Duc Thien Nguyen*Tokyo Institute of Technology, Japan

Truong Son Hy*
Indiana State University, USA

Manh Duc Tuan Nguyen*
Toyo University, Japan

Risi Kondor University of Chicago, USA

* Equal contribution. Correspondence to TruongSon.Hy@indstate.edu

December 2023

Summary

We propose:

- An time & memory efficient temporal graph neural network model for spatio-temporal forecasting on multivariate timeseries.
- Leverage Multiresolution Matrix Factorization (MMF) & Wavelet theory.
- Extensive experiments with traffic & brain signals forecasting, show competitive performance.

Prior arts

Traditional methods:

- Historical Average
- ARIMA with Kalman filter
- Vector Auto-regressive VAR
- Linear Support Vector Regression SVR

Prior arts

Traditional methods:

- Historical Average
- ARIMA with Kalman filter
- Vector Auto-regressive VAR
- Linear Support Vector Regression SVR

Deep Learning:

- Feed-forward neural network FNN
- Fully-connected LSTM
- Spatio-Temporal Graph Convolutional Networks (STGCN)
- GWaveNet
- Diffusion Convolutional RNN (DCRNN)

Wavelet bases replace Fourier bases

Limitations of GFT (Bruna et al., 2014)

- High computational cost:
 - EVD of the graph Laplacian has complexity $O(n^3)$
 - GFT involves multiplying with a dense matrix of eigenvectors
- The graph convolution is **not localized** in the vertex domain, even if the graph itself has well defined local communities.

Wavelet bases replace Fourier bases

Limitations of GFT (Bruna et al., 2014)

- High computational cost:
 - EVD of the graph Laplacian has complexity $O(n^3)$
 - GFT involves multiplying with a dense matrix of eigenvectors
- The graph convolution is **not localized** in the vertex domain, even if the graph itself has well defined local communities.

Is there an alternative to Fourier transform/basis?

Wavelet bases replace Fourier bases

Limitations of GFT (Bruna et al., 2014)

- High computational cost:
 - EVD of the graph Laplacian has complexity $O(n^3)$
 - GFT involves multiplying with a dense matrix of eigenvectors
- The graph convolution is **not localized** in the vertex domain, even if the graph itself has well defined local communities.

Is there an alternative to Fourier transform/basis?

MMF of a graph Laplacian $\tilde{\boldsymbol{L}}$ (Kondor et al., 2014)

$$\tilde{\mathbf{L}} = \mathbf{U}_1^T \mathbf{U}_2^T \dots \mathbf{U}_L^T \mathbf{H} \mathbf{U}_L \dots \mathbf{U}_2 \mathbf{U}_1$$

MMF gives us a total of N wavelets:

- L mother wavelets $\overline{\psi} = \{\psi^1, ..., \psi^L\}$,
- N-L father wavelets $\overline{\phi} = \{\phi_m^L = \mathbf{H}_{m,:}\}_{m \in \mathbb{S}_I}$.

Wavelet Neural Networks (WNN)

Similar to GFT-based convolution, each layer k = 1, ..., K transforms a $|V| \times F_{k-1}$ input $\mathbf{f}^{(k-1)}$ into a $|V| \times F_k$ output $\mathbf{f}^{(k)}$ as

$$\mathbf{f}_{:,j}^{(k)} = \sigma \left(\mathbf{W} \sum_{i=1}^{F_{k-1}} \mathbf{g}_{i,j}^{(k)} \mathbf{W}^T \mathbf{f}_{:,i}^{(k-1)} \right) \quad \text{for } j = 1, \dots, F_k,$$

where $\mathbf{W} = [\overline{\phi}, \overline{\psi}]$ is wavelet basis matrix, $\mathbf{g}_{i,j}^{(k)}$ is a parameter/filter in the form of a diagonal matrix, and σ is an element-wise nonlinearity.

Fast Wavelet Transform

 $\textbf{Sparse wavelet basis} \rightarrow \mathsf{Sparse \ matrix \ multiplication \ for \ wavelet \ transform}$

Spatial Dependency by diffusion process on an undirected graph G = (X, A) $\frac{dX(t)}{dt} = (\tilde{A} - I)X(t)$

Spatial Dependency by diffusion process on an undirected graph G = (X, A) $\frac{dX(t)}{dt} = (\tilde{A} - I)X(t)$

Spatial Dependency by diffusion process on an undirected graph G = (X, A) $\frac{dX(t)}{dt} = (\tilde{A} - I)X(t)$

FTWGNN uses sparse wavelet bases instead of Fourier bases

Experiments (1)

Traffic network

Datasets:

- METR-LA
- PEMS-BAY

Adjacency matrix **A** depends on physical distances between sensors.

Experiments (1)

Traffic network

Datasets:

- METR-LA
- PEMS-BAY

Adjacency matrix **A** depends on physical distances between sensors.

