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ABSTRACT
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Graph below shows physical qubits roadmap (to be remembered: for a quantum computer, 50 logic qubits minimum are required it means 50 000 physical qubits)
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2,048-bit numbers requires 20,000,000 physical qubits, far exceeding available hardware

(maximum 5,000 qubits, promising 1,000,000 qubits).

We present a GNN-based framework that generalizewell to Ising of different sizes, automat-

ing the discovery of qubit reduction rules via qubit alignments.

Our extensive testing reveals substantial multi-level size reductions across various Ising

topologies while preserving solution quality.

By significantly reducing qubit requirements, our approach expands the scope of tractable

problems for current quantum devices.

BACKGROUND

Ising models. An Ising model consists of binary variables (spins) si ∈ −1, +1, with energy given by

the Hamiltonian:

H = −
∑
i,j

Jijsisj −
∑

i

hisi (1)

where Jij is the coupling between spins i, j, and hi is the external field at spin i.

Global minimum energy (ground states) can be found by using Quantum annealing:

Hsystem(s) = −A(s)
2

( n∑
i

σx
i

)
+ B(s)

2

(
Hproblem

)
(2)

where s ∈ [0, 1] is the anneal fraction, σx
i is the Pauli x-matrix for the i-th qubit, and Hproblem is the

problem Hamiltonian, equivalent to Hamiltonian (1). A(s) and B(s) define the anneal schedule.

Qubits alignment. We classify each edge (i, j) based on the behavior of connected spins across

all ground states: alignment (si,sj have same sign), anti-alignment (si, sj have opposite signs), and

neutral (si,sj alignment varies).
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Methodology

Input: An Ising Hamiltonian H .

Output: A compressed Ising Hamiltonian H ′ optimized for quantum hardware constraints.

Objective: GNN architecture that generalizes across different Ising model sizes.

GNN Model. We respresent Ising Model with Hamiltonian graph GH = (V, E) where V is the set

of nodes and E ⊆ V × V is the set of edges. The initial node and edge features are defined as:

H(0) = {h
(0)
v ∈ Rdh | v ∈ V },

E(0) = {e
(0)
uv ∈ Rde | (u, v) ∈ E},

respectively, in which dh and de are the corresponding numbers of input node and edge features.

At layer `, the message passing scheme updates each node representation based on the neigh-

boring nodes’ representations at the previous layer ` − 1; meanwhile, each edge representation is

updated based on the edge’s two corresponding nodes. Formally, we have:

h
(`)
v = MLP1

h
(`−1)
v ⊕

∑
u∈N (v)

h
(`−1)
u ⊕

∑
u∈N (v)

e
(`−1)
v,u

 ,

e
(`)
uv = MLP2

(
h

(`−1)
u ⊕ h

(`−1)
v ⊕ e

(`−1)
uv

)
,

Most confident link predict for if each edge (u, v) is aligned or anti-alignment. Let L denote the

number of layers of message passing, a feature vector zuv = h
(L)
u ⊕ h

(L)
v ⊕ e

(L)
uv .

The logistic regression model predicts the probability on each edge (i.e. edge confidence) as:

ŷuv = σ(〈w, zuv〉), (3)

We iteratively contract one edge per round to reduce the Ising Hamiltonian. Edges are classified

as either alignment or anti-alignment via a weighted binary cross-entropy (BCE) loss, where the

weight is the model’s confidence in the prediction.

Negative Entropy (Confidence):

ci = Softmax{−H(ŷi) = ŷi log(ŷi) +
(
1 − ŷi

)
log

(
1 − ŷi

)
,

} where ŷi ∈ [0, 1] is the probability that edge i is “alignment.”

Weighted BCE Loss:

L =
N∑

i=1
− ci

[
yi log(ŷi) + (1 − yi) log

(
1 − ŷi

)]
,

with yi ∈ {0, 1} denoting alignment or anti-alignment.
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ABLATION STUDY

CONCLUSION & FUTUREWORK

A framework based on GNNs automates the process of finding reduction rules for Ising in-

stances.

Our framework enables solving larger optimization problems on current quantum devices.

Extend GRANITE to handle real-world optimization problems from various domains.

Adapt compression techniques for different quantum computing technologies and devices.
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