SEQUOIA: HIERARCHICAL SELF-ATTENTION LAYER WITH SPARSE UPDATES
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Abstract

Lack of efficiency of self-attention in dealing with long inputs has motivated many
efficient transformers. We consider hierarchy as an interesting route toward sparsity.

This can be achieved by forming a tree on top of the input tokens and limiting the
span of attention, based on the branching factor, thereby reducing the complexity of the
self-attention layer to O(nlog(n)). Our proposed method called Sequoia leverages the
hierarchy within a single self-attention layer and sequentially applies the attention
mechanism to the tree in a bottom-up fashion. Our preliminary results on point cloud
tasks and sequence classification benchmarks suggest favourable performance compared to
state-of-the-art transformer architectures without resorting to efficient CUDA implemen-
tation.

Background

At the basis of transformers is the mechanism of self-attention, which iteratively refines
tokens’ embeddings using a weighted all-to-all communication scheme :
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These interaction weights (also called attention scores if they are normalised) are used to
update each token’s embedding :
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The quadratic complexity in the sequence length (Q(n?)) of A’s computation makes
self-attention intractable for long sequences.

Most efficient transformers either simplify the computation of the attention matrix
or get rid of it altogether :
e Content-based sparse attention (e.g. Reformer) matches tokens together into buck-
ets using locality-sensitive hashing before applying local attention.

e Sparsity heuristics transformers get rid of the bulk of the computations in the dot-
product attention in a structured way (e.g. only computing local attention scores),
allowing for eflicient implementation without custom CUDA kernels.

e Learnable sparsity patterns transformers (e.g. Sinkformer) induce sparsity by sort-
ing the keys and values matrices such that local heuristics can be applied adaptively.
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FOR POINT CLOUDS AND LONG SEQUENCES
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Hierarchical Transformers

Our proposed attention scheme consists in sequentially applying an attention-based
update at various levels of a k-ary tree constructed on top of the input tokens.

e The leaves of the tree correspond to actual tokens of the input.

e Intermediate nodes are hubs for information propagation at different resolutions,
thus allowing global information sharing
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Figure 1: Sequoia, our proposed sequential hierarchical attention scheme.

The construction of this tree depends on the geometry of the input data itself :

e For point cloud data, we can use Euclidean distance for deciding the neighbourhoods
(KD-tree, hierarchical clustering or hierarchical K-nearest neighbours).

e For sequential data, tokens’ timestamps define neighbourhoods. Higher nodes in the
tree will represent increasingly larger hierarchical temporal intervals.

Assuming a k-ary tree 7 has been constructed, the most relevant attention weights to
compute in order to apply self-attention are the interaction scores of node ¢ with its
children, siblings and ancestors. Global information sharing is achieved by sequentially
updating the nodes’ embeddings in a bottom-up fashion across the tree, all in a single
layer. More concretely, Achildren(3) refines node i’s embedding by computing scalar dot-
product attention between its query (); and its children” keys K; (respectively siblings
and ancestors) :

Achildren(z-) = Attention [Qz» (Kja V])] c children(i)] (3)

The three proposals are then pooled together into a single updated embedding for
node 2. The complexity in both run-time and memory is quasi-linear in the input size

(O(nlog(n))).

Applications in long-range sequence classification

In order to accurately measure the quality of the inductive bias of sequential hierarchical
attention, we train our model on an array of complementary classification tasks from the
Long Range Arena benchmark: IMDB (text), Cifar10 (image), Listops (mathematical
sequence parsing), Retrieval (byte-level document matching) and Pathfinder (image).

Method IMDB Cifar10 Listops Retrieval Patthinder-32
Nystrom-64 62.11  56.89  36.64 81.55 75.62
Linformer-64 56.03  43.57  38.66 76.22 90.22
Performer-64 62.46  38.59 18.4 78.62 69.90
Linear 50.98 2228  17.79 49.41 50.36
Softmax attention 60.87 4845  39.62 00M 88.61
None attention  60.50  37.03 37.1 80.42 50.36
Sequoia (ours) 62.72 49.88 37.70  67.04 58.44

Figure 2: Sequence Classification results on Long Range Arena benchmark for efficient transformers.
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Applications in point clouds

To demonstrate the efficiency of Sequoia on point clouds, we conduct experiments on
shape classification and part segmentation. In each task, we compare the performance
of our model with the normal softmax attention and other models specifically designed for
point clouds. Although we do not produce the SOTA results on the two tasks for point
cloud, Sequoia is a lightweight attention-based model with competitive results.

Method Accuracy mAcc

VoxNet 85.9 83.0

MVCONN 90.1 B Method Inst IoU Class IoU
PointNet 89.2 86.0 PointNet 71.9 43.7
DGCNN 92.9 90.2 DGCNN 85.1 82.3
GridGCN 93.1 91.3 PointNet—++ 85.1 81.9
Set Transformer 90.4 — PointConv 85.7 82.6
PointNet—+-+ 91.9 88.4 PointCNN 86.1 84.6
PointConv 92.5 — PointTransformer  86.6 83.7
KPCOHV 92.9 N Softmax attention — 78.8 74.9
Point Transformer 93.7 90.6 Sequoia 9.7 79 5

Softmax attention 89.5 7.4
Sequoia 92.0 88.4

Figure 4: Part Segmentation results on

ShapeNetPart
Figure 3: Shape Classification results on
ModelNet40
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Figure 5: A. The original point cloud. B. The point cloud is segmented by the model. C. The point cloud is
extracted from the lower level of the tree (The point cloud is divided into many small clusters). D. The point
cloud is extracted from the higher level of the tree (The point cloud is divided into some large clusters). For
example, in Figure C, the head of the airplane is divided into 3 clusters, while there is only one cluster for
this head in Figure D.

Conclusion & Future work

Sequoia is general-purpose and requires little adaptation to a particular input as long
as a hierarchical k-ary tree can be built over the tokens. We are actively exploring :

e Node-wise graph classification.
e Autoregressive generation for long-range language modeling.

e Generalizing the tree structure to a lattice (increasing the number of pathways be-
tween input tokens) to better control the tradeoff between expressivity and the long-
range nature of the receptive field.

e Decrease the computational cost of our model by using sparsity-aware implementa-
tions of the scalar dot product.



