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From algorithms to generative grammar and back again 
 

John Goldsmith 
The University of Chicago 

1. Introduction  
 

A few words of warning. I was asked to offer a contribution to this meeting on the 
application of linguistic theory. I’m not sure I know enough about this question to 
provide any new insights into applications, but I have been working for several 
years on a project which involves language, linguistics, and computation, and 
which has some very applied sides to it: a system for automatically learning the 
morphological structure of a language, given a large enough sample of data from 
the language. Working on this project has changed in varying degrees my view of 
what linguistic theory is, could be, and should be, and so since this is my own 
personal experience that I will recount, I might have something to contribute to a 
more general discussion. 
 
I have been interested for quite some time in the possibility and the 
implementation of computer systems that deal with natural language. Now, 
natural language is (in the opinion of linguists) the natural domain of linguists and 
of linguistics, and I have observed with great interest the successes that have 
occurred as linguistic ideas have been reincarnated in computational form, and 
have worried when linguistic notions have failed to make the transition to 
computational form. The remarks that follow are a series of reflections on why 
some of those transitions – from theory to computational application – have 
happened and why some have not. In the second half especially, these remarks are 
unquestionably (and unapologetically!) personal and idiosyncratic. 
 
In the first part of the talk, I will review and explore some of the natural 
connections between generative grammar and computational implementation, 
connections that relate to the fundamental notion of the algorithm. Generative 
grammar is, more than it is anything else, a plea for the case that an insightful 
theory of language can be based on algorithmic explanation.  
 
But there are a lot of challenges faced by anyone wishing to implement generative 
models computationally.  

 

2. The algorithm as explicans 
 
The first idea I would like to explore is the notion that the greatest changes in 
linguistics have occurred not through the discovery of new facts or theories, but 
through the rise and dissemination of new visions of what counts as an 
explanation in linguistics. In the final analysis, this is what keeps apart linguists 
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who come from separate camps. That is, it’s not what one believes to be true or 
false about language that separates linguists so much as it is beliefs about what 
counts as an explanation that separates linguists. I will try to make that statement 
plausible by sketching the rise of a few such schools of thought in linguistics.  
 
No one is more aware than we linguists are at the variety there have been of major 
approaches to the systematic study of language. The 19th century was dominated 
by the study of language as a system in time – in human history, in fact. What it 
meant to explain something (such as a word, a sound, or a language), in the 
context of 19th century linguistics, was to give a clear and detailed account of 
how it came to be, given an earlier account of the language and a pattern of how 
things changed over time. We can explain why French has the word oui for ‘yes’ 
while Occitan has oc for ‘yes’ if we understand that both developed out of Latin 
hoc, and in the North of France the final k was dropped, and the remaining o- had 
a encliticized il attached to it, oïl eventually evolving to modern-day oui. 
Linguistics came to understand the relationship of the European languages, and 
later the languages of other parts of the world, as part of a small number of 
genealogical trees. 
 
The 20th century saw not just new ways of analyzing language, but new ways of 
offering explanations for things that were observed. Synchronic, structural 
linguistics came into being, often associated with de Saussure’s teaching, and it 
offered a new kind of explanation. Take phonemics, the flagship theory within 
structural linguistics: it could offer an account of why a flap appears in American 
English in the word Ítaly but not the word Itálian, and this despite the fact that the 
words are closely related. The explanation lies in the organization of the 
environments appropriate for the two allophones, an explanation that is in no way 
dependent on a historical account of the language or the words. It is perhaps 
unnecessary to remind a gathering of linguists that this was linguistics’ greatest 
contribution to the outside world: the discovery of a method of analysis of a 
cultural data (here, language), which linguists called phonemic analysis, which 
was both rigorous and sensitive to details at the human level, and which analyzed 
language in an ahistorical fashion. One of the by-products of the creation of the 
synchronic phonemic method was modern linguistics as we know it today. 
 
