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Abstract

Scene graphs have been proven to be useful for various scene understanding tasks due to their compact and explicit nature. However, existing approaches often neglect the

importance of maintaining the symmetry-preserving property when generating scene graphs from 3D point clouds. This oversight can diminish the accuracy and robustness of
the resulting scene graphs, especially when handling noisy, multi-view 3D data. This work, to the best of our knowledge, is the first to implement an Equivariant Graph Neural
Network in semantic scene graph generation from 3D point clouds for scene understanding. Our proposed method, ESGNN, outperforms existing state-of-the-art approaches,
demonstrating a significant improvement in scene estimation with faster convergence. ESGNN demands low computational resources and is easy to implement from available
frameworks, paving the way for real-time applications such as robotics and computer vision.
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Introduction — =
Recent advancements in scene graph generation have transitioned from solely utilizing 2D || Our GNN network, ESGNN, has two main components: () Feature-wise

image sequences to incorporating 3D features such as depth camera data and point clouds, | | attention Graph Convolution Layer (FAN-GCL) and (2) Equivariant Graph
with the latest approaches, like [1]-[3], leveraging both 2D and 3D information for improved | | Convolution Layer (EGCL). ESGNN is constructed with 4 message passing layers,
representation. However, these methods overlook the symmetry-preserving property of || consisting of 2 levels of FAN-GCL followed by the EGCL. Our model
GNNs, which potentially cause scene graphs’ inconsistency, being sensitive to noisy and || architecture is illustrated in Figure 2, and the formula used to update node and
multi-view data such as 3D point clouds. Hence, this work adopts E(n) Equivariant Graph || edge features (vf ,ef}- ) of FAN as well as the EGCL is as follows:

Neural Network [4]'s Convolution Layers with Feature-wise Attention mechanism [3] to || . Message passing FAN-GCL:

create Equivariant Scene Graph Neural Network (ESGNN). This approach ensures that the 141 I N
. . . : _ v, " = gy ||V, max FAN(vl-,el--,v-)

resulting scene graph remains unaffected by rotations and translations, thereby enhancing its JEN(Q) J7 7

representation quality. e%}*fl = ge([vﬁ, eﬁj,v]l-])

Additionally, ESGNN requires fewer layers and computing resources compared to Scene || « Message passing EGCL:
Graph Fusion (SGFN) [3], while achieving higher accuracy scores with fewer training steps.

In summary, our contributions include: hi*l = hl + g, [ concat | hl, z egj

* We, to the best of our knowledge, are the first to implement Equivariant GNN in JEN(D)
generating semantic scene graphs from 3D point clouds for scene understanslln.g. el = g (Concat(hl- B s — xl'”Z ol

* Our method, named ESGNN, outperforms state-of-the-art methods, achieving better tj e A L Lt ARG A I PYg )

accuracy scores with fewer training steps.

*  We demonstrate that ESGNN is adaptive to different scene graph generation methods.
Furthermore, there is significant potential to explore the integration of equivariant
GNNs for scene graph representation, with considerable room for future improvement.
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Experiments

A. Dataset and Metrics

Overall Framework The 3DSSG dataset, used for scene graph generation, is built upon the 3RScan

input: ) Poin 5) Geometic © Exracted it Cloudwi ) Properes A DEGAN Oupk ) i dataset, a large-scale real-world dataset featuring 1482 3D reconstructions of 478
@ = _ indoor environments. The 3RScan dataset [5] is processed with ScanNet [7] for
= : —_— | T geometric segmentation. For the experiment, the test set of the 120 version is
| — == ;/”@"‘9 ) /./\0 primarily used, which includes 20 objects and 8 predicates. Given the dataset's
€) Neighbor o__ _° me;,/ @ . . . . .
Graph — -@ imbalance, recall of nodes and edges is used as the evaluation metric. During
3 ./\. = g training, recall is calculated as the true positive over all positive predictions.
.\./ = Additionally, the R@x metric is adopted for more detailed analysis, taking the x
Fig. |: Overview of the proposed Equivariant Scene Graph framework. Our approach takes a sequence of most confident predictions and marking them as correct if at least one prediction

point clouds a) as input to generate a geometric segmentation b). Subsequently, the properties of each
segment and a neighbor graph between segments are constructed. The properties d) and neighbor graph e)
of the segments that have been updated in the current frame c) are used as the inputs to compute node
and edge features f) and to predict a 3D scene graph g). B. Results

. . TABLE I: Scene graph predictions for relationship triplet, object, and
Given the 3D scene data D; and D; that represent the same point cloud of a scene but from || predicate, measured on 3DSSG-120. The Recall column reports the

