covariant Compositional Networks.

Regarding data structures to implement our algorithms, we need to have an efficient al-

gorithm for the insertion and searching operations with the dictionary D that can contain

millions strings in practice. Our choice is Trie data structure or in another name as Prefix

tree. Trie’s idea was first introduced by (Briandais, 1959) and then by (Fredkin, 1960).

Suppose that our strings only contain ASCII characters indexed from 0 to 255. Each node

of the Trie/Prefix tree has exactly 256 pointers, we organize these pointers in an array next,

each element of next corresponds to a character in the ASCII table. There is only a single

root node in the Trie/Prefix tree. At the beginning, the Trie only contains the root node

with 256 pointers pointing to NULL. The insertion operation of a string s to the Trie D can

8

be described as follows. We have a pointer p pointing to the root node at first. We go from

left to right in the string s. For each character s[i], if p -> next[s[i]] = NULL then we

allocate a new memory location for p -> next[s[i]], and move p to p -> next[s[i]]. In

the end of the insertion algorithm, we mark p as having a string ended at itself or we increase

the number of strings ended there. The searching operation can be efficiently implemented

in a similar way, except that we do not create any new memory location, but stop searching

when we encounter NULL.

Suppose that we can access any element of the array of pointers next in a constant time O(1).

Algorithm 4: Insertion into Trie

Data: String s and Trie D passed by reference with the root node
Result: Updated Trie D

1 Assign p to root

2 for i = 1, 2, .., |s| do
3 Allocate a new memory location for p -> next[s[i]] if it is NULL

4 Assign p to p -> next[s[i]]

5 end
6 Mark p as having a string ended at p, or increase the number of strings ended at p.

Algorithm 5: Searching in Trie

Data: String s and Trie D passed by reference with the root node
Result: Return true if found, otherwise return false

1 Assign p to root

2 for i = 1, 2, .., |s| do
3 Return false immediately if p -> next[s[i]] = NULL

4 Assign p to p -> next[s[i]]

5 end
6 Return false if there is no string ended at p, otherwise return true.

The time complexity of both insertion and searching operations of string s in Trie/Prefix

tree is O(|s|) where |s| is length of the string s.

Remark that statements M ← M ∪ s(Sl(v)) and D ← D ∪ s(Sl(v)) in algorithm 6 will

9

Algorithm 6: Finding all dictionary elements representing a graph

Data: Given a graph G = (V,E), label l(v) associated with each vertex v ∈ V ,
number of iterations T , and the dictionary D passed by reference. Let Sl(v)
denote the multiset of labels of the subtree rooted at v in level l-th. Suppose
s(S) is a function returns an unique string representing for the multiset of
labels S.

Result: Updated dictionary D with new elements found from G, and M is a multiset
containing dictionary elements representing G.

1 Initialize the WL level 0:
2 for v ∈ V do
3 S0(v)← {l(v)}
4 end
5 Build the WL level 1, 2, .., T :
6 for l = 1→ T do
7 for v ∈ V do
8 Sl(v)← Sl−1(v)
9 for (u, v) ∈ E do

10 Sl(v)← Sl(v) ∪ Sl−1(u)
11 end

12 end

13 end
14 Update dictionary D and build the multiset of dictionary elements M :
15 M ← ∅
16 for l = 0→ T do
17 for v ∈ V do
18 M ←M ∪ s(Sl(v))
19 D ← D ∪ s(Sl(v))

20 end

21 end
22 return D,M

10

be implemented efficiently with Trie data structure, the time complexity of both statements

is O(|s(Sl(v))|). For the sake of simplicity of the complexity analysis, we assume that all

set operations (including operations with Trie) can be done in a constant time. The total

complexity of both algorithms 6 and 7 is O(N · T · |E|).

Algorithm 7: Building the dictionary for a dataset of graphs

Data: Given a dataset of N graphs G = {G(1), .., G(N)} where G(i) = (V (i), E(i)).
Let lG : V → Ω be the initial feature vector for each vertex of graph
G = (V,E). Ω is the set of all possible vertex labels.

Result: Return the dictionary D and the frequency vector F (i) for each graph G(i).
Remark that D is a set of strings, not a multiset. Remark that D is a set of
strings, while M is a multiset of strings.

1 Build dictionary D:
2 D ← ∅
3 for i = 1→ N do

4 Apply algorithm 6 on graph G(i) to update D and get M (i)

5 end
6 Given the dictionary D, build the frequency vectors:
7 for i = 1→ N do

8 F (i) ← 0|D|

9 for m ∈M (i) do
10 Search for m in D, let say m = Dj

11 F
(i)
j ← F

(i)
j + 1

12 end

13 F (i) ← F (i)/‖F (i)‖ where ‖.‖ denotes the norm l2 of the vector

14 end

15 return D, {F (1), .., F (N)}

2.5 Optimal Assignment Kernel And Histogram-Alignment WL

Graph Feature

We define the optimal assignment kernel (Kriege et al., 2016) as follows. Let [X]n denote the

set of all n-element subsets of a set X and B(X, Y) denote the set of all bijections between

11

X, Y in [X]n for n ∈ N. The optimal assignment kernel Kk
B on [X]n is defined as

Kk
B(X, Y) , max

B∈B(X,Y)
W (B)

where

W (B) ,
∑

(x,y)∈B
k(x, y)

and k is a base kernel on X . In order to apply the kernel to sets of different cardinality,

i.e. |X| 6= |Y |, we fill up the smaller set by additional objects z such that k(x, z) = 0 for

all x ∈ X . Finding the optimal B can be formularized as the Hungarian matching problem

that can be solved efficiently by Kuhn-Munkres algorithm (Munkres, 1957). As following,

we define the strong kernel and state its relation to the validity of an optimal assignment

kernel.

Definition 2.5.1 (Strong kernel). A function k : X × X → R≥0 is called strong kernel if

k(x, y) ≥ min{k(x, z), k(z, y)} for all x, y, z ∈ X .

Theorem 2.5.1 (Validity of an optimal assignment kernel). If the base kernel k is strong,

then the function Kk
B is a valid kernel.

Proof. Detail of the proof is contained in (Kearns et al., 2016).

Inspired by the histogram intersection kernel that yields an optimal assignment kernel

(Kriege et al., 2016), we introduce the histogram alignment WL graph feature as follows.

Suppose that the vertex labels can be discretized and encoded as one-hot vectors of size c.

Let `v ∈ {0, 1}c be the label vector of vertex v. For each vertex v, we consider the histogram

of vertex labels of vertices at distance n from v as:

hnv =
∑

w∈V :d(v,w)=n

`w

12

where d(v, w) denotes length of the shortest path between v and w. Given depth N , the

histogram alignment WL graph feature of vertex v is computed as concatenating all hnv :

hv =
⊕

n∈{0,..,N}
hnv

This graph synthesized feature plays an important role in improving the performance of our

graph learning algorithms including Covariant Compositional Networks that will be defined

in the next chapter. We can also concatenate the dictionary WL and histogram alignment

WL graph features into a richer representation.

2.6 Shortest Path Graph Kernel

Before defining the shortest path kernel, we start with all-paths kernel suggested by (Borg-

wardt & Kriegel, 2005).

Definition 2.6.1 (All-paths kernel). Given two graphs G1 and G2. Let P (Gi) be the set of

all paths in graph Gi where i ∈ {1, 2}. Let kpath be a positive kernel on two graphs, defined

as the product of kernels on edges and nodes along the paths. We then define an all-paths

kernel kall paths as

kall paths(G1, G2) ,
∑

p1∈P (G1)

∑
p2∈P (G2)

kpath(p1, p2)

In other words, we define the all-paths kernel as the sum over all kernels on pairs of paths

from G1 and G2.

Lemma 2.6.1. The all-paths kernel is positive definite.

Proof. Detail of the proof is contained in (Borgwardt & Kriegel, 2005).

Lemma 2.6.2. Computing the all-paths kernel is NP-hard.

13

Proof. Suppose that determining the set of all paths P (G) in a graph G = (V,E) is not

NP-hard. There exists a polynomial time (of |V |) algorithm to determine whether G has a

Hamilton path by checking if P (G) contains a path of length |V |−1. However, this problem

is known to be NP-complete. Therefore, determining the set of all paths and computing the

all-paths kernel are NP-hard problems.

From Lemma 2.6.2, we conclude that the all-paths kernel is infeasible for computation.

Thus, as following, we consider the shortest-path kernel. First, for the sake of mathematical

convenience to define the shortest-path kernel, we introduce the Floyd-transformed graph.

Definition 2.6.2. Given an undirected connected weighted graph G = (V,E), the Floyd-

transformed graph of G is a complete graph S = (V,E) in which for all (u, v) ∈ E, the

weight of edge (u, v) is length of the shortest-path between u and v in G.

We can easily construct the Floyd-transformed graph S of G by Floyd-Warshall algorithm

in O(|V |3). After Floyd-transformation of the input graphs, a definition of shortest-path

kernel is introduced as follows.

Definition 2.6.3 (Shortest-path graph kernel). Let G1 = (V1, E1) and G2 = (V2, E2) be two

graphs that are Floyd-transformed into S1 = (V1, E1) and S2 = (V2, E2). The shortest-path

graph kernel is defined as

kshortest paths(G1, G2) ,
∑
e1∈E1

∑
e2∈E2

k
(1)
walk(e1, e2)

where k
(1)
walk is a positive definite kernel on edge walks of length 1.

Label enrichment can also be applied to Floyd transformed graphs to speedup kernel

computation. When performing the Floyd-Warshall algorithm, besides storing the shortest

path information for each pair of vertices, we also store the number of edges on the shortest

path. The equal length shortest-path kernel can be done by setting kernels to zero for all

14

pairs of shortest paths where the number of edges in the shortest paths is not identical

(Borgwardt & Kriegel, 2005). Regarding the dynamic programming (DP) algorithm, let

du,v and d
(e)
u,v denote lengths of the shortest path and the shortest path with exactly e edges

between u, v ∈ V . The DP formula of Floyd-Warshall is

du,v = min
k∈V
{du,k + dk,v}

while the DP formula of Floyd-Warshall with number of edges information is

d
(e)
u,v = min

k∈V,e1+e2=e
{d(e1)u,k + d

(e2)
k,v }

For a given e, we construct the corresponding Floyd transformed graph of shortest paths

with length exactly e edges. From here, we have our definition of Equal-length Shortest-path

(ELSP) kernel.

Definition 2.6.4 (Equal-length Shortest-path kernel). Given graphs G1 = (V1, E1) and

G2 = (V2, E2). For a non-zero natural number e ∈ [1,min(|V1|, |V2|) − 1], we construct the

Floyd transformed graphs of e-edge shortest paths S1 = (V1, E
(e)
1) and S2 = (V2, E

(e)
2) for

G1 and G2, respectively. The equal-length shortest-path kernel is defined as

kELSP (G1, G2) ,
min(|V1|,|V2|)−1∑

e=1

∑
e1∈E

(e)
1

∑
e2∈E

(e)
2

k
(1)
walk(e1, e2)

2.7 Graphlet Kernel

State-of-the-art graph kernels do not scale to large graphs with hundreds of vertices and

thousands of edges. To address this issue, (Shervashidze et al., 2009) proposed Graphlet

kernel exploiting frequent subgraph mining algorithms that aims to detect subgraphs that

are frequent in a given dataset of graphs. Two graphs G = (V,E) and G′ = (V ′, E′) are

15

isomorphic (denoted by G ∼= G′) if there exists a bijective mapping f : V → V ′ (called the

isomorphism function) such that (vi, vj) ∈ E if and only if (f(vi), f(vj)) ∈ E′. In graph

theory, graphlet is a small, connected, non-isomorphic, induced subgraph (that must contain

all edges between its vertices) of a given graph. Let Gn = {g(1), .., g(Nn)} be the set of

size-n graphlets. It is trivial to see that:

• n = 1: N1 = 1 and G1 contains only 1 graph that has 1 vertex.