Other kinds of explanation have been offered for linguistic structures during this 
period as well, notably psychological explanation and sociological explanation. 
Over the last several decades, linguists have tended to call themselves 
functionalists who believe that an explanation of a linguistic generalization must 
flow from a generalization about the psychological character and mechanisms of 
human beings; and while many linguists who are not functionalists would say that 
they are describing or analyzing the human mind, it is only the functionalists who 
see the flow of explanation – from explainer to explained, from explicans to 
explicandum – as coming from principles that are established using the methods 



Papers from the 40th meeting of the Chicago Linguistics Society (2004) 

 3

of the psychology profession. (That predilection has a long history, and was once 
known as psychologism.) Many prominent linguists subscribe to this point of view 
to one degree or another, I would say, including Talmy Givón, Scott DeLancey,1 
perhaps Susumu Kuno, on some days George Lakoff, Joan Bybee, Jack Hawkins, 
and many others.  
 
Another form of explanation is offered by linguists who see language as a social 
phenomenon, and hence strongly influenced by the principles that govern the 
interaction of human individuals operating within social organizations. Such 
linguists have been driven to understand the differences between the way men and 
women speak, those between the ways adolescents and adults speak, and the 
relationship between the class structure in society and the engines of linguistic 
change, but more important (for my purposes) than the nature of the questions 
they pursue is the kind of explanation that they offer, explanation that is based on 
what we know about the way humans behave in the context of social norms and 
expectations. 
 
But perhaps the most momentous shift in what counted as an explanation in 
linguistics arose at mid-century, and is generally associated with Noam 
Chomsky’s revolutionary work. Chomsky championed the notion that what the 
linguist needed to offer as an explanation was a formal description of the 
linguistic facts, a description that was formal and detailed to a degree that no 
human intervention is needed to apply the description appropriate to the facts 
(which is to say, nothing more than mechanical means is necessary). What 
counted as an explanation, according to this new perspective, was an algorithm 
(though, oddly enough, I don’t recall the term ever being used by Chomsky). This 
is an important notion, one whose history will matter to us, so we will take a look 
at it in a moment. But it was Chomsky’s central idea, one that he put at the 
definitional core of what he called generative grammar: as Chomsky wrote in the 
introduction to The Logical Structure of Linguistic Theory (1975),  

 
conventional structuralist grammars or traditional grammars do not attempt to 
determine explicitly the sentences of a language or the structural descriptions 
of these sentences. Rather, such grammars describe elements and categories of 
various types, and provide examples and hints to enable the intelligent reader 
to determine the form and structure of sentences not actually presented in the 
grammar. Such grammars are written for the intelligent reader. To determine 
what they say about sentences one must have an intuitive grasp of certain 

                                                 
1 Two linguists associated with the University of Oregon: in fact, their website notes, “Our 
department as a whole firmly believes that the patterns of language can ultimately be explained 
with reference to either cognitive functions of communication or to universals in the evolution of 
grammar, with the patterns of evolution themselves driven mostly by the cognitive functions of 
communication.” See http://logos.uoregon.edu/  
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principles of linguistic structure. These principles, which remain implicit and 
unexpressed, are presupposed in the construction and interpretation of such 
grammars. While perhaps perfectly adequate for their particular purposes, 
such grammars do not attempt to account for the ability of the intelligent 
reader to understand the grammar. The theory of generative grammar, in 
contrast, is concerned precisely to make explicit the “contribution of the 
intelligent reader,” though the problem is not posed in just these terms. (8-9) 

 
But why? Why is such a goal the best goal for an explanatory theory of language, 
or even just a reasonable goal? Coming up with an answer to that question 
involves going back in time to the development of the notion of the algorithm, 
and seeing what questions it was that its development was intended to solve, and 
what problems it did in fact solve. 
 
