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Scene graphs have been proven to be useful for various scene understanding tasks due to their compact and explicit nature. However, existing approaches often neglect the 

importance of maintaining the symmetry-preserving property when generating scene graphs from 3D point clouds. This oversight can diminish the accuracy and robustness of 

the resulting scene graphs, especially when handling noisy, multi-view 3D data. This work, to the best of our knowledge, is the first to implement an Equivariant Graph Neural 

Network in semantic scene graph generation from 3D point clouds for scene understanding. Our proposed method, ESGNN, outperforms existing state-of-the-art approaches, 

demonstrating a significant improvement in scene estimation with faster convergence. ESGNN demands low computational resources and is easy to implement from available 

frameworks, paving the way for real-time applications such as robotics and computer vision.
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Abstract

Recent advancements in scene graph generation have transitioned from solely utilizing 2D 

image sequences to incorporating 3D features such as depth camera data and point clouds, 

with the latest approaches, like [1]–[3], leveraging both 2D and 3D information for improved 

representation. However, these methods overlook the symmetry-preserving property of 

GNNs, which potentially cause scene graphs’ inconsistency, being sensitive to noisy and 

multi-view data such as 3D point clouds. Hence, this work adopts E(n) Equivariant Graph 

Neural Network [4]’s Convolution Layers with Feature-wise Attention mechanism [3] to 

create Equivariant Scene Graph Neural Network (ESGNN). This approach ensures that the 

resulting scene graph remains unaffected by rotations and translations, thereby enhancing its 

representation quality.

Additionally, ESGNN requires fewer layers and computing resources compared to Scene 

Graph Fusion (SGFN) [3], while achieving higher accuracy scores with fewer training steps. 

In summary, our contributions include:

• We, to the best of our knowledge, are the first to implement Equivariant GNN in 

generating semantic scene graphs from 3D point clouds for scene understanding. 

• Our method, named ESGNN, outperforms state-of-the-art methods, achieving better 

accuracy scores with fewer training steps. 

• We demonstrate that ESGNN is adaptive to different scene graph generation methods. 

Furthermore, there is significant potential to explore the integration of equivariant 

GNNs for scene graph representation, with considerable room for future improvement.

Introduction

   

Given the 3D scene data 𝐷𝑖 and 𝐷𝑗  that represent the same point cloud of a scene but from 

different views (rotation and transition), we aim to predict the probability distribution of the 

equivariant scene graph prediction in which the equivariance is preserved:

൝
𝑃 𝐺 𝐷𝑖)  =  𝑃 𝐺 𝐷𝑗)𝑖≠𝑗

𝐷𝑗 = 𝑅𝑖→𝑗𝐷𝑖 + 𝑇𝑖→𝑗

where 𝐺 is the scene graph, 𝑅𝑖→𝑗 is the rotation matrix and 𝑇𝑖→𝑗 is the transition matrix.

A. Graph Initialization
• Node features: The node feature includes the invariant features 𝒉𝒊 and vector coordinate 

𝒙𝒊 ∈ 𝑅3. 𝒉𝒊 consists of the latent feature of the point cloud after going through the 

PointNet [6] 𝑓𝑝 (𝑷𝒊), standard deviation 𝜎𝑖 , log of the bounding box size ln 𝑏𝑖 , log of the 

bounding box volume ln 𝑣𝑖 , and log of the maximum length of bounding box ln 𝑙𝑖 . The 

coordinate vector of the bounding box 𝒙𝒊 is defined by the coordinate of the two 

furthest corners of the bound box. 𝒉𝒊 and 𝒙𝒊 are then fed to the MLP for predicting the 

label of the nodes. Mathematically: 

 𝒗𝒊 = 𝒉𝑖 , 𝒙𝑖

 𝒉𝑖 = 𝑓𝑝 𝑷𝑖 , 𝝈𝒊, ln 𝒃𝑖 , ln 𝝂𝑖 , ln 𝑙𝑖

                                                             𝒙𝑖 = 𝒙𝑖
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• Edge features: For an edge between a source node 𝑖 and a target node 𝑗 where 𝑗 ≠ 𝑖, the 

edge visual feature 𝑐𝑖→𝑗
𝑒𝑑𝑔𝑒

is computed as follows:

𝒓𝑖𝑗  
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=
=
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 where 𝑔𝑣(·), 𝑔𝑒(·) are MLP classifiers that project the properties into a latent space.