• n = 2: N2 = 2 and G2 contains 2 graphs of 2 vertices, one graph has no edge, and the

another one has 1 edge.

• n = 3: N3 = 4, there are 4 non-isomorphic graphs with 3 vertices.

• n = 4: N4 = 11, there are 11 non-isomorphic graphs with 4 vertices.

Given a graph G, define a vector f
(n)
G of length Nn whose i-th component corresponds to the

frequency of occurrence of g(i) in G. We will call f
(n)
G the n-spectrum of G. This statistic

is the foundation of our novel graph kernel.

Definition 2.7.1 (Graphlet kernel). Given two graphs G and G′ of size greater than n, the

graphlet kernel of graphlet size n is defined as:

k
(n)
graphlet(G,G

′) , 〈f (n)G , f
(n)
G′ 〉

In order to account for differences in the sizes of the graphs, we normalize the frequency

counts f
(n)
G to probability vectors:

k
(n)
graphlet(G,G

′) ,
〈f (n)G , f

(n)
G′ 〉∥∥f (n)G

∥∥
1 ·
∥∥f (n)
G′
∥∥
1

In the precomputation step, we need to find the set Gn of Nn non-isomorphic graphs of

size n. There are
(|V |
n

)
size-n subgraphs in a graph G, computing f

(n)
G requires O(|V |n).

16

For each subgraph of G, we need to classify it into 1 element of Gn by a graph isomorphism

test that is well-known to be a NP-complete problem. Therefore, the computation time for

graphlet kernel with large n is still extremely expensive.

2.8 Random Walk Graph Kernel

Generalized random walk graph kernels are based on a simple idea: given a pair of graphs,

perform random walks on both, and count the number of matching walks (Vishwanathan

et al., 2010). First, we construct the direct product graph of two graphs.

Definition 2.8.1 (Kronecker product). Given real matrices A ∈ Rn×m and B ∈ Rp×q, the

Kronecker product A⊗B ∈ Rnp×mq is defined as:

A⊗B ,


A11B A12B . . . A1mB

...
...

...
...

An1B An2B . . . AnmB


Definition 2.8.2 (Direct product graph). Given two graphs G = (V,E) and G′ = (V ′, E′)

with |V | = n and |V ′| = n′, their direct product G× is a graph with vertex set

V× = {(vi, v′i′) : vi ∈ V, v′i′ ∈ V
′}

and edge set

E× = {((vi, v′i′), (vj , v
′
j′)) : (vi, vj) ∈ E ∧ (v′i′ , v

′
j′) ∈ E

′}

If A and A′ are the respective adjacency matrices of G and G′, then the adjacency matrix

of G× is A× = A⊗ A′.

In other words, G× is a graph over pairs of vertices from G and G′, and two vertices in

G× are neighbors if and only if the corresponding vertices in G and G′ are both neighbors.

17

Performing a random walk on the direct product graph is equivalent to performing a simul-

taneous random walk on G and G′. Let p and p′ denote the starting probability distributions

over the vertices of G and G′. Let q and q′ denote the stopping probability distributions

over the vertices of G and G′. The corresponding starting and stopping probabilities on

the direct product graph are p× = p ⊗ p′ and q× = q ⊗ q′, respectively. Let |V | = n and

|V ′| = n′. If G and G′ are edge-labeled (discrete labels), we can associate a weight matrix

W× ∈ Rnn′×nn′ with G×:

W× =
d∑
`=1

A` ⊗ A′` (2.9)

where d is the number of different labels, A` and A′` are the filtered adjacency matrices of

G and G′ by label ` (we keep the edge weights of edges with label `, and set edge-weight

0 to all other edges). In the case the graphs are unlabeled, we can set W× = A×. Let Ak×

be the probability of simultaneous length k random walks on G and G′. Let W k
× be the

similarity between simultaneous length k random walks on G and G′, measured via a kernel

function K. Given initial and stopping probability distributions p× and q× one can compute

qT×W
k
×p×, which is expected similarity between simultaneous length k random walks on G

and G′.

To define a kernel which computes the similarity between G and G′, one natural idea is

to simply sum up qT×W
k
×p× for all values of k. To achieve the convergence, we introduce

appropriate chosen non-negative coefficients µ(k) in the definition of kernel between G and

G′:

k(G,G′) ,
∞∑
k=0

µ(k)qT×W
k
×p× (2.10)

Based on the generic equation 2.10 of random walk kernel, several authors have defined

special cases in the literature.

Definition 2.8.3 (Special case 1 - (Kashima et al., 2004)). Assume that µ(k) = λk for some

18

λ > 0, we can write:

k(G,G′) ,
∞∑
k=0

λkqk×W
k
×p× = qT×(I − λW×)−1p×

Definition 2.8.4 (Special case 2 - (Gärtner et al., 2003)). Assuming uniform distributions

for the starting and stopping probabilities over the vertices of G and G′, the kernel can be

defined as counting the number of matching walks:

k(G,G′) ,
1

n2n′2

n∑
i=1

n′∑
j=1

∞∑
k=0

µ(k)[Ak×]ij

Definition 2.8.5 (Special case 3 - (Vishwanathan, 2002)). Exponential random walk kernel

can be defined as:

k(G,G′) ,
n∑
i=1

n′∑
j=1

[eλA×]ij

2.9 Message Passing Framework

2.9.1 Label Propagation Algorithm

Label propagation algorithm, or in general the Message Passing framework, has been widely

applied to various network problems ranging from PageRank for Google search engine to

learning representations for molecules with graph neural networks. The core idea can be

simply explained in words as follows. Given an input graph / network G = (V,E). Initially,

each vertex v of the graph is associated with a feature representation lv (label) or f0v (e.g.,

scalar in PageRank, vector in majority of graph neural networks, or a higher-order tensor

in Covariant Compositional Networks). This feature representation can also be called as a

message. Iteratively, at iteration `, each vertex collects / aggregates all messages of the pre-

vious iteration {f `−1v1 , .., f `−1vk
} from other vertices in its neighborhood N (v) = {v1, .., vk},

and then produces a new message f `v via some hashing function Φ(.). The graph representa-

19

tion φ(G) is obtained by aggregating all messages in the last iteration of every vertex. The

generic algorithm is described in pseudocode 8.

Algorithm 8: Label Propagation Algorithm

1 for v ∈ V do

2 f0v ← lv
3 end
4 for ` = 1→ L do
5 for v ∈ V do

6 f `v ← Φ(f `−1v1 , .., f `−1vk
) where N (v) = {v1, .., vk}

7 end

8 end

9 φ(G)← Φ(fL1 , .., f
L
|V |)

10 Use φ(G) for downstream regression / classification tasks.

2.9.2 Generic Graph Neural Network

Graph neural networks can be built based on the Message Passing framework in which the

hashing function Φ(.) at iteration ` has n` learnable parameters {W `
1 , ..,W

`
n`
}. The gradients

of the loss function with respect to these learnable parameters can be computed by Back-

Propagation algorithm, similarly to Recurrent Neural Networks. The learnable parameters

will then be optimized by Stochastic Gradient Descent (SGD) or its variants. It is required

that Φ(.) must be differentiable. The generic algorithm of a graph neural network is described

in pseudocode 9. In later sections of this chapter, we will go through a brief summary for

the field of graph neural networks with state-of-the-art algorithms including Neural Graph

Fingerprint (see section 2.10), Convolutional Neural Networks for graphs (see section 2.11),

Gated Graph Neural Networks (see section 2.12), Weisfeiler-Lehman Networks (see section

2.13), Message Passing Neural Networks (see section 2.14), Interaction Networks (see section

2.15), Molecular Graph Convolutions (see section 2.16), Deep Tensor Neural Networks (see

section 2.17), Laplacian Based Methods (see section 2.18), and Graph-based Semi-Supervised

Learning (see section 2.19).

20

Algorithm 9: Generic Graph Neural Network

1 Initialize learnable parameters {W `
1 , ..,W

`
n`
} for each layer `.

2 Initialize learnable parameters {W1, ..,Wn} for learning the graph representation.
3 for v ∈ V do

4 f0v ← lv
5 end
6 for ` = 1→ L do
7 for v ∈ V do

8 f `v ← Φ(f `−1v1 , .., f `−1vk
; {W `

1 , ..,W
`
n`
}) where N (v) = {v1, .., vk}

9 end

10 end

11 φ(G)← Φ(fL1 , .., f
L
|V |; {W1, ..,Wn})

12 Use φ(G) for downstream regression / classification tasks.

2.10 Neural Graph Fingerprint

Given an input graph G = (V,E,A), where V is the set of vertices, E is the set of edges

and matrix A ∈ {0, 1}|V |×|V | is the corresponding adjacency matrix. The goal is to learn an

unknown class of functions parameterized by {W1, ..,WL, u} in the following scheme:

1. The inputs are vectors f(v) ∈ Rd for each vertex v ∈ V . We call the vector embedding

f the multi-dimensional vertex label function.

2. We assume some learnable weight matrix W` ∈ Rd×d associating with level `-th of the

neural network. For L levels, we update the vector stored at vertex v using W`.

3. Finally, we assume some learnable weight vector u ∈ Rd. We add up the iterated

vertex labels and dot product the result with u. This can be considered as a linear

regression on top of the graph neural network.

More formally, we define the L-iteration label propagation algorithm on graph G. Let h`(v) ∈

Rd be the vertex embedding of vertex v at iteration ` ∈ {0, .., L}. At ` = 0, we initialize

h0(v) = f(v). At ` ∈ {1, .., L}, we update h`−1 to h` at a vertex v using the values on v’s

21

neighbors:

h`(v) = h`−1(v) +
1

|N (v)|
∑

w∈N (v)

h`−1(w) (2.11)

where N (v) = {w ∈ V |(v, w) ∈ E} denotes the set of adjacent vertices to v. We can

write the label propagation algorithm in a matrix form. Let H` ∈ R|V |×d denote the vertex

embedding matrix in which the v-th row of H` is the embedding of vertex v at iteration `.

Equation 2.11 is equivalent to:

H` = (I|V | +D−1 · A) ·H`−1 (2.12)

where I|V | is the identity matrix of size |V | × |V | and D is the diagonal matrix with entries

equal to the vertex degrees. Note that’s is also common to define another label propagation

algorithm via the normalized graph Laplacian (Kipf & Welling, 2017):

H` = (I|V | −D
−1/2AD−1/2) ·H`−1 (2.13)

From the label propagation algorithms, we build the simplest form of graph neural networks

Kearns et al. (2016); Duvenaud et al. (2015); Kipf & Welling (2017). Suppose that iteration

` is associated with a learnable matrix W` ∈ Rd×d and a component-wise nonlinearity func-

tion σ; in our case σ is the sigmoid function. We imagine that each iteration now becomes

a layer of the graph neural network. We assume that each graph G has input labels f and a

learning target TG ∈ R. The forward pass of the graph neural network (GNN) is described

by algorithm 10. Learnable matrices W` and learnable vector u are optimized by the Back-

Propagation algorithm as done when training a conventional multi-layer feed-forward neural

network.

To empower Neural Graph Fingerprint, we can also introduce quadratic and cubic aggrega-

22

Algorithm 10: Forward pass of GNN

Data: Given an undirected graph G = (V,E,A) where V , E and A are the set of
vertices, the set of edges and the adjacency matrix, respectively. The number
of layers is L ∈ N.

