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Motivation & Main Results

o Message-passing neural networks (MPNN) have been the leading architecture for pro-
cessing graph-structured data.

o Graph Transformer (GT) recently emerges as a new paradigm of graph learning algo-
rithms.

e GT - MPNN. With proper position embedding, GT can approximate MPNN arbi-
trarily well |2]

¢ MPNN — GT. What about the other direction?

e We systematically study the representation power and limitation of MPNN + VN
(virtual node), a widely used heuristics with little theoretical understanding.

Transformer
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(a) MPNN + VN = we augment the graph with a virtual node (VN) connecting to all
other nodes. (b) Graph Transformer = we treat each node embedding as a token and
apply a Transformer on the sequence of node embeddings/tokens.

Depth Width Self-Attention Note

O(1) O(n) Full Leverage the universality of equivariant DeepSets [4]
O(1) O(1) Approximate Approximate self attention in Performer [1]

O(n) O(1) Full Explicit construction, strong assumption on X
O(n) O(1) Full Explicit construction, relaxed assumption on X

Summary of approximation result of MPNN + VN on self-attention layer. n is the
number of nodes and d is the feature dimension of node features.

MPNN + VN with O(1) depth and O(1) width can

approximate Performer

Rewrite self-attention in kernel form
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which can be approximated by MPNN+VN with constant depth and width!

e Of course Performer is just one of the efficient transformers. There are many other
linear transformers that can not be expressed under MPNN+VN framework, such as
Linformer and Sparse Transformer.

e Efficient transformer literature explores a larger model design space than MPNN+VN.

Wide MPNN + VN (O(1) depth, O(n?) width)

Theorem 1. MPNN + VN can simulate (not just approximate) equivariant DeepSets:
Rxd — R*d - This implies that MPNN + VN of O(1) depth and O(n%) width
15 permutation equivariant universal, and can approximate self-attention layer and
transformers arbitrarily well.

Main idea: show MPNN 4+ VN can simulate DeepSets + leverage the universality of
DeepSets to approximate permutation equivariant maps.

Deep MPNN + VN (O(n) depth, O(1) width)

Definition 1. Self attention layer L : R"*d — R4 js of the following form: L(X) =
softma( X Wo(X W) ) X Wy,

e ASI. X is (V,6) separable by « for some fixed V' € R4 and 6§ > 0.
e AS2. Vie[n],x; € X, |x;| < Cy. This implies X is compact.
o AS3. HWQH < Cy, |[Wi| < Cy, |[Wy/|| < Cy for target layer L.

Theorem 2. Assume AS 1-3 hold for the compact set X and L. Given any graph
G of size n with node features X € X, and a self-attention layer L on G (fix
Wi, Wo, Wy ), there exists a O(n) layer of heterogeneous MPNN + VN with the
specific aggregate/update/message function that can approrimate L on X arbitrarily
well.

Main idea: use VN to select one node to process at each iteration. After O(n) rounds,
we are able to approximate one self-attention layer.

MPNN + VN for Long Range Graph Benchmark

(LRGB)

e Peptides-functional and Peptides-structural are two datasets of LRGB
e Previously G'T shows a large margin over MPNN
e Simply adding VN is enough to make MPNN outperform GT
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VN as a Global Module

Model # Params. Peptides-functional Peptides-structural

Test AP before VN Test AP after VN 1 Test MAE before VN Test MAE after VN |

GCN 508k 0.5930+0.0023 0.6623+0.0038 0.3496+0.0013 0.2488+0.0021
GINE 476k 0.5498+0.0079 0.6346+0.0071 0.3547+0.0045 0.2584+0.0011
GatedGCN 509k 0.5864+0.0077 0.6635+0.0024 0.3420+0.0013 0.2523+0.0016
GatedGCN+RWSE 506k 0.6069+0.0035 0.6685+0.0062 0.3357+0.0006 0.2529+0.0009
Transformer+LapPE 488k 0.6326+0.0126 - 0.2529+0.0016

SAN+LapPE 493k 0.6384+0.0121 - 0.2683+0.0043

SAN+RWSE 500k 0.6439+0.0075 - 0.2545+0.0012

e Replace Global Module (transformer) in GraphGPS [3] with VN module

e Comparable results with GraphGPS and much better than existing MPNN + VN

Model ogbg-molhiv  ogbg-molpcba ogbg-ppa ogbg-code2

AUROC 1t Avg. Precision f Accuracy ? F1 score ?
GCN 0.7606 + 0.0097 0.2020 + 0.0024 0.6839 + 0.0084 0.1507 + 0.0018
GCN+virtual node 0.7599 + 0.0119 0.2424 + 0.0034 0.6857 + 0.0061 0.1595 + 0.0018
GIN 0.7558 + 0.0140 0.2266 + 0.0028 0.6892 + 0.0100 0.1495 + 0.0023
GIN+virtual node 0.7707 £ 0.0149 0.2703 + 0.0023 0.7037 + 0.0107 0.1581 + 0.0026
SAN 0.7785 + 0.2470 0.2765 + 0.0042 — -

GraphTrans (GCN-Virtual) - 0.2761 + 0.0029 - 0.1830 + 0.0024
K-Subtree SAT - = 0.7522 + 0.0056 0.1937 + 0.0028
0.7880 + 0.0101  0.2907 + 0.0028 0.8015 + 0.0033 0.1894 + 0.0024

0.7687 £ 0.0136  0.2848 + 0.0026 0.8055 + 0.0038 0.1727 £ 0.0017

MPNN + VN (ours)

MPNN + VN for climate prediction

We apply our MPNN + VN model to forecast daily sea surface temperature (SST) in
the Pacific Ocean from 1982 to 2021, given 6 weeks of history to predict the next 1, 2 and
4 weeks of temperatures. The input is a grid graph of 30 longitudes and 30 latitudes at
0.5%-degree resolution. We report the error with Mean Square Error (MSE) metric.
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Feb 12,2020 Feb 13,2020 Feb 14,2020 Feb 15,2020 Feb 16,2020 Feb17,62020 Feb 18, 2020

Model 4 weeks 2 weeks 1 week
MLP 0.3302 0.2710 0.2121
TF-Net 0.2833 0.2036 0.1462
Linear Transformer + LapPE 0.2818  0.2191 0.1610
MPNN 0.2917 0.2281 0.1613
MPNN + VN 0.2806 0.2130 0.1540
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