B. Equivariant Scene Graph Neural Network (ESGNN):
 

 
 

Overall Framework

Fig. 1: Overview of the proposed Equivariant Scene Graph framework. Our approach takes a sequence of 

point clouds a) as input to generate a geometric segmentation b). Subsequently, the properties of each 

segment and a neighbor graph between segments are constructed. The properties d) and neighbor graph e) 

of the segments that have been updated in the current frame c) are used as the inputs to compute node 

and edge features f) and to predict a 3D scene graph g).

Fig. II: ESGNN Architecture. 

Our GNN network, ESGNN, has two main components: (1) Feature-wise 

attention Graph Convolution Layer (FAN-GCL) and (2) Equivariant Graph 

Convolution Layer (EGCL). ESGNN is constructed with 4 message passing layers, 

consisting of 2 levels of FAN-GCL followed by the EGCL. Our model 

architecture is illustrated in Figure 2, and the formula used to update node and 

edge features (𝑣𝑖
ℓ , 𝑒𝑖𝑗

ℓ  ) of FAN as well as the EGCL is as follows:

• Message passing FAN-GCL:

𝒗𝑖
𝑙+1 = 𝑔𝑣 𝒗𝑖

𝑙 , max
𝑗∈𝑁 𝑖

𝐹𝐴𝑁 𝒗𝑖
𝑙 , 𝒆𝑖𝑗

𝑙 , 𝒗𝑗
𝑙

𝒆𝑖𝑗
𝑙+1 = 𝑔𝑒 𝒗𝑖

𝑙 , 𝒆𝑖𝑗
𝑙 , 𝒗𝑗

𝑙

• Message passing EGCL:
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A. Dataset and Metrics 
The 3DSSG dataset, used for scene graph generation, is built upon the 3RScan 

dataset, a large-scale real-world dataset featuring 1482 3D reconstructions of 478 

indoor environments. The 3RScan dataset [5] is processed with ScanNet [7] for 

geometric segmentation. For the experiment, the test set of the l20 version is 

primarily used, which includes 20 objects and 8 predicates. Given the dataset's 

imbalance, recall of nodes and edges is used as the evaluation metric. During 

training, recall is calculated as the true positive over all positive predictions. 

Additionally, the R@x metric is adopted for more detailed analysis, taking the x 

most confident predictions and marking them as correct if at least one prediction 

is correct. Recall metrics are applied to predicate (edge classification), object (node 

classification), and relationship (triplet <subject, predicate, object>).

B. Results

C. Ablation Study

                                                        

                                                         D.ESGNN with Image Encoder
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ESGNN is shown to converge more 

quickly in the early training epochs 

and achieve competitive performance 

throughout further epochs.

Conclusion

(1) is the SGFN, run as the baseline model 

for comparison. (2) is the ESGNN with a 

single FAN layer and an EGCL layer. (3) is 

with 2 FAN layers and 2 layers EGCL. (4) is 

similar to (1) but concatenating coordinate 

embedding to the output edge embedding. 

We expect this modification to improve 

the performance of edge prediction.(5) is 

similar with 2 layers of FAN and EGCL.

We introduced the Equivariant Scene Graph Neural Network (ESGNN), which 

improves the robustness and accuracy of generating semantic scene graphs by 

leveraging the E(n) Equivariant Graph Neural Network (EGNN). ESGNN 

outperforms state-of-the-art methods with fewer layers and reduced 

computational resources.
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