Result: Construct the corresponding neural network.
1 Initialize W0,W1, ..,WL ∈ Rd×d
2 Layer 0: L0 = σ(H0 ·W0)
3 Layer ` ∈ {1, .., L}: L` = σ(H` ·W`)

4 Compute the graph feature: fG =
∑
v∈V LL(v) ∈ Rd

5 Linear regression on layer L+ 1

6 Minimize: ‖〈u, fG〉 − TG‖22 where u ∈ Rd is learnable

tion rules that can be considered a special simplified form of tensor contractions. In detail,

the linear aggregation rule can be defined as summation of feature vectors in a neighborhood

N (v) of vertex v at level `− 1 to get a permutation invariant representation of vertex v at

level `:

φlinear` (v) =
∑

w∈N (v)

h`−1(w)

where φlinear` (v) ∈ Rd and h`−1(w) ∈ Rd are still in zeroth order representation such that

each channel of d channels is represented by a single scalar. Extending this we get the

quadratic aggregation rule for φ
quadratic
` (v):

φ
quadratic
` (v) = diag

(∑
u∈N (v)

∑
w∈N (v)

h`−1(u)h`−1(w)T
)

where h`−1(u)h`−1(w)T ∈ Rd×d is the outter-product of level (` − 1)-th representation of

vertex u and w in the neighborhood N (v). Again φ
quadratic
` (v) ∈ Rd is still in zeroth-order.

Finally, we extend to the cubic aggregation rule for φcubic` (v):

φcubic` (v) = diag

(∑
u,w,t∈N (v)

h`−1(u)⊗ h`−1(w)⊗ h`−1(t)

)

23

where h`−1(u)⊗h`−1(w)⊗h`−1(t) ∈ Rd×d×d is the tensor product of 3 rank-1 vectors, and

we obtain zeroth-order φcubic` (v) ∈ Rd by taking the diagonal of the 3rd order result tensor.

Moreover, it is not a natural idea to limit the neighborhood N (v) to only the set of adjacent

vertices of v. Another way to extend N (v) is to use different neighborhoods at different

levels / layers of the network, for example:

• At level ` = 0: N0(v) = {v}

• At level ` > 0:

N`(v) = N`−1(v) ∪
⋃

w∈B(v,1)

N`−1(w)

where B(v, 1) denotes the set of vertices are at the distance 1 from the center v.

From equation 2.12, we extend the basic GNN as follows. Let A be the normalized adja-

cency matrix (or probability transition matrix) in which Aij corresponds to the transition

probability from vertex i to vertex j (via only 1 edge). Similarly, [A
k
]ij corresponds to the

probability of a random walk starting at vertex i and ending at vertex j after k edges. Using

A
k

means for each vertex, we consider its neighborhood of distance k by a walk. We have

the extension of 2.12:

H` =

(n∑
k=0

A
k
)
·H`−1 (2.14)

where A
0 ≡ I|V | and n is the maximum distance for the neighborhood.

2.11 Learning Convolutional Neural Networks For Graphs

The idea of Learning Convolutional Neural Networks for Graphs (LCNN) from (Niepert

et al., 2016) can be summarized as flattening a graph into a fixed-size sequence. Suppose

that the maximum number of vertices over the whole dataset is N . Consider an input graph

G = (V,E). If |V | < N then we add N − |V | dummy vertices into V such that every graph

24

in the dataset has the same number of vertices. For each vertex v ∈ V , LCNN fixes the size

of its neighborhood Ω(v) as K. In the case |Ω(v)| < K, again we add K − |Ω(v)| dummy

vertices into Ω(v) to ensure that every neighborhood of every vertex has exactly the same

number of vertices. Let d : V ×V → {0, .., |V |−1} denote the shortest-path distance between

any pair of vertices in G. Let σ : V → R denote the sub-optimal hashing function obtained

from Weisfeiler-Lehman graph isomorphism test. Based on σ, we can obtain a sub-optimal

ranking of vertices. The neighborhood Ω(v) of vertex v is constructed by algorithm 11. We

Algorithm 11: Construct Neighborhood of v ∈ V
Data: Given an undirected graph G = (V,E,A) and a vertex v ∈ V .
Result: Construct the receptive field Ω(v).

1 Ω(v)← ∅
2 for l ∈ 0, .., |V | − 1 do
3 for w ∈ V do
4 if d(v, w) = l then
5 Ω(v)← Ω(v) ∪ {w}
6 end

7 end
8 if |Ω(v)| ≥ K then
9 break

10 end

11 end
12 if |Ω(v)| < K then
13 Add K − |Ω(v)| dummy vertices into Ω(v)
14 end
15 Suppose Ω(v) = {v1, .., vK}
16 Sort Ω(v)← {vi1 , .., viK} such that σ(vit) < σ(vit+1

)

17 return Ω(v)

also have algorithm 12 to flatten the input graph G as follows into a sequence of N × K

vertices. Suppose that each vertex is associated with a fixed-size input feature vector of L

channels. By the graph flattening algorithm 12, we can produce a feature matrix of size

L× (NK). We can apply the standard convolutional operation as 1D Convolutional Neural

Network on the columns of this matrix. On top of LCNN is a fully-connected layer for

regression tasks or classification tasks.

25

Algorithm 12: Flattening the graph

Data: Given an undirected graph G = (V,E).
Result: Sequence S of N ×K vertices.

1 Suppose that V = {v1, .., v|V |}
2 Sort V ← {vi1 , .., vi|V |} such that σ(vit) < σ(vit+1

)

3 Initialize sequence S ← ∅
4 for v ∈ V do
5 Add Ω(v) at the end of S
6 end
7 return S

2.12 Gated Graph Neural Networks

Long Short-Term Memory (LSTM), firstly proposed by (Hochreiter & Schmidhuber, 1997),

is a special kind of Recurrent Neural Network that was designed for learning sequential and

time-series data. LSTM is widely applied into many current state-of-the-art Deep Learn-

ing models in various aspects of Machine Learning including Natural Language Processing,

Speech Recognition and Computer Vision. Gated Recurrent Unit (GRU) was introduced by

(Kyunghyun et al., 2014) in their EMNLP 2014 paper in the context of sequential modeling.

GRU can be understood as a simplication of LSTM.

With the spirit of Language Modeling, throughout the neural network, from level 0 to level

L, all representations of a vertex v can be represented as a sequence:

f
(0)
v → f

(1)
v → ..→ f

(L)
v

in which f
(`)
v is more global than f

(`−1)
v , and f

(`−1)
v is more local than f

(`)
v . One can think

of the sequence of representations as a sentence of words as in Natural Language Processing.

We can embed GRU / LSTM at each level of our network in the sense that GRU / LSTM at

level ` will learn to choose whether to select f
(`)
v as the final representation or reuse one of

the previous level representations {f (0)v , .., f
(`−1)
v }. This idea is inherited from Gated Graph

26

Neural Networks (GGNN) of (Li et al., 2015) in ICLR 2016. The algorithm (propagation

model) of GGNN with GRU is described in pseudocode 13.

Notions:

Algorithm 13: Gated Graph Neural Network

Data: Given an undirected graph G = (V,E,A) where V , E and A are the set of
vertices, the set of edges and the adjacency matrix, respectively. The number
of layers is L ∈ N. Each vertex v ∈ V is associated with an input feature
vector xv.

Result: Construct the corresponding neural network.

1 Initialize f
(0)
v from xv for all vertex v.

2 Initialize learnable weight matrices W z, Uz, W r, Ur, W and U .
3 for ` = 1→ L do
4 for v ∈ V do

5 a
(`)
v =

∑
v′∈N (v)

f
(`−1)
v′

6 z
(`)
v = σ

(
W za

(`)
v + Uzf

(`−1)
v

)
7 r

(`)
v = σ

(
W ra

(`)
v + Urf

(`−1)
v

)
8 f

(`)
v = tanh

(
Wa

(`)
v + U

(
r
(`)
v � f

(`−1)
v

))
9 f

(`)
v = (1− z(`)v)� f (`−1)v + z

(`)
v � f

(`)
v

10 end

11 end

12 fG = tanh

(∑
v∈V

σ
(
i(f

(L)
v , xv)

)
� tanh

(
j(f

(L)
v , xv)

))
13 Use the graph feature fG for downstream tasks.

• a(`)v : Aggregated message of vertex v at level ` from its neighborhood vertices N (v).

• z(`)v , r
(`)
v : Forget and update gates of GRU.

• σ: Sigmoid function.

• f (`)v : Proposed output of vertex v at level `.

• �: Component-wise multiplication.

27

• f (`)v : Final output (representation) of vertex v at level `.

• fG: Graph representation.

• i(.), j(.): Multi-layer perceptron.

2.13 Weisfeiler-Lehman Network

Weisfeiler-Lehman Network (WLN) inspired by the Weisfeiler-Lehman isomorphism test for

labeled graphs is proposed by (Jin et al., 2017) in their NIPS 2017 paper in the context of

molecular graphs. The architecture is designed to embed the computations inherent in WL

isomorphism testing to generate learned isomorphism-invariant representations for atoms.

Let c
(L)
v be the final label of atom av where L is the number of levels/layers in WLN. The

molecular graph G = (V,E) is represented as a set {(c(L)u , buv, c
(L)
v |(u, v) ∈ E}, where buv

is the bond type between u and v. Let r be the analogous continuous relabeling function.

Then a node v ∈ G with neighbor nodes N (v), node features fv, and edge features fuv is

relabeled according to:

r(v) = τ
(
U1fv + U2

∑
u∈N (v)

τ(V [fu, fuv])
)

(2.15)

where τ(.) could be any component-wise non-linearity function. We apply this relabeling

operation iteratively to obtain context-dependent atom vectors for 1 ≤ ` ≤ L:

h
(`)
v = τ

(
U1h

(`−1)
v + U2

∑
u∈N (v)

τ(V [h
(`−1)
u , fuv])

)
(2.16)

where h
(0)
v = fv and U1, U2, V are learnable weight matrices shared across layers. The

final atom representations arise from mimicking the set comparison function in the WL

28

isomorphism test, yielding:

cv =
∑

u∈N (v)

W (0)h
(L)
u �W (1)fuv �W (2)h

(L)
v (2.17)

The set comparison here is realized by matching each rank-1 edge tensor h
(L)
u ⊗ fuv ⊗ h

(L)
v

to a set of reference edges also cast as rank-1 tensors W (0)[k] ⊗W (1)[k] ⊗W (2)[k], where

W [k] is the k-th row of matrix W . In other words, equation 2.17 could be written as:

cv[k] =
∑

u∈N (v)

〈
W (0)[k]⊗W (1)[k]⊗W (2)[k], h

(L)
u ⊗ fuv ⊗ h

(L)
v
〉

(2.18)

The resulting cv is a vector representation that captures the local chemical environment of

the atom (through relabeling) and involves a comparison against a learned set of reference

environments. The representation of the whole graph G is simply the sum over all the atom

representations, and will be used in downstream regression/classification tasks:

cG =
∑
v∈V

cv (2.19)

2.14 Message Passing Neural Networks

(Gilmer et al., 2017) reintroduced the existing Message Passing framework in the context of

neural networks with an application in quantum chemistry as estimating the solution of Den-

sity Functional Theory. Message Passing Neural Networks (MPNNs) operate on undirected

graphs G with node features xv and edge features evw. The forward pass is divided into

two phases: message passing phase and readout phase. In the message passing phase, the

iterative algorithm executes for L time steps (or layers) and is defined in terms of message

functions M` and vertex update functions U`. At layer `, each vertex v is associated with a

hidden state (vertex representation) h`v and is updated based on the message m`
v according

29

to:

m`+1
v =

∑
w∈N (v)

M`(h
`
v, h

`
w, evw) (2.20)

h`+1
v = U`(h

`
v,m

`+1
v) (2.21)

where N (v) denotes the neighbors of v in graph G. The readout phase computes a feature

vector φ(G) for the whole graph using some readout function R according to:

φ(G) = R({hLv |v ∈ G}) (2.22)

The message functions M`, vertex update functions U`, and readout function R are all

learned differentiable functions with learnable parameters (e.g., Multi-layer Perceptron or

MLP). R operates on the set of vertex representations and is required to be invariant to

vertex permutations in order for the MPNN to be permutation-invariant (invariant to graph

isomorphism). Many models in the literature (not all) can be projected into the MPNN

framework by specifying the message functions M`, vertex update functions U`, and readout

function R. In addition, MPNN can be easily extended to learn edge representations by

introducing hidden states h`evw for all edges in the graph and updating them analogously to

equations 2.20 and 2.21.