. . . o . . . . . . recall scores on objects (Obj.) and relationships (Rel.)
different views (rotation and transition), we aim to predict the probability distribution of the

is correct. Recall metrics are applied to predicate (edge classification), object (node
classification), and relationship (triplet <subject, predicate, object>).

o

Edge Recal
Wode Recal

. . . . . . . . . Method Relationship Object Predicate Recall
equivariant scene graph prediction in which the equivariance is preserved: R@ R@3 R@ R@3 R@I R@2 Obj. Rel
3DSSG 32.65 50.56 55.74 B83.80 95.22 98.29 5574 95.22 | = o = o = T ;
P(GlDi) - P(G |Dj)i¢j SGEN 3782 4874 6282 88.08 8141 9822 6398 94.24 _ _
ESGNN 4354 53.64 63.94 8665 9462 98.30 65.45 9462 | () Edge recall on evaluation(b) Node recall on evaluation
Dj =R;,;D; +T;; set 3DSSG-120 set 3DSSG-120
where G is the scene graph, R;_,; is the rotation matrix and Tj_,; is the transition matrix. gl ohiect. sl piosls, miemmen on SDESCLID with gecmetris | - E o on ot ESGNA with SGEN thesgh the raining sieps.
A. Graph Initialization Segmentation. ESGNN is shown to converge more
. . . . New Relationshi New Object  New Predicat H H ini
* Node features: The node feature includes the invariant features h; and vector coordinate || Method kol Ras  Re1 Res et wes | quickly in the early training epochs
X; € R3. h; consists of the latent feature of the point cloud after going through the || 3Dssc 74 4979 538 sas2 7os7 320 1 and achieve competitive performance

. .. . . SGFN 47.01 5530 64.50 88.92 6871 83.76 f
PointNet [6] f;, (P;), standard deviation a;, log of the bounding box size In(b;), log of the || EsoNx©usy 4685 5695 6547 5752 s sz throughout further epochs.

bounding box volume In(v;), and log of the maximum length of bounding box In(l;). The C. Ablation Stud
coordinate vector of the bounding box x; is defined by the coordinate of the two ) ation >tudy ]
TABLE II: Evaluation of different ESGNN architectures on scene |
|
|
|

furthest corners of the bound box. hi and X;are then fed to the MLP for Predicting the graph generation task on 3DSSG-120 dataset. (@) is our best performer " it
Iabel Of the nodes Mathematically' and is used for the evaluation in Section IV-B £

Relationshi Obj Predi
V= (hi; xi) Method R(';]amnli@g; R@1 Jeg@g, R@1 lcaRt(%z —
— Ed I lua{b) Nod I lua-
b = [f,(PD, 0, In(b), In(vy), In(1y)] DI B b B B b i I e
__ [.bottomright _topleft @) ESGNN_2 3563 44.63 5755 8441 9393 97.94
xi - [xi » i ] @ ESGNN_IX 3496 4259  57.55  86.18  92.68  98.08 Fig. 4: Comparison of multiple ESGNN models with SGFN through
node ) ESGNN_2X  37.94 50.58 59.97 85.23 94.53 98.01 the training steps
¢ =gu(vy) S
» Edge features: For an edge between a source node i and a target node j where j # i, the . . .
& f. edgi 5 J J (1) is the SGFN, run as the baseline model D.ESGNN with Image Encoder
edge visual feature c;,;"is computed as follows: for comparison. (2) is the ESGNN with a - )
single FAN layer and an EGCL layer. 3) is , .-~ ... . ;
g l; Vi with 2 FAN layers and 2 layers EGCL. (4) is = -~ 17
rl] = ﬁi _p_j'ai _O'j,bi_bj,ln = ;ln — ) .. / 4 . () ol 7
edge _ i V; similar to (I) but concatenating coordinate -
i_> P o . 5 teps
g e (rij) embeddmg to the output edge embeddmg. (a) Edge recall on evalua{b) Node recall on evalua-
where g,,(+), go(+) are MLP classifiers that project the properties into a latent space. We expect this modification to improve fionset3DSSG-20  fion set DSSG120

B. Equivariant Scene Graph Neural Network (ESGNN): the performance of edge prediction.(5) is friﬁﬁiigigggmson of Joint-ESGNN, SGFN, JointSSG through the

similar with 2 layers of FAN and EGCL.
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Fig. Il: ESGNN Architecture.
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Conclusion
We introduced the Equivariant Scene Graph Neural Network (ESGNN), which
improves the robustness and accuracy of generating semantic scene graphs by
leveraging the E(n) Equivariant Graph Neural Network (EGNN). ESGNN
outperforms state-of-the-art methods with fewer layers and reduced
computational resources.
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