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Summary

• We propose Multiresolution Graph Transformers (MGT), the first graph trans-
former architecture that can learn to represent large molecules at multiple scales, by
utilizing a learning-to-cluster algorithm.

• We introduce Wavelet Positional Encoding (WavePE), a new positional encoding
method that guarantees localization in spectral and spatial domains.

• We achieve competitive results on three macromolecule datasets consisting of polymers,
peptides and protein-ligand complexes, and one drug-like molecule dataset. Signifi-
cantly, our model outperforms other state-of-the-art methods and achieves chemical
accuracy in estimating molecular properties (e.g., GAP, HOMO, and LUMO) calcu-
lated by Density Functional Theory (DFT) in the polymers dataset.

• Our PyTorch implementation is publicly available at:

https://github.com/HySonLab/Multires-Graph-Transformer

Motivation

• Macromolecules are long-range and hierarchical structures as they consist of many
substructures.

• Substructures such as repeating units and functional groups are intrinsic parts of
macromolecules; they present unique chemical reactions regardless of other composi-
tions in the same molecules [4].

Figure 1: Examples of two macromolecules. a) An example of a peptide that consists of many functional
groups. b) An example of a polymer that consists of many repeating units

Spectral Graph Wavelets

Employing graph wavelet signals allows capturing the relative positions of the nodes on
graphs at multiple scales.
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Figure 2: Visualization of some of the wavelets with scaling parameters on the Aspirin C9H8O4 molecular
graph with 13 nodes (i.e. heavy atoms). The center node is colored yellow. The colors varying from bright
to dark illustrate the diffusion rate from the center node to the others, i.e. nodes that are closer to the center
node have brighter colors. Low-scale wavelets are highly localized, whereas the high-scale wavelets can spread
out more nodes on the molecular graph
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• In general, we stack k wavelet matrices to obtain a n × n × k wavelet tensors, where
n is the graph’s size.

• We employ high-order message passing networks [3, 5] to contract the tensor into a
matrix of positional features with a size of n × k.
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Learning to cluster

MGT involves three primary components:

• We utilize GPS [6] a powerful graph transformer network to learn the local and
global interactions of the atoms.

• A learning-to-cluster network learns to cluster the atom nodes into their meaningful
substructures based on differentiable graph pooling [2, 9].

• Finally, a conventional transformer-like architecture is used to compute the represen-
tations of learnable substructures.

Peptides property prediction

Model Params
Peptides-struct Peptides-func

MAE ↓ AP ↑

GCN 508k 0.3496 ± 0.0013 0.5930 ± 0.0023
GINE 476k 0.3547 ± 0.0045 0.5498 ± 0.0079
GatedGCN 509k 0.3420 ± 0.0013 0.5864 ± 0.0077
GatedGCN + RWPE 506k 0.3357 ± 0.0006 0.6069 ± 0.0035

Transformer + LapPE 488k 0.2529 ± 0.0016 0.6326 ± 0.0126
GPS — 0.6535 ± 0.0041 0.2500 ± 0.0005
SAN + LapPE 493k 0.2683 ± 0.0043 0.6384 ± 0.0121
SAN + RWPE 500k 0.2545 ± 0.0012 0.6562 ± 0.0075

MGT + LapPE (ours) 499k 0.2488 ± 0.0014 0.6728 ± 0.0152
MGT + RWPE (ours) 499k 0.2496 ± 0.0009 0.6709 ± 0.0083
MGT + WavePE (ours) 499k 0.2453 ± 0.0025 0.6817 ± 0.0064

Table 1: Results on peptides property prediction. The datasets are included in [1].

Polymer property prediction

Model Params
Property

GAP HOMO LUMO

DFT error 1.2 2.0 2.6
Chemical accuracy 0.043 0.043 0.043

GCN 527k 0.1094 ± 0.0020 0.0648 ± 0.0005 0.0864 ± 0.0014
GCN + Virtual Node 557k 0.0589 ± 0.0004 0.0458 ± 0.0007 0.0482 ± 0.0010
GINE 527k 0.1018 ± 0.0026 0.0749 ± 0.0042 0.0764 ± 0.0028
GINE + Virtual Node 557k 0.0870 ± 0.0040 0.0565 ± 0.0050 0.0524 ± 0.0010

GPS 600k 0.0467 ± 0.0010 0.0322 ± 0.0020 0.0385 ± 0.0006
Transformer + LapPE 700k 0.2949 ± 0.0481 0.1200 ± 0.0206 0.1547 ± 0.0127

MGT + LapPE (ours) 499k 0.0378 ± 0.0004 0.0270 ± 0.0010 0.0300 ± 0.0006
MGT + RWPE (ours) 499k 0.0384 ± 0.0015 0.0274 ± 0.0005 0.0290 ± 0.0007
MGT + WavePE (ours) 499k 0.0387 ± 0.0011 0.0283 ± 0.0004 0.0290 ± 0.0010

Table 2: Experimental results on the polymer property prediction task [7]. All the methods are trained in
four different random seeds and evaluated by MAE ↓. Our methods are able to attain better performance
across three DFT properties of polymers while having less number of parameters. All the properties are
measured in eV.

Protein-ligand binding affinity prediction

Proteins are large and complex macromolecules that comprise one or more long chains of
amino acid residues. Understanding the multiscale structure of proteins is important in
estimating their fitness and functionality. In this experiment, we show the effectiveness
of our model in capturing the long-range and hierarchical structures of proteins, that are
larger than the peptides.

Method 3D-CNN GNN ENN GVP-GNN MGT + WavePE

RMSE ↓ 1.416 ± 0.021 1.570 ± 0.025 1.568 ± 0.012 1.594 ± 0.073 1.436 ± 0.066

Table 3: Experimental Results on protein-ligand binding affinity dataset of ATOM3D benchmark [8].
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