2.15 Interaction Networks

Interaction Networks (IN) proposed by (Battaglia et al., 2016) considers the graph learning

problem in which each vertex and the whole graph are associated with learning targets. In

the language of MPNN framework, the message function M(hv, hw, evw) and update function

U(hv, xv,mv) of IN are MLPs taking the inputs as a vector concatenation. The graph level

output is R = f(
∑
v∈G h

L
v) where f is an MLP which takes the sum of the final vertex

representation hLv . In the original work, the authors only considered the model with L = 1.

30

2.16 Molecular Graph Convolutions

Molecular Graph Convolutions introduced by (Kearns et al., 2016) is based on the MPNN

framework in which edge representations are updated during the message passing phase.

The vertex update function is:

U`(h
`
v,m

`+1
v) = α(W1(α(W0h

`
v),m

`+1
v)) (2.23)

where (., .) denotes the concatenation operation, α is the RELU activation. The edge update

function is:

e`+1
vw = U ′`(e

`
vw, h

`
v, h

`
w) = α(W4(α(W2e

`
vw), α(W3(h`v, h

`
w)))) (2.24)

In both equations 2.23 and 2.24, Wi are learnable weight matrices.

2.17 Deep Tensor Neural Networks

Deep Tensor Neural Networks (DTNN) proposed by (Schütt et al., 2017) focuses on phys-

ical systems of particles that can be interpreted as complete graphs. DTNN computes the

message from atom w to atom v by:

M` = tanh
(
W fc((W cfh`w + b1)� (W dfevw + b2))

)
(2.25)

where W fc, W cf , and W df are matrices and b1, b2 are bias vectors. The vertex update

function is:

h`+1
v = U`(h

`
v,m

`+1
v) = h`v +m`+1

v (2.26)

The readout function is defined as:

φ(G) =
∑
v∈G

NN(hLv) (2.27)

31

where NN(hLv) is a single hidden layer neural network (fully-connected) taking input as the

hidden state of atom v from the last layer.

2.18 Laplacian Based Methods

Family of Laplacian based models defined in (Defferrard et al., 2016), (Bruna et al., 2014),

and (Kipf & Welling, 2017) can be seen as instances of the MPNN framework. These models

generalize the notion of convolutions on a general graph G with N vertices. Given an

adjacency matrix A ∈ RN×N . The graph Laplacian is defined as:

L = I −D−1/2AD−1/2 (2.28)

where D is the diagonal degree matrix. Let V denote the eigenvectors of L, ordered by

eigenvalue. Let σ be a real-valued nonlinearity. The fundamental operation in this family of

models is the Graph Fourier Transformation. We define an operation which transforms an

input vector x of size N × d1 to an output vector y of size N × d2 (we transform each vertex

representation of size d1 into size d2):

yj = σ

(d1∑
i=1

V Fi,jV
Txi

)
(j ∈ {1, .., d2}) (2.29)

The matrices Fi,j are all diagonal N×N matrices and contain all of the learnable parameters

in the layer. Define the rank 4 tensor L̂ of dimension N × N × d1 × d2 where L̂v,w,i,j =

(V Fi,jV
T)v,w in which v, w are the indices corresponding to vertices. Let L̂v,w denote the

d1 × d2 dimensional matrix where (L̂v,w)i,j = L̂v,w,i,j . Equation 2.29 can be written as:

yv,j = σ

(d1,N∑
i=1,w=1

L̂v,w,i,jxw,i

)
(2.30)

32

or in short:

yv,: = σ

(N∑
w=1

L̂v,wxw

)
(2.31)

We relabel yv as h`+1
v and xw as h`w. In the language of the MPNN framework, the message

update function can be written as:

m`+1
v = M(h`v, h

`
w) = L̂v,wh

`
w (2.32)

and the vertex update function can be written as:

h`+1
v = U(h`v,m

`+1
v) = σ(m`+1

v) (2.33)

2.19 Graph-based Semi-Supervised Learning

Graph-based Semi-Supervised Learning (SSL) was proposed by (Ravi & Diao, 2016) in the

context of applying streaming approximation algorithm into finding soft assignment of labels

in a semi-supervised manner to each vertex in a large-scale graph G = (V,E,W), where V

is the set of vertices, E is the set of edges and W = (wuv) is the edge weight matrix. Let

Vl and Vu be the sets of labeled and unlabeled vertices, respectively. Let n = |V |, nl = |Vl|

and nu = |Vu|. We use diagonal matrix S to record the seeds, in which sv,v = 1 if the node

v is a seed. Let L represent the output label set of size m. Matrix Y ∈ Rn×m records the

training label distribution for the seeds where Yvl = 0 for v ∈ Vu. Matrix Ŷ ∈ Rn×m is

the label distribution assignment matrix for all vertices. The graph-based SSL learns Ŷ by

propagating the information Y on graph G. To obtain the label distribution Ŷ , we minimize

the following convex objective function:

C(Ŷ) = µ1
∑
v∈Vl

svv‖Ŷv − Yv‖22 + µ2
∑

v∈V,u∈N (v)

wvu‖Ŷv − Ŷu‖2 + µ3
∑
v∈V
‖Ŷv − U‖22 (2.34)

33

with a constraint:
L∑
l=1

Ŷvl = 1 (∀v ∈ V) (2.35)

where N (v) denotes the neighborhood of vertex v, U is the uniform prior distribution over all

labels, and µ1, µ2, µ3 are constant hyper-parameters. The objective function 2.34 satisfies

the following:

• First term: For all labeled vertices (seeds), the label distribution should be close to

the given label assignment.

• Second term: Close vertices should share similar labels.

• Third term: The label distribution should be close to the prior uniform distribution.

In addition, the objective function allows efficient iterative optimization algorithm that is

repeated until convergence, in particular Jacobi iterative algorithm which defines the ap-

proximate solution at the (i+ 1)-th iteration based on the solution of the i-th iteration:

Ŷ
(i+1)
vl =

1

Mvl
(µ1svvYvl + µ2

∑
u∈N (v)

wvuŶ
(i)
ul + µ3Ul) (2.36)

Mvl = µ1svv + µ2
∑

u∈N (v)

wvu + µ3 (2.37)

where Ul = 1/m which is the uniform distribution on label l. Ŷ
(0)
vl is initialized with seed

label weight Yvl if v ∈ Vl, and uniform distribution 1/m if v ∈ Vu. This optimization method

is called the EXPANDER algorithm.

34

CHAPTER 3

COVARIANT COMPOSITIONAL NETWORKS FOR

LEARNING GRAPHS

This chapter is based on Covariant Compositional Networks presented by (Kondor et al.,

2018) and (Hy et al., 2018).

3.1 Compositional Networks

In this section, we introduce a general architecture called compositional networks (comp-

nets) for representing complex objects as a combination of their parts and show that graph

neural networks can be seen as special cases of this framework.

Definition 3.1.1. Let G be an object with n elementary parts (atoms) E = {e1, .., en}. A

compositional scheme for G is a directed acyclic graph (DAG) M in which each node ν

is associated with some subset Pν of E (these subsets are called parts of G) in such a way

that:

1. In the bottom level, there are exactly n leaf nodes in which each leaf node ν is associated

with an elementary atom e. Then Pν contains a single atom e.

2. M has a unique root node νr that corresponds to the entire set {e1, .., en}.

3. For any two nodes ν and ν′, if ν is a descendant of ν′, then Pν is a subset of Pν′ .

One can express message passing neural networks in this compositional framework. Con-

sider a graph G = (V,E) in an L + 1 layer network. The set of vertices V is also the set

of elementary atoms E . Each layer of the graph neural network (except the last) has one

node denoted by ν and one feature tensor denoted by f for each vertex of the graph G. The

compositional network N is constructed as follows:

35

1. In layer ` = 0, each leaf node ν0i represents the single vertex P0
i = {i} for i ∈ V . The

corresponding feature tensor f0i is initialized by the vertex label li.

2. In layers ` = 1, 2, .., L, node ν`i is connected to all nodes from the previous level

that are neighbors of i in G. The children of ν`i are {ν`−1j |j : (i, j) ∈ E}. Thus,

P`i =
⋃
j:(i,j)∈E P

`−1
j . The feature tensor f `i is computed as an aggregation of feature

tensors in the previous layer:

f `i = Φ({f `−1j |j ∈ P`i })

where Φ is some aggregation function.

3. In layer ` = L + 1, we have a single node νr that represents the entire graph and

collects information from all nodes at level ` = L:

Pr ≡ V

fr = Φ({fLi |i ∈ Pr})

In the following section, we will refer ν as the neuron, and P and f as its corresponding

receptive field and activation, respectively.

3.2 Covariance

Standard message passing neural networks used summation or averaging operation as the

aggregation function Φ of neighboring vertices’ feature tensors. That would lead to loss of

topological information. Therefore, we propose permutation covariance requirement for

our neural activations f defined as follows.

Definition 3.2.1. For a graph G with the comp-net N , and an isomorphic graph G′ with

36

comp-net N ′, let ν be any neuron of N and ν′ be the corresponding neuron of N ′. Assume

that Pν = (ep1 , .., epm) while Pν′ = (eq1 , .., eqm), and let π ∈ Sm be the permutation that

aligns the orderings of the two receptive fields, i.e., for which eqπ(a) = epa . We say that N

is covariant to permutations if for any π, there is a corresponding function Rπ such that

fν′ = Rπ(fν).

The definition can be understood as permuting the vertices of graph G will change the

activations of its vertices in a manner that is controlled by some fixed function Rπ that

depends on the permuation π.

3.3 First order Message Passing

We will call the standard message passing as the zero’th order message passing in which

each vertex is represented by a feature vector of length c (or c channels) which was not

expressive enough to capture the structure of its local neighborhood. Hence, we propose

first order message passing by representing each vertex v by a matrix: f `v ∈ R|P`v|×c,

each row of this feature matrix corresponds to a vertex in the neighborhood of v.

Definition 3.3.1. We say that ν is a first order covariant node in a comp-net if under

the permutation of its receptive field Pν by any π ∈ S|Pν |, its activation transforms as

fν 7→ Pπfν , where Pπ is the permutation matrix:

[Pπ]i,j ,


1, π(j) = i

0, otherwise

(3.1)

The transformed activation fν′ will be:

[fν′]a,s = [fν]π−1(a),s

37

where s is the channel index.

3.4 Second order Message Passing

Instead of representing a vertex with a feature matrix as done in first order message passing,

we can represent it by a 3rd order tensor f `v ∈ R|P`v|×|P`v|×c and require these feature tensors

to transform covariantly in a similar manner:

Definition 3.4.1. We say that ν is a second order covariant node in a comp-net if

under the permutation of its receptive field Pν by an π ∈ S|Pν |, its activation transforms as

fν 7→ PπfνP
T
π . The transformed activation fν′ will be:

[fν′]a,b,s = [fν]π−1(a),π−1(b),s

where s is the channel index.

3.5 Third and higher order Message Passing

The similar pattern is applied further for third, forth, and general, k’th order nodes in the

comp-net, in which the activations are k’th order tensors, transforming under permutations

as fν 7→ fν′ :

[fν′]i1,i2,..,ik,s = [fν]π−1(i1),π−1(i2),..,π−1(ik),s
(3.2)

All but the channel index s (the last index) is permuted when we go from fν to fν′ after some

permutation π of the receptive field Pν . In general, we will call any quantiy which transforms

according to this equation (ignoring the channel index) as a k’th oder P-tensor. Since

scalars, vectors and matrices can be considered as zeroth, first and second order tensors,

respectively, the following definition covers the previous definitions as special cases.

Definition 3.5.1. We say that ν is a k’th order covariant node in a comp-net if the

38

corresponding activation fν is a k’th order P-tensor, i.e., it transforms under permutations

of Pν according to 3.2.

