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COVARIANT COMPOSITIONAL NEURAL NETWORKS FOR LEARNING (GRAPHS
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Abstract

We propose Covariant Compositional Networks (CCNs), a novel neural network
architecture for learning on graphs. CCNs use tensor representations for vertex fea-
tures which can then be manipulated with permutation covariant tensor operations

fToyota Technological Institute at Chicago

MAE and RMSE results of each model on predicting the Power Conversion Efficiency
(PCE) for graphs on the test set of HCEP. Lower values are better.

Second-order Message Passing

Instead of representing a vertex with a feature matrix (a 2nd order tensor) as done in first order

x| Pyl xe

(
message passing, we can represent it by a 3rd order tensor fg e RIP and require these

. , , feature tensors to transform covariantly:. Test MAE | Test RMSE
as opposed to the standard symmetric operations used in other graph neural network 3 0367 ey
models. These permutation covariant operations allow us to build more expressive : . : : A0 : : :

) . Hile still maintain; ation , We say that v is a second order covariant node in a comp-net if under the permu- Ridge regression 0.854 1.376
stapll TEPIESCLLALIONS WILLE SULLTLAIILAIIILLE PELITUTALIOL ILVATTALICE. tation of its receptive field P, by an 7w &€ S|73V|, its activation transforms as f, — P fVP7TT . Random forest 1.004 1.799
The transf d activati 1l be: '
For learning small-scale molecular graphs, we investigate the efficacy of CCNs ¢ translormed activation f,, will be Gradient boosted trees 0.704 1005
. . . . . . B WL graph kernel 0.805 1.096
in estimating Density Functional Theory (DFT), a widely used but expensive Savs =LV ~1(a),7=1() .
. . . 05 T (a),m S Neural graph fingerprints|  0.851 1177
approach to compute the electronic structure of matter. We obtain promising results . _
. : : where s is the channel index. PSCN 0.718 0.973
in for this task and outperform other graph learning models on the Harvard Clean GON 1D
Energy Project [HCEP] and QM9 |[QM9] molecular datasets. . ! 0.216 0.291
Algorithm CCN 2D 0.340 0.449

Regression results of CCN-1D architecture applied to QM9(b). A comparison be-
tween CCN prediction error and DFET error known as “chemical accuracy.”

Compositional Scheme

Input: G, [, L

Parameters: Matrices Wy € R¢*¢ Wy, .., W € R18¢)X¢ and biases b .., br. i i
Let G be an object with n elementary parts (atoms) € = {eq,..,en}. A composi- 0 ! 1 L U0 VL Target | CCNs | DL error| Physical unit
. , . . ) . . F, T(W()ly + bol) (\V/V c V) alpha 0.19 0.4 Bohr®
tional scheme for G is a directed acyclic graph (DAG) M in which each node v is 0 : :
. . . Reshape F}, to 1 X 1 x ¢ (Vv € V) Cv | 0.06 034 | cal/mol/K
associated with some subset P, of £ (these subsets are called parts of G) in such a for ( — 1. . L d : -
way that: orr= L A0 G | 0.05 01 eV
y - | . . for v € V do a 0.11 1.2 eV
1. In the bottom level, there are exactly n leat nodes in which each leat node v is ¢ /-1 T / / gap : :
associated with an elementary atom e. Then P, contains a single atom e By = X x By ) where x =g (Vw0 € Py) H 0.05 0.1 eV
y | g 5 | Apply virtual tensor contraction algorithm with énputgs {(FL_, |w € PLY and the restricted HOMO | 0.08 50 oV
2. M has a unique root node v, that corresponds to the entire set {eq, .., ey }. adjacency matrix A Lp¢ to compute Fi c RIPuIxIPylx(18¢) LUMO | 0.07 96 o\
3. For any two nodes v and v/, if v is a descendant of v/, then Py, is a subset of P,. Ff — T(Fi x Wy 4+ byl) —— 0.43 0.1 Debyle
end omegal | 2.54 28 cm-—
2
Covariance end R2 | 203 : Bohr
l o S v @<F£) (V0) U 0.06 0.1 eV
I U0 0.05 0.1 eV
For a graph G with the comp-net A, and an isomorphic graph G’ with comp-net Output: Graph feature F < @ F t e RILAYe Use F for downstream tasks, ZPVE 10.0043 | 0.0097 eV

(=0

N’ let v be any neuron of N and v/ be the corresponding neuron of N, Assume
that Py = (ep,, .., €p,,) While P, = (eqy, .-, €q,,), and let m € Sy, be the permutation ' -

2D t-SNE visualization of learned CCNs molecular features on HCEP dataset:

tSNE - CCN 1D tSNE - CCN 2D

that aligns the orderings of the two receptive fields, i.e., for which e, . = ep,. We 0 == T 0
. : L . mla) o il = gt
say that A Is covariant to permutations if for any m, there is a corresponding sof 2 A - 0 g
function Ry such that f,, = Rz(fy). wil 3 AR LR 200 Fra T
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First-order Message Passing @ o) Lol e A SRE :
20 & A Ay R | a0 ‘
o 1 . ,. AR - 7
We call standard message passing zero’th order message passing where cach Tensor activations for our CCN-2D architecture applied to a CoH, molecular graph. The tensor a0 T 60 ]
. . . - 10
vertex is represented by a feature vector of length ¢ (or ¢ channels). When we sum activations of each vertex in a CCN 2D model are shown after 0, 1, and 2 rounds of message ol T sl - t.] - )
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passing in (a), (b) and (c¢). Here the rows and columns correspond to the size of the receptive
field, whereas the depth of the tensor is determined by the number of channels.
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together vertex features of this form, we lose identity information on where certain
vertex features originated from. Hence, we propose first order message passing

i
by instead representing each vertex v by a matrix: f,g e RIPul*c. Each row of this
feature matrix corresponds to a vertex in the neighborhood of v.
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