Brain network

Dataset:

• AJILE12

Adjacency matrix **A** depends on correlation between sensors.

Experiments (2)

Dataset	T	Metric	HA	ARIMA _{kal}	VAR	SVR	FNN	FC-LSTM	STGCN	GWaveNet	DCRNN	FTWGNN
METR-LA	15 min	MAE	4.16	3.99	4.42	3.99	3.99	3.44	2.88	2.69	2.77	2.70
		RMSE	7.80	8.21	7.89	8.45	7.94	6.30	5.74	5.15	5.38	5.15
		MAPE	13.0%	9.6%	10.2%	9.3%	9.9%	9.6%	7.6%	6.9%	7.3%	6.8%
	30 min	MAE	4.16	5.15	5.41	5.05	4.23	3.77	3.47	3.07	3.15	3.02
		RMSE	7.80	10.45	9.13	10.87	8.17	7.23	7.24	6.22	6.45	5.95
		MAPE	13.0%	12.7%	12.7%	12.1%	12.9%	10.9%	9.6%	8.4%	8.8%	8.0%
	60 min	MAE	4.16	6.90	6.52	6.72	4.49	4.37	4.59	3.53	3.60	3.42
		RMSE	7.80	13.23	10.11	13.76	8.69	8.69	9.40	7.37	7.59	6.92
		MAPE	13.0%	17.4%	15.8%	16.7%	14.0%	13.2%	12.7%	10.0%	10.5%	9.8%
PEMS-BAY	15 min	MAE	2.88	1.62	1.74	1.85	2.20	2.05	1.36	1.3	1.38	1.14
		RMSE	5.59	3.30	3.16	3.59	4.42	4.19	2.96	2.74	2.95	2.40
		MAPE	6.8%	3.5%	3.6%	3.8%	5.2%	4.8%	2.9%	2.7%	2.9%	2.3%
	30 min	MAE	2.88	2.33	2.32	2.48	2.30	2.20	1.81	1.63	1.74	1.50
		RMSE	5.59	4.76	4.25	5.18	4.63	4.55	4.27	3.70	3.97	3.27
		MAPE	6.8%	5.4%	5.0%	5.5%	5.43%	5.2%	4.2%	3.7%	3.9%	3.2%
	60 min	MAE	2.88	3.38	2.93	3.28	2.46	2.37	2.49	1.95	2.07	1.79
		RMSE	5.59	6.5	5.44	7.08	4.98	4.96	5.69	4.52	4.74	3.99
		MAPE	6.8%	8.3%	6.5%	8.0%	5.89%	5.7%	5.8%	4.6%	4.9%	4.1%

Dataset	T	Metric	HA	VAR	LR	SVR	LSTM	DCRNN	FTWGNN
AJILE12	1 sec	MAE	0.88	0.16	0.27	0.27	0.07	0.05	0.03
		RMSE	1.23	0.25	0.37	0.41	0.09	0.45	0.35
		MAPE	320%	58%	136%	140%	38%	7.84%	5.27%
	5 sec	MAE	0.88	0.66	0.69	0.69	0.39	0.16	0.11
		RMSE	1.23	0.96	0.92	0.93	0.52	0.24	0.15
		MAPE	320%	221%	376%	339%	147%	64%	57%
	15 sec	MAE	0.88	0.82	0.86	0.86	0.87	0.78	0.70
		RMSE	1.23	1.15	1.13	1.13	1.14	1.01	0.93
	İ	MAPE	320%	320%	448%	479%	330%	294%	254%

FTWGNN outperforms other baselines by roughly 10%

Experiments (3)

Dataset	T	DCRNN	FTWGNN	Speedup	
	15 min	350s	217s	1.61x	
METR-LA	30 min	620s	163s	3.80x	
	60 min	nin 1800s 136s		13.23x	
	15 min	427s	150s	2.84x	
PEMS-BAY	30 min	900s	173s	5.20x	
	60 min	1800s	304s	5.92x	
	1 sec	80s	35s	2.28x	
AJILE12	5 sec	180s	80s	2.25x	
	15 sec	350s	160s	2.18x	

FTWGNN's training time is faster than DCRNN's by **5 times** on average.

Dataset	Fourier basis	Wavelet basis		
METR-LA	99.04%	1.11%		
PEMS-BAY	96.35%	0.63%		
AJILE12	100%	1.81%		

FTWGNN provides a **remarkable compression** by wavelet bases.

Conclusion

In summary:

- An **time & memory efficient** temporal graph neural network model for spatio-temporal forecasting on multivariate timeseries.
- Leverage Multiresolution Matrix Factorization (MMF) & Wavelet theory.
- Extensive experiments with **traffic & brain signals forecasting**, show competitive performance.

Software:

https://github.com/HySonLab/TWGNN

Thank you very much for your attention!