3.6 Tensor aggregation rules

The previous sections precribed how activations must transform in comp-nets of different

orders. Tensor arithmetic provides a compact framework for deriving the general form of

the permutation covariant operations. For convenience, we denote tensors as capital letters.

Since the activation f is a tensor in general, we will denote it by capital F in the following

sections. Recall the four basic operations that can be applied to tensors:

1. The tensor product of A ∈ T k with B ∈ T p yields a tensor C = A ⊗ B ∈ T p+k

where:

Ci1,i2,..,ik+p = Ai1,i2,..,ikBik+1,ik+2,..,ik+p

2. The contraction of A ∈ T k along the pair of dimensions {a, b} (assuming a < b)

yields a k − 2 order tensor:

Ci1,i2,..,ik =
∑
j

Ai1,..,ia−1,j,ia+1,..,ib−1,j,ib+1,..,k

where we assume that ia and ib have been removed from the indices of C. Using

Einstein notation, this can be written much more compactly as

Ci1,i2,..,ik = Ai1,i2,..,ikδ
ia,ib

where δia,ib is the diagonal tensor with δi,j = 1 if i = j and 0 otherwise. We also gener-

alize contractions to (combinations of) larger sets of indices {{a11, .., a
1
p1}, {a

2
1, .., a

2
p2}, .., {a

q
1, .., a

q
pq}}

39

as the (k −
∑
j pj) order tensor:

C... = Ai1,i2,..,ikδ
a11,..,a

1
p1δ

a21,..,a
2
p2 · · · δa

q
1,..,a

q
pq

3. The projection of a tensor is defined as a special case of contraction:

A ↓a1,..,ap= Ai1,i2,..,ikδ
ia1δia2 · · · δiak

where projection of A among indices a1, .., ap is denoted as A ↓a1,..,ap .

Proposition 3.6.1 shows that all of the above operations as well as linear combinations pre-

serve permutation covariance property of P-tensors. Therefore, they can be combined within

the aggregation function Φ.

Proposition 3.6.1. Assume that A and B are k’th and p’th order P-tensors, respectively.

Then:

1. A⊗B is a (k + p)’th order P-tensors.

2. Ai1,i2,..,ikδ
a11,..,a

1
p1 · · · δa

q
1,..,a

q
pq is a (k −

∑
j pj)’th order P-tensor.

3. If A1, .., Au are k’th order P-tensors and α1, .., αu are scalars, then
∑
j αjAj is a

k’th order P-tensor.

Propositions 3.6.2, 3.6.3 and 3.6.4 show that tensor promotion, concatenation and pro-

duction preverse permutation covariance, and hence can be applied within Φ.

Proposition 3.6.2. Assume that node ν is a descendant of node ν′ in a comp-net N . The

corresponding receptive fields are Pν = (ep1 , .., epm) and Pν′ = (eq1 , .., eqm′). Remark that

40

Pν ⊆ Pν′. Define χν→ν
′ ∈ Rm×m′ as an indicator matrix:

χν→ν
′

i,j =


1, qj = pi

0, otherwise

(3.3)

Assume that Fν is a k’th order P-tensors with respect to permutations (ep1 , .., epm). We have

the promoted tensor:

[Fν→ν′]i1,..,ik = χν→ν
′

i1,j1
· · · χν→ν

′
ik,jk

[Fν]j1,..,jk (3.4)

is a k’th oder P-tensor with respect to permutations of (eq1 , .., eqm′).

In equation 3.4, node ν′ promotes P-tensors from its children nodes ν with respect to

its own receptive field Pν′ by the appropriate χν→ν
′

matrix such that all promoted tensors

Fν→ν′ have the same size. Remark that promoted tensors are padded with zeros.

Proposition 3.6.3. Let nodes ν1, .., νn be the children of ν in a message passing type

comp-net (the corresponding vertices of these nodes are in Pν) with corresponding k’th order

tensor activations Fν1, .., Fνn. Let

[Fνt→ν]i1,..,ik = [χνt→ν]i1,j1 · · · [χ
νt→ν]ik,jk [Fνt]j1,..,jk

be the promoted tensors (t ∈ {1, .., n}). We concatenate or stack them into a (k + 1)’th

order tensor:

[F ν]t,i1,..,ik = [Fνt→ν]i1,..,ik

Then the concatenated tensor F ν is a (k + 1)’th order P-tensor of ν.

The restriction of the adjacency matrix to Pν is a second order P-tensor. Proposition

3.6.4 gives us a way to explicitly add topolocical information to the activation.

41

Proposition 3.6.4. If Fν is a k’th order P-tensor at node ν, and A ↓Pν is the restriction

of the adjacency matrix to Pν , then Fν ⊗ A ↓Pν is a (k + 2)’th order P-tensor.

3.7 Second order tensor aggregation with the adjacency matrix

The first nontrivial tensor contraction case occurs when Fν1→ν , .., Fνn→ν are second order

tensors, and we multiply with A ↓Pν , since in that case T is 5th order (6th order if we

consider the channel index), and can be contracted down to second order in the following

ways:

1. The 1+1+1 case contracts T in the form Ti1,i2,i3,i4,i5δ
ia1δia2δia3 , i.e., it projects T

down along 3 of its 5 dimensions. This can be done in
(5
3

)
= 10 ways.

2. The 1+2 case contracts T in the form Ti1,i2,i3,i4,i5δ
ia1δia2 ,ia3 , i.e., it projects T along

one dimension, and contracts it along two others. This can be done in 3
(5
3

)
= 30 ways.

3. The 3 case is a single 3-fold contraction Ti1,i2,i3,i4,i5δ
ia1 ,ia2 ,ia3 . This can be done in(5

3

)
= 10 ways.

Totally, we have 50 different contractions that result in 50 times more channels. In practice,

we only implement 18 contractions for efficiency.

3.8 Architecture

In this section, we will describe how our compositional architecture is a generalization of

previous works with an extension to higher-order representations.

Recent works on graph neural networks Duvenaud et al. (2015); Kipf & Welling (2017);

Li et al. (2015); Gilmer et al. (2017) can all be seen as instances of zeroth order message

passing where each vertex representation is a vector (1st order tensor) of c channels in which

42

each channel is represented by a scalar (zeroth order P-tensor). This results in the loss of

certain structural information during the message aggregation, and the network loses the

ability to learn topological information of the graph’s multiscale structure.

Our architecture represents generalized vertex representations with higher-order tensors

which can retain this structural information. There is significant freedom in the choice

of this tensor structure, and we now explore two examples, corresponding to the tensor

structures, which we call “first order CCN” and “second order CCN”, respectively.

We start with an input graph G = (V,E) and construct a network with L+ 1 levels, indexed

from 0 (input level) to L (top level). Initially, each vertex v is associated with an input

feature vector lv ∈ Rc where c denotes the number of channels. The receptive field of vertex

v at level ` is denoted by P`v and is defined recursively as follows:

P`v ,


{v}, ` = 0⋃
(u,v)∈E

P`u, ` = 1, . . . , L
(3.5)

The vertex representation of vertex v at level ` is denoted by a feature tensor F `v . In zeroth

order message passing, F `v ∈ Rc is a vector of c channels. Let N be the number of vertices

in P`v. In the first order CCN, each vertex is represented by a matrix (second order ten-

sor) F `v ∈ RN×c in which each row corresponds to a vertex in the receptive field P`v, and

each channel is represented by a vector (first order P-tensor) of size N . In the second order

CCN, F v` is promoted into a third order tensor of size N × N × c in which each channel

has a second order representation (second order P-tensor). In general, we can imagine a

series of feature tensors of increasing order for higher order message passing. Note that the

components corresponding to the channel index does not transform as a tensor, whereas the

43

remaining indices do transform as a P-tensor. The tensor F `v transforms in a covariant way

with respect to the permutation of the vertices in the receptive field P`v.

Now that we have established the structure of the high order representations of the ver-

tices at each site, we turn to the task of constructing the aggregation function Φ from one

level to another. The key to doing this in a way that preserves covariance is to “promote-

stack-reduce” the tensors as one traverses the network at each level.

We start with the promotion step. Recall that we want to accumulate information at higher

levels based upon the receptive field of a given vertex. However, it is clear that not all ver-

tices in the receptive field have the same size tensors. To account for this, we use an index

function χ that ensures all tensors are the same size by padding with zeros when necessary.

At level `, given two vertices v and w such that P`−1w ⊆ P`v, the permutation matrix χw→v`

of size |P`v| × |P`−1w | is defined as in Prop. 3.6.2. In CCN 1D & 2D, the resizing is done by

(broadcast) matrix multiplication χ ·F `−1w and χ×F `−1w ×χT where χ = χw→v` , respectively.

Denote the resized tensor as F `w→v. (See step 7 in algorithm 15.) This promotion is done

for all tensors of every vertex in the receptive field, and stacked/concatenated into a tensor

one order higher. (See Prop. 3.6.3. Notice that the stacked index has the same size as the

receptive field.) From here, as in CCN 2D, we can compute the tensor product of this higher

order tensor with the restricted adjacency matrix (subject to the receptive field) and obtain

an even higher order tensor. (See Prop. 3.6.4.) Finally, we can reduce the higher order

tensor down to the expected size of the vertex representation using the tensor contractions

discussed in Prop. 3.6.1.

We include all possible tensor contractions, which introduces additional channels. To avoid

an exponential explosion in the number of channels with deep networks, we use a learnable

44

set of weights that reduces the number of channels to a fixed number c. These weights are

learnable through backpropagation. To complete our construction of Φ, this tensor is passed

through an element-wise nonlinear function Υ such as a ReLU to form the feature tensor for

a given vertex at the next level. (See steps 4 and 9 in algorithm 15.)

Finally, at the output of the network, we again reduce the vertex representations F `v into a

vector of channels Θ(F `v) = F `v ↓i1,..,ip where i1, .., ip are the non-channel indices. (See Prop.

3.6.1.) We sum up all the reduced vertex representations of a graph to get a single vector

which we use as the graph representation. This final graph representation can then be used

for regression or classification with a fully connected layer. In addition, we can construct a

richer graph representation by concatenating the shrunk representation at each level. (See

steps 12, 13 and 14 in algorithm 15.)

The development of higher order CCNs require efficient tensor algorithms to successively

train the network. A fundamental roadblock we face in implementing CCNs is that fifth

or sixth order tensors are often too large to be held in memory. To address this challenge,

we do not construct the tensor product explicitly. Instead we introduce a virtual indexing

system for a virtual tensor that computes the elements of tensor only when needed given

the indices. This allows us to implement the tensor contraction operations efficiently with

GPUs on virtual tensors.

For example, consider the operations in step 8 in algorithm 15. This requires perform-

ing contractions over several indices on the two inputs F = {F `w→v|w ∈ P`v}, in which

Fi1 = F `wi1→v
is of size |P`v| × |P`v| × c, and A = A ↓P`v . One naive strategy would be to

stack all tensors in F into a new object and then directly compute the tensor product with

A to form a sixth order tensor, given by a tuple of indices (i1, i2, i3, i4, i5, i6). Instead, the

45

corresponding tensor element is computed on-the-fly through simple multiplication:

Ti1,i2,i3,i4,i5,i6 = (Fi1)i2,i3,i6 · Ai4,i5 (3.6)

where i6 is the channel index.

In our experiments of CCN 2D, we implement 18 different contractions (see Prop. 3.7)

such that each contraction results in a |P`v|× |P`v|× c tensor. The result of step 8 is F
v
` with

18 times more channels.