3. Generative model as algorithm 

 

 

The term algorithm in modern English derives from 
the Middle English algorism, itself deriving from the 
name Al-Khowarizmi, a mathematician who lived in 
the court of Mamun in Baghdad, in the early 9th 
century. The mathematician’s name was Abu Ja’far 
Mohammed ibn Musa Al-khowarizmi.   (Ah! We still 
find historical accounts to be a kind of explanation, 
don’t we?) He left for posterity two books, one entitled 
Hisab al-jabr wál-muqabala, “The calculation of 
reduction and restoration,” translated (and 
transliterated) three hundred years later into Latin (by 
Robert of Chester) as Liber algebrae et almucabala, a 

transliteration that bestowed the word algebra on the West. Al-Khowarizmi’s 
other book was translated into Latin with the title Liber Algorismi de numero 
Indorum, and it is from this word that the word algorism, later algorithm, arose.2 
As the title suggests, it deals with the revolutionary idea of writing numbers with 
just 10 digits, from 0 to 9, and having at one end a 1’s place, then a 10’s place, a 
100’s place, and so forth – a notion that has truly changed the world. 

 

Loosely speaking, an algorithm is an explicit and step-by-step explanation of how 
to perform a calculation. The classical ancient world developed a number of 
                                                 
2 http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Al-
Khwarizmi.html On Khwarazm: http://www.informatik.uni-
trier.de/~ghasemzadeh/ 
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significant algorithms, such as Euclid’s algorithm for finding the greatest 
common divisor of two integers M and N. It is a process of continuing to divide 
one integer by another, starting with M and N, and holding on to the remainder, 
but each time dropping the dividend; once we find that the remainder is zero, the 
greatest common divisor is the last divisor in the operation. This remarkable path 
to the discovery of the greatest common divisor that bears Euclid’s name has 
another important property that most people today take to be an essential part of 
being an algorithm: it is an operation that is guaranteed to work (that is, to be 
finished) in a finite amount of time (that is, a finite number of calculations) – 
though the specific value of the finite limit is likely to depend on the particular 
input that we choose to give to the algorithm.  
 
In its origins, the algorithm was created in order to describe an operation too 
complex to explain in any other fashion, like Euclid’s algorithm for greatest 
common divisor. But a revolutionary change took place when mathematicians and 
logicians came to consider the notion that all thinking about mathematics could be 
described as an algorithm, and that if this were so, Aristotle’s attempt to classify 
and categorize sound inference could be greatly expanded to cover mathematics. 
These ideas were first discussed by Blaise Pascal and by Gottfried von Leibnitz, 
extended in the 19th century by Giuseppe Peano and Gottlob Frege, and 
developed in detail in the 1930s by Kurt Gödel, Alonzo Church, Alan Turing, and 
Emil Post.3 
 
The second revolutionary change associated with the algorithm was the 
realization (which Pascal was already very aware of) that an algorithm was 
something that in many cases could be easily embodied in a physical object, in 
such a way that the steps of the algorithm corresponded to motions of physical 
parts. Man’s control of physical nature had reached a point in the 1930s that it 
became possible for the first time to create a rapid, general, and practical 
implementation of algorithms, a device that we today call the computer. Alan 
Turing’s effort to do just this during World War II is well known,4 and was a 
major contributor to the defeat of Hitler’s military codes during the war.  
 
Although several technical ways were developed for expressing algorithms in all 
their explicit glory, it was an important result of the time that these different ways 
were at their heart all equivalent. Turing’s formulation was the one that seemed 
the easiest to state in simple terms: given his imaginary (or abstract) Turing 
machine, any algorithm could be expressed as a sequence of 1’s and 0’s on a long 
piece of tape, and any sequence of 1’s and 0’s would be interpreted as an 
algorithm by the Turing machine. 

                                                 
3 Berlinkski 2000 is an entertaining book on the history of the algorithm. 
4 It is also a story told in Neal Stephenson’s Cryptonomican 1999. 
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If any algorithm could be represented as a finite sequence of 1’s and 0’s, then it 
could be easily (and naturally) assigned an integer: whatever integer those 1’s and 
0’s represented in binary arithmetic. There was thus a natural order to the set of 
all algorithms: they could be lined up in ascending order, and every algorithm 
would have its place, determined in a straightforward manner.5