Algorithm CCN 1D is described in pseudocode 14. Figure 3.1 shows a visualization of

CCN 1D’s tensors on C2H4 molecular graph. Vertices e3 and e4 are carbon (C) atoms, and

vertices e1, e2, e5 and e6 are hydrogen (H) atoms. Edge (e3, e4) is a double bond (C, C)

between two carbon atoms. All other edges are single bonds (C, H) between a carbon atom

and a hydrogen atom. In the bottom layer ` = 0, the receptive field of every atom e only

contains itself, thus its representation F 0
e is a tensor of size 1 × c where c is the number of

channels (see figure 3.1(a)). In the first layer ` = 1, the receptive field of a hydrogen atom

contains itself and the neighboring carbon atom (i.e., P1
e1 = {e1, e3}), thus tensors for hydro-

gen atoms are of size 2× c. Meanwhile, the receptive field of a carbon atom contains itself,

the another carbon and two other neighboring hydrogens (i.e., P1
e3 = {e1, e2, e3, e4}) and

P1
e4 = {e3, e4, e5, e6}), thus F 1

e3 , F
1
e4 ∈ R4×c (see figure 3.1(b)). In all later layers denoted

` =∞, the receptive field of every atom contains the whole graph (in this case, 6 vertices in

total), thus F∞e ∈ R6×c (see figure 3.1(c)).

Algorithm CCN 2D is described in pseudocode 15. Figure 3.2 shows a visualization of

CCN 2D’s tensors on C2H4 molecular graph. In the bottom layer ` = 0, |P0
e | = 1 and

46

Figure 3.1: CCN 1D on C2H4 molecular graph

Algorithm 14: First-order CCN

1 Input: G, lv, L

2 Parameters: Matrices W0 ∈ Rc×c, W1, ..,WL ∈ R(2c)×c and biases b0, .., bL. For
CCN 1D, we only implement 2 tensor contractions.

3 F 0
v ← Υ(W0lv + b01) (∀v ∈ V)

4 Reshape F 0
v to 1× c (∀v ∈ V)

5 for ` = 1, .., L do
6 for v ∈ V do

7 F `w→v ← χ× F `−1w where χ = χ`w→v (∀w ∈ P`v)
8 Concatenate the promoted tensors in {F `w→v|w ∈ P`v} and apply 2 tensor

contractions that results in F
`
v ∈ R|P`v|×(2c).

9 F `v ← Υ(F
`
v ×W` + b`1)

10 end

11 end

12 F ` ←
∑
v∈V Θ(F `v) (∀`)

13 Graph feature F ←
L⊕̀
=0
F ` ∈ R(L+1)c

14 Use F for downstream tasks.

47

Figure 3.2: CCN 2D on C2H4 molecular graph

F 0
e ∈ R1×1×c for every atom e (see figure 3.2(a)). In the first layer ` = 1, |P1

e | = 2 and

F 1
e ∈ R2×2×c for hydrogen atom e ∈ {e1, e2, e5, e6}, and for carbon atoms |P1

e3 | = |P
1
e4 | = 4

and F 1
e3 , F

1
e4 ∈ R4×4×c (see figure 3.2(b)). In all other layers ` = ∞, P∞e ≡ V and F∞e ∈

R6×6×c (∀e) (see figure 3.2(c)).

Algorithm 15: Second-order CCN

1 Input: G, lv, L

2 Parameters: Matrices W0 ∈ Rc×c, W1, ..,WL ∈ R(18c)×c and biases b0, .., bL.

3 F 0
v ← Υ(W0lv + b01) (∀v ∈ V)

4 Reshape F 0
v to 1× 1× c (∀v ∈ V)

5 for ` = 1, .., L do
6 for v ∈ V do

7 F `w→v ← χ× F `−1w × χT where χ = χ`w→v (∀w ∈ P`v)
8 Apply virtual tensor contraction algorithm (Sec.3.7) with inputs

{F `w→v|w ∈ P`v} and the restricted adjacency matrix A ↓P`v to compute

F
`
v ∈ R|P`v|×|P`v|×(18c).

9 F `v ← Υ(F
`
v ×W` + b`1)

10 end

11 end

12 F ` ←
∑
v∈V Θ(F `v) (∀`)

13 Graph feature F ←
L⊕̀
=0
F ` ∈ R(L+1)c

14 Use F for downstream tasks.

Figure 3.3 shows the difference among zeroth, first and second order message passing

(see from left to right) with layer ` ≥ 2. In the zeroth order, the vertex representation is

always a vector of c channels (see figure 3.3(a)). In the first and second order (see figures

48

Figure 3.3: Zeroth, first and second order message passing

3.3(b)(c)), the vertex representation is a matrix of size 6 × c or a 3rd order tensor of size

6 × 6 × c in which each channels is represented by a vector of length 6 or a matrix of size

6× 6, respectively. With higher orders, CCNs can capture more topological information.

49

CHAPTER 4

GRAPHFLOW DEEP LEARNING FRAMEWORK IN

C++/CUDA

4.1 Motivation

Many Deep Learing frameworks have been proposed over the last decade. Among them,

the most successful ones are TensorFlow Abadi et al. (2016), PyTorch Paszke et al. (2017),

Mxnet Chen et al. (2016), Theano Al-Rfou et al. (2016). However, none of these frameworks

are completely suitable for graph neural networks in the domain of molecular applications

with high complexity tensor operations due to the following reasons:

1. The current frameworks are not flexible for an implementation of the Virtual Index-

ing System (see section 3.8) for efficient and low-cost tensor operations.

2. The most widely used Deep Learning framework - TensorFlow is incapable of con-

structing dynamic computation graphs during run time that is essential for graph

neural networks which are dynamic in size and structure. To get rid of static compu-

tation graphs, Google Research has been proposed an extension of TensorFlow that

is TensorFlow-fold but has not completely solved the flexibility problem Looks et al.

(2017).

To address all these drawbacks, we implement from scratch our GraphFlow Deep Learn-

ing Framework in C++11 with the following criteria:

1. Supports symbolic/automatic differentiation that allows users to construct any kind

of neural networks without explicitly writing the complicated back-propagation code

each time.

50

2. Supports dynamic computation graphs that is fundamental for graph neural networks

such that partial computation graph is constructed before training and the rest is

constructed during run time depending on the size and structure of the input graphs.

3. Supports sophisticated tensor/matrix operations with Virtual Indexing System.

4. Supports tensor/matrix operations implemented in CUDA for computation accelera-

tion by GPUs.

4.2 Overview

GraphFlow is designed with the philosophy of Object Oriented Programming (OOP). There

are several classes divided into the following groups:

1. Data structures: Entity, Vector, Matrix, Tensor, etc. Each of these components

contain two arrays of floating-point numbers: value for storing the actual values,

gradient for storing the gradients (that is the partial derivative of the loss function) for

the purpose of automatic differentiation. Also, in each class, there are two functions:

forward() and backward() in which foward() to evaluate the network values and

backward() to compute the gradients. Based on the OOP philosophy, Vector inherits

from Entity, and both Matrix and Tensor inherit from Vector, etc. It is essentially

important because polymorphism allows us to construct the computation graph of the

neural network as a Directed Acyclic Graph (DAG) of Entity such that forward()

and backward() functions of different classes can be called with object casting.

2. Operators: Matrix Multiplication, Tensor Contraction, Convolution, etc.

For example, the matrix multiplication class MatMul inherits from Matrix class, and

has 2 constructor parameters in Matrix type. Suppose that we have an object A of

type MatMul that has 2 Matrix inputs B and C. In the forward() pass, A computes its

51

value as A = B * C and stores it into value array. In the backward() pass, A got the

gradients into gradient (as flowing from the loss function) and increase the gradients

of B and C.

It is important to note that our computation graph is DAG and we find the topo-

logical order to evaluate value and gradient in the correct order. That means A

-> forward() is called after both B -> forward() and C -> forward(), and A ->

backward() is called before both B -> backward() and C -> backward().

3. Optimization algorithms: Stochastic Gradient Descent (SGD), SGD with Momen-

tum, Adam, AdaGrad, AdaMax, AdaDelta, etc. These algorithms are implemented

into separate drivers: these drivers get the values and gradients of learnable param-

eters computed by the computation graph and then optimize the values of learnable

parameters algorithmically.

4. Neural Networks objects: These are classes of neural network architectures imple-

mented based on the core of GraphFlow including graph neural networks (for example,

CCN, NGF and LCNN), convolutional neural networks, recurrent neural networks (for

example, GRU and LSTM), multi-layer perceptron, etc. Each class has multiple sup-

porting functions: load the trained learnable parameters from files, save them into files,

learning with mini-batch or without mini-batch, using multi-threading or not, etc.

Figure 4.1 describes the general structure of GraphFlow Deep Learning framework.

4.3 Parallelization

4.3.1 Efficient Matrix Multiplication In GPU

Multiple operations of a neural network can be expressed as matrix multiplication. Having

a fast implementation of matrix multiplication is extremely important for a Deep Learning

52

Figure 4.1: GraphFlow overview

GraphFlow Neural Network Objects CNN

LSTM/GRU

RNN

Graph Neural Network

Dynamic Com-
putation Graph

Optimization Algorithms

Momentum SGD
Stochastic Gra-
dient Descent

Adam, AdaMax,
AdaDelta

OperatorsTensor Contraction

Convolution

Matrix Multiplication Data Structures

MatrixVector Tensor

framework. We have implemented two versions of matrix multiplication in CUDA: one using

naive kernel function that accesses matrices directly from the global memory of GPU, one

is more sophisticated kernel function that uses shared memory in which the shared memory

of each GPU block contains 2 blocks of the 2 input matrices to avoid latency of reading

from the GPU global memory. Suppose that each GPU block can execute up to 512 threads

concurrently, we select the block size as 22 x 22. The second approach outperforms the first

approach in our stress experiments.

4.3.2 Efficient Tensor Contraction In CPU

Tensor stacking, tensor product, tensor contraction play the most important role in the

success of Covariant Compositional Networks. Among them, tensor contraction is the most

difficult operation to implement efficient due to the complexity of its algorithm. Let consider

the second-order tensor product:

F `v ⊗ A ↓P`v

53

where F `v ∈ R|P`v|×|P`v|×|P`v|×c is the result from tensor stacking operation of vertex v at level

`, A ↓P`v∈ {0, 1}
|P`v|×|P`v| is the restricted adjacency matrix to the receptive field P`v, and c

is the number of channels. With the Virtual Indexing System, we do not compute the full

tensor product result, indeed we compute some elements of it when necessary.

The task is to contract/reduce the tensor product F `v ⊗ A ↓P`v of 6th order into 3rd or-

der tensor of size |P`v| × |P`v| × c. As discussed section 3.7, there are 18 ways of contractions

in the second-order case. Suppose that our CPU has N < 18 cores, assuming that we can run

all these cores concurrently, we launch N threads such that each thread processes d18/Ne

contractions. There can be some threads doing more or less contractions.

One challenge is about synchronization: we have to ensure that the updating operations

are atomic ones.

4.3.3 Efficient Tensor Contraction In GPU

The real improvement in performance comes from GPU. Thus, in practice, we do not use

the tensor contraction with multi-threading in CPU. Because we are experimenting on Tesla

GPU K80, we have an assumption that each block of GPU can launch 512 threads and a

GPU grid can execute 8 concurrent blocks. In GPU global memory, F `v is stored as a float

array of size |P`v| × |P`v| × |P`v| × c, and the reduced adjacency matrix A ↓P`v is stored as a

float array of size |P`v| × |P`v|. We divide the job to GPU in such a way that each thread

processes a part of F `v and a part of A ↓P`v . We assign the computation work equally among

threads based on the estimated asymptotic complexity.

Again, synchronization is also a real challenge: all the updating operations must be the

atomic ones. However, having too many atomic operations can slow down our concurrent

54

algorithm. That is why we have to design our GPU algorithm with the minimum number of

atomic operations as possible. We obtain a much better performance with GPU after careful

consideration of all factors.

4.3.4 CPU Multi-threading In Gradient Computation

Given a minibatch of M training examples, it is a natural idea that we can separate the

gradient computation jobs into multiple threads such that each thread processes exactly one

training example at a time before continuing to process the next example. We have to make

sure that there is no overlapping among these threads. After completing the gradient com-

putations from all these M training examples, we sum up all the gradients, average them

by M and apply an variant of Stochastic Gradient Descent to optimize the neural networks

before moving to the next minibatch.

Technically, suppose that we can execute T threads concurrent at a time for gradient com-

putation jobs. Before every training starts, we initialize exactly T identical dynamic com-

putation graphs by GraphFlow. Given a minibatch of M training examples, we distribute

the examples to T thread, each thread uses a different dynamic computation graph for its

gradient computation job. By this way, there is absolutely no overlapping and our training

is completely synchronous.

The minibatch training with CPU multi-threading is described by figure 4.2.

4.3.5 Reducing data movement between GPU and main memory

One challenge of using GPU is that we must move the data from the main memory to the

GPU before performing any computation. This could prevent us from achieving high effi-

cient computation since data movement takes time and the GPU cannot be used until this

55

Figure 4.2: CPU multi-threading for gradient computation

Graph 1

Graph 2

...

Graph N

Mini-Batch

Thread 1

Thread 2

...

Thread 8

Gradient 1

Gradient 2

...

Gradient N

Stochastic
Gradient
Descent

process completes. We solve this problem by detaching data movement from computation.

We introduce two new functions, upload and download, let them handle the data movement

to and from the GPU, respectively. The forward and backward functions only perform com-

putation. This approach makes the framework more flexible as it can dynamically determine

which parts of the data should be moved and when to move them. Therefore, the framework

has more options when scheduling computation flows of the network, enabling better GPU

utilization as well as avoiding unnecessary communication caused by poor implementations.

Figure 4.3 shows an example of our approach. On the left of the figure is the C++ for

computing matrix computation of A×B ×C. The execution of the code is depicted on the

right side. Firstly, the framework copies necessary data from main memory to GPU’s global

memory by calling upload function. The result and gradient is then generated after the calls

to forward() and backward() functions. Those functions work in the way similar to what

we introduced in previous sections except that the computation is performed entirely by the

GPU. In the end, download function is called to move the computation results back to the

main memory. Clearly, data movement occurs only during the initialization and finalization

of the whole process, there is no communication between GPU and main memory during the

computation so the performance would be improved significantly.

56

Figure 4.3: Example of data flow between GPU and main memory

A

B

C

AB

ABC

A

B

C

A’s gradient

B’s gradient

C’ gradient

AxBxC

GPUMain memory

In
pu

t
O

ut
pu

t

Matrix * A = new Matrix(m, n);
Matrix * B = new Matrix(m, p);
Matrix * C = new Matrix(p, q);
MatMul * AB = new Matrix(A, B);
MalMul * ABC = new Matrix(AB, C);
ABC->upload();
ABC->forward();
ABC->backward();
ABC->download();

download

upload
forward
backward

4.3.6 Source code

The source code of GraphFlow Deep Learning framework can be found at:

https://github.com/HyTruongSon/GraphFlow

57

CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Efficiency of GraphFlow framework

5.1.1 Matrix multiplication

To show the efficiency of our GPU matrix multiplication, we establish several performance

tests and measure the running time to compare with an O(N3) CPU matrix multiplication.

The sizes are the matrices are N ∈ {128, 256, 512, 1024}. In the largest case, we observe that

GPU gives a factor of 200x improvement. Table 5.1 and figure 5.1 show the details.

5.1.2 Tensor contraction

We also compare the GPU implementation of tensor contraction with the CPU one. We want

to remark that the tensor contraction complexity is O(18×|P`v|5×c) that grows exponentially

with the size of receptive field |P`v| and grows linearly with the number of channels c. We

have a constant 18 as the number of contractions implemented in the second-order case.

We have several tests with the size of receptive field |P`v| ranging in {5, 10, 20, 35} and the

number of channels c ranging in {10, 20}. In the largest case with |P`v| = 35 and c = 20,

we observe that GPU gives a factor of approximately 62x speedup. Table 5.2 and figure 5.2

show the details. Figure 5.3 describes the general idea of GPU implementation of tensor

contractions in CCN 2D by Virtual Indexing System.

Table 5.1: GPU vs CPU matrix multiplication running time (milliseconds)
Method N = 128 N = 256 N = 512 N = 1024

CPU 22 ms 379 ms 2,274 ms 15,932 ms
GPU < 1 ms 4 ms 15 ms 70 ms

58

Figure 5.1: GPU vs CPU matrix multiplication running time (milliseconds) in log10 scale

Table 5.2: GPU vs CPU tensor contraction running time (milliseconds)

|P`v| c Floating-points CPU GPU

5 10 562,500 3 ms 3 ms
5 20 1,125,000 7 ms 1 ms
10 10 18,000,000 56 ms 1 ms
10 20 36,000,000 103 ms 3 ms
20 10 576,000,000 977 ms 18 ms
20 20 1,152,000,000 2,048 ms 27 ms
35 10 9,453,937,500 12,153 ms 267 ms
35 20 18,907,875,000 25,949 ms 419 ms

Figure 5.2: GPU vs CPU tensor contraction running time (milliseconds) in log10 scale

59

Figure 5.3: GPU implementations of tensor contractions in CCN 2D

Table 5.3: GPU and CPU network evaluation running time (milliseconds)

|V | Max |P`v| c L CPU GPU

10 10 10 6 1,560 ms 567 ms
15 10 10 6 1,664 ms 543 ms
20 15 10 6 7,684 ms 1,529 ms
25 15 10 6 11,777 ms 1,939 ms

5.1.3 Putting all operations together

In this experiment, we generate synthetic random input graphs by Erdos-Renyi p = 0.5

model. The number of vertices |V | ∈ {10, 15, 20, 25}. We fix the maximum size of receptive

field |P`v| as 10 and 15, the number of channels c as 10, and the number of levels/layers of

the neural network L as 6. In the largest case of the graph with 25 vertices, GPU gives a

factor of approximately 6x speedup. Table 5.3 shows the detail.

5.1.4 Small molecular dataset

This is the total training and testing time on a small dataset of 4 molecules CH4, NH3, H20,

C2H4 with 1,024 epochs. After each epoch, we evaluate the neural network immediately.

CCN 1D denotes the Covariant Compositional Networks with the first-order representation,

60

Table 5.4: Single thread vs Multiple threads running time
Model Layers Single-thread Multi-thread

CCN 1D 1 1,836 ms 874 ms
CCN 1D 2 4,142 ms 1,656 ms
CCN 1D 4 9,574 ms 3,662 ms
CCN 1D 8 (deep) 20,581 ms 7,628 ms
CCN 1D 16 (very deep) 42,532 ms 15,741 ms
CCN 2D 1 35 seconds 10 seconds
CCN 2D 2 161 seconds 49 seconds

the number of layers/levels is in {1, 2, 4, 8, 16}. CCN 2D denotes the Covariant Compositional

Networks with the second-order representation, the number of layers/levels is in {1, 2}. The

number of channels c = 10 in all settings. In this experiment, we use 4 threads for the

training minibatches of 4 molecules and compare the running time with the single thread

case. All models are fully converged. Table 5.4 shows the details.

5.2 Experiments

We now compare our CCN framework (Section 3.8) to several standard graph learning al-

gorithms. We focus on two datasets that contain the result of a large number of Density

Functional Theory (DFT) calculations:

1. The Harvard Clean Energy Project (HCEP), consisting of 2.3 million organic

compounds that are candidates for use in solar cells (Hachmann et al., 2011). Figure

5.4 shows an example of two molecules with similar graph structures in the HCEP

dataset.

2. QM9, a dataset of ∼134k organic molecules with up to nine heavy atoms (C, O, N and

F) (Ramakrishnan et al., 2014) out of the GDB-17 universe of molecules (Ruddigkeit

et al., 2012). Each molecule contains data including 13 target chemical properties,

along with the spatial position of every constituent atom.

61

Figure 5.4: Molecules C18H9N3OSSe (left) and C22H15NSeSi (right) with adjacency matrices

DFT (Hohenberg & Kohn, 1964; Kohn & Sham, 1965) is the workhorse of the molecu-

lar chemistry community, given its favorable tradeoff between accuracy and computational

power. Still, it is too costly for tasks such as drug discovery or materials engineering, which

may require searching through millions of candidate molecules. An accurate prediction of

molecular properties would significantly aid in such tasks.

We are interested in the ability of our algorithm to learn on both pure graphs, and also

on physical data. As such, we perform three experiments. We start with two experiments

based only upon atomic identity and molecular graph topology:

1. HCEP: We use a random sample of 50,000 molecules of the HCEP dataset; our learn-

ing target is Power Conversion Efficiency (PCE), and we present the mean average error

(MAE). The input vertex feature lv is a one-hot vector of atomic identity concatenated

with purely synthesized graph-based features.

2. QM9(a): We predict the 13 target properties of every molecule. For this text we

consider only heavy atoms and exclude hydrogen. Vertex feature initialization is per-

formed in the same manner as the HCEP experiment. For training the neural networks,

62

we normalized all 13 learning targets to have mean 0 and standard deviation 1. We

report the MAE with respect to the normalized learning targets.

We also tested our algorithm’s ability to learn on DFT data based upon physical features.

We perform the following experiment:

3. QM9(b): The QM9 dataset with each molecule including hydrogen atoms. We use

both physical atomic information (vertex features) and bond information (edge fea-

tures) including: atom type, atomic number, acceptor, donor, aromatic, hybridization,

number of hydrogens, Euclidean distance and Coulomb distance between pair of atoms.

All the information is encoded in a vectorized format.

To include the edge features into our model along with the vertex features, we used

the concept of a line graph from graph theory. We constructed the line graph for each

molecular graph in such a way that: an edge of the molecular graph corresponds to

a vertex in its line graph, and if two edges in the molecular graph share a common

vertex then there is an edge between the two corresponding vertices in the line graph.

(See Fig. 5.9). The edge features become vertex features in the line graph. The inputs

of our model contain both the molecular graph and its line graph. The feature vectors

F` between the two graphs are merged at each level `. (See step 12 of the algorithm 15).

In QM9(b), we report the mean average error for each learning target in its corre-

sponding physical unit and compare it against the Density Functional Theory (DFT)

error given by (Faber et al., 2017).

In the case of HCEP, we compared CCNs to lasso, ridge regression, random forests, gradi-

ent boosted trees, optimal assignment Weisfeiler–Lehman graph kernel (Kriege et al., 2016)

(WL), neural graph fingerprints (Duvenaud et al., 2015), and the “patchy-SAN” convolu-

tional type algorithm (referred to as PSCN) (Niepert et al., 2016). For the first four of

63

these baseline methods, we created simple feature vectors from each molecule: the number

of bonds of each type (i.e., number of H–H bonds, number of C–O bonds, etc.) and the

number of atoms of each type. Molecular graph fingerprints uses atom labels of each vertex

as base features. For ridge regression and lasso, we cross validated over λ. For random

forests and gradient boosted trees, we used 400 trees, and cross validated over max depth,

minimum samples for a leaf, minimum samples to split a node, and learning rate (for GBT).

For neural graph fingerprints, we used 3 layers and a hidden layer size of 10. In PSCN, we

used a patch size of 10 with two convolutional layers and a dense layer on top as described

in their paper.

For QM9(a), we compared against the Weisfeiler–Lehman graph kernel, neural graph fin-

gerprints, and PSCN. The settings for NGF and PSCN are as described for HCEP. For

QM9(b), we compared against DFT error provided in (Faber et al., 2017).

We initialized the synthesized graph-based features of each vertex with computed histogram

alignment features, inspired by (Kriege et al., 2016), of depth up to 10. Each vertex receives

a base label lv = concat10d=1H
d
v where Hd

v ∈ Rc (with c being the total number of distinct

discrete node labels) is the vector of relative frequencies of each label for the set of vertices

at distance equal to d from vertex v. Our CCNs architecture contains up to five levels.

In each experiment we separated 80% of the dataset for training, 10% for validation, and

evaluated on the remaining 10% test set. We used Adam optimization (Kingma & Ba, 2015)

with the initial learning rate set to 0.001 after experimenting on a held out validation set.

The learning rate decayed linearly after each step towards a minimum of 10−6.

Our method, Covariant Compositional Networks, and other graph neural networks such

64

Figure 5.5: 2D PCA projections of Weisfeiler-Lehman features in HCEP

as Neural Graph Fingerprints (Duvenaud et al., 2015), PSCN (Niepert et al., 2016) and

Gated Graph Neural Networks (Li et al., 2015) are implemented based on the GraphFlow

framework (see chapter 4).

Tables 5.5, 5.6, and 5.7 show the results of HCEP, QM9(a) and QM9(b) experiments, respec-

tively. Figures 5.5 and 5.6 show the 2D PCA projections of learned molecular representations

in HCEP dataset with Weisfeiler-Lehman, Covariant Compositional Networks 1D & 2D, re-

spectively. On the another hand, figures 5.7 and 5.8 show the 2D projections with t-SNE

(Maaten & Hinton, 2008). The colors represent the PCE values ranging from 0 to 11. Fig-

ure 5.10 shows the distributions between ground-truth and prediction of CCN 1D & 2D in

HCEP.

5.2.1 Discussion

On the subsampled HCEP dataset, CCN outperforms all other methods by a very large

margin. In the QM9(a) experiment, CCN obtains better results than three other graph

learning algorithms for all 13 learning targets. In the QM9(b) experiment, our method gets

smaller errors comparing to the DFT calculation in 11 out of 12 learning targets (we do not

have the DFT error for R2).

65

Figure 5.6: 2D PCA projections of CCNs graph representations in HCEP

Figure 5.7: 2D t-SNE projections of Weisfeiler-Lehman features in HCEP

Figure 5.8: 2D t-SNE projections of CCNs graph representations in HCEP

66

e1

e2

e3 e4

e5

e6

(1)

(2)

(3)

(4)

(5)

(3)

(4)(1)

(2) (5)

Figure 5.9: Molecular graph of C2H4 (left) and its corresponding line graph (right).

Table 5.5: HCEP regression results
Test MAE Test RMSE

Lasso 0.867 1.437
Ridge regression 0.854 1.376
Random forest 1.004 1.799
Gradient boosted trees 0.704 1.005
WL graph kernel 0.805 1.096
Neural graph fingerprints 0.851 1.177
PSCN 0.718 0.973
CCN 1D 0.216 0.291
CCN 2D 0.340 0.449

Table 5.6: QM9(a) regression results (MAE)

Target WLGK NGF PSCN CCN 2D

alpha 0.46 0.43 0.20 0.16
Cv 0.59 0.47 0.27 0.23
G 0.51 0.46 0.33 0.29

gap 0.72 0.67 0.60 0.54
H 0.52 0.47 0.34 0.30

HOMO 0.64 0.58 0.51 0.39
LUMO 0.70 0.65 0.59 0.53

mu 0.69 0.63 0.54 0.48
omega1 0.72 0.63 0.57 0.45

R2 0.55 0.49 0.22 0.19
U 0.52 0.47 0.34 0.29
U0 0.52 0.47 0.34 0.29

ZPVE 0.57 0.51 0.43 0.39

67

Table 5.7: QM9(b) regression results (MAE)

Target CCNs DFT error Physical unit

alpha 0.19 0.4 Bohr3

Cv 0.06 0.34 cal/mol/K
G 0.05 0.1 eV

gap 0.11 1.2 eV
H 0.05 0.1 eV

HOMO 0.08 2.0 eV
LUMO 0.07 2.6 eV

mu 0.43 0.1 Debye

omega1 2.54 28 cm−1

R2 5.03 - Bohr2

U 0.06 0.1 eV
U0 0.05 0.1 eV

ZPVE 0.0043 0.0097 eV

Figure 5.10: Distributions of ground-truth and prediction of CCN 1D & 2D in HCEP

68

CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

We extended Message Passing Neural Networks and generalized convolution operation for

Covariant Compositional Networks by higher-order representations in order to approximate

Density Functional Theory. We obtained very promising results and outperformed other

state-of-ther-art graph neural networks such as Neural Graph Fingerprint and Learning Con-

volutional Neural Networks on Harvard Clean Energy Project and QM9 datasets. Thanks

to parallelization, we significantly improved our empirical results. The next step would be to

find applications of CCNs in different areas of computer science, for example applying graph

neural networks on large-scale data center’s network topology and monitoring timeseries

data to detect and find the root causes of network failures. We are developing our custom

Deep Learning framework in C++/CUDA named GraphFlow which supports automatic

and symbolic differentitation, dynamic computation graph as well as complex tensor/matrix

operations with GPU computation acceleration. We expect that this framework will enable

us to design more flexible, efficient graph neural networks with molecular applications at a

large scale in the future.

69

REFERENCES

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Mur-

ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-

houcke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, and

X. Zheng Y. Yu. Tensorflow: Large-scale machine learning on heterogeneous distributed

systems. https://arxiv.org/abs/1603.04467, 2016.

R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien,

J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Bergeron, J. Bergstra, V. Bisson,

J. B. Snyder, N. Bouchard, N. Boulanger-Lewandowski, X. Bouthillier, A. de Brbisson,

O. Breuleux, P. Carrier, K. Cho, J. Chorowski, P. Christiano, T. Cooijmans, M. Cote,

M. Cote, A. Courville, Y. N. Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Diele-

man, L. Dinh, M. Ducoffe, V. Dumoulin, S. E. Kahou, D. Erhan, Z. Fan, O. Firat, M. Ger-

main, and X. Glorot. Theano: A python framework for fast computation of mathematical

expressions. https://arxiv.org/abs/1605.02688, 2016.

L. Babai and L. Kucera. Canonical labelling of graphs in linear average time. Proceedings

Symposium on Foundations of Computer Science, pp. 39–46, 1979.

P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu. Interaction net-

works for learning about objects, relations and physics. Advances in Neural Information

Processing Systems (NIPS), pp. 4502–4510, 2016.

K. M. Borgwardt and H. P. Kriegel. Shortest-path kernels on graphs. In Proceedings of the

5th IEEE International Conference on Data Mining(ICDM) 2005), 27-30 November 2005,

Houston, Texas, USA, pp. 74–81, 2005.

70

R. D. L. Briandais. File searching using variable length keys. Proceedings of the Western

Joint Computer Conference, pp. 295–298, 1959.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected

networks on graphs. In Proceedings of International Conference on Learning Representa-

tions, 2014.

C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining

and Knowledge Discovery, 2:121–167, 1998.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang.

Mxnet: A flexible and efficient machine learning library for heterogeneous distributed

systems. Neural Information Processing Systems (NIPS) Workshop, 2016.

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs

with fast localized spectral filtering. In Advances in Neural Information Processing Sys-

tems, 2016.

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik,

and R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints.

In Advances in neural information processing systems, pp. 2224–2232, 2015.

F. A. Faber, L. Hutchison, , B. Huang, J. Gilmer, S. S. Schoenholz, G. E. Dahl, O. Vinyals,

S. Kearnes, P. F. Riley, and O. A. von Lilienfeld. Prediction errors of molecular machine

learning models lower than hybrid dft error. J. Chem. Theory Comput., 13:5255 – 5264,

09 2017.

E. Fredkin. Trie memory. Communications of the ACM, 3:490–499, 1960.

T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient

alternatives. Proceedings of the Annual Conference on Computational Learning Theory,

pp. 129–143, 2003.

71

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing

for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R. S. Snchez-

Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway, and A. Aspuru-Guzik. The harvard

clean energy project: Large-scale computational screening and design of organic photo-

voltaics on the world community grid. The Journal of Physical Chemistry Letters, 2011.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9:1735–

1780, 1997.

T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning. The

Annals of Statistics, 36:1171–1220, 2008.

P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:864–871, 1964.

T. S. Hy, S. Trivedi, H. Pan, B. M. Anderson, and R. Kondor. Predicting molecular properties

with covariant compositional networks. Journal of Chemical Physics, 148, 2018.

W. Jin, C. W. Coley, R. Barzilay, and T. Jaakkola. Predicting organic reaction outcomes with

weisfeiler-lehman network. 31st Conference on Neural Information Processing Systems

(NIPS), 2017.

H. Kashima, K. Tsuda, and A. Inokuchi. Kernels for graphs. Kernels and Bioinformatics,

pp. 155–170, 2004.

S. Kearns, K. McCloskey, M. Brendl, V. Pande, and P. Riley. Molecular graph convolutions:

moving beyond fingerprints. Journal of Computer-Aided Molecular Design, 30:595–608,

2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. ICLR, San

Diego, 2015.

72

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.

In Proceedings of International Conference on Learning Representations, 2017.

W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation

effects. Phys. Rev., 140:1133–1138, 1965.

R. Kondor, T. S. Hy, H. Pan, B. M. Anderson, and S. Trivedi. Covariant compositional

networks for learning graphs. https://arxiv.org/abs/1801.02144, 2018.

N. M. Kriege, P. Giscard, and R. Wilson. On valid optimal assignment kernels and appli-

cations to graph classification. Advances in Neural Information Processing Systems 29,

2016.

C. Kyunghyun, V. M. Bart, G. Caglar, B. Dzmitry, B. Fethi, S. Holger, and B. Yoshua.

Learning phrase representations using rnn encoder-decoder for statistical machine transla-

tion. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks.

arXiv preprint arXiv:1511.05493, 2015.

M. Looks, M. Herreshoff, D. Hutchins, and P. Norvig. Deep learning with dynamic compu-

tation graphs. International Conference of Learning Representations (ICLR), 2017.

L. V. D. Maaten and G. Hinton. Visualizing data using t-sne. J. Mach Learn. Res., 9:

2579–2605, 2008.

D. J. C. Mackay. Gaussian processes: A replacement for supervised neural network? Tutorial

lecture notes for NIPS 1997, 1997.

S. Mika, B. Schölkopf, A. Smola, K. B. Müller, M. Scholz, and G. Rätsch. Kernel pca and

de-noising in feature spaces. Advances in Neural Information Processing Systems 11, 1998.

73

J. Munkres. Trie memory. Journal of the Society for Industrial and Applied Mathematics,

5:32–38, 1957.

M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for graphs.

In Proceedings of the International Conference on Machine Learning, 2016.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer. Automatic differentiation in pytorch. Neural Information Pro-

cessing Systems (NIPS), 2017.

R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld. Quantum chemistry

structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

S. Ravi and Q. Diao. Large scale distributed semi-supervised learning using streaming

approximation. Proceedings of the 19th International Conference on Artificial Intelligence

and Statistics (AISTATS), 2016.

L. Ruddigkeit, R. van Deursen, L. C. Blum, and Jean-Louis Reymond. Enumeration of 166

billion organic small molecules in the chemical universe database gdb-17. J. Chem. Inf.

Model., 52:2864Äı̀2875, 2012.

K. T. Schütt, Kristof T., F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko.

Quantum-chemical insights from deep tensor neural networks. Nature communications,

2017.

N. Shervashidze, S. V. N. Vishwanathan, T. H. Petri, K. Mehlhorn, and K. M. Borgwardt.

Efficient graphlet kernels for large graph comparison. Proceedings of the 12th International

Conference on Artificial Intelligence and Statistics (AISTATS), 2009.

N. Shervashidze, P. Schweitzer, E. J. van Leeuwan, K. Mehlhorn, and K. M. Borgwardt.

Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 12:2539–2561,

2011.

74

S. V. N. Vishwanathan. Kernel methods: Fast algorithms and real life applications. PhD

thesis, Indian Institute of Science, Bangalore, India, 2002.

S. V. N. Vishwanathan, N. N. Schraudolf, R. Kondor, and K. M. Bogwardt. Graph kernels.

Journal of Machine Learning Research, 11:1201–1242, 2010.

T. Weisfeiler and A. A. Lehman. A reduction of a graph to a canonical form and an algebra

arising during this reduction. Nauchno-Technicheskaya Informatsia, 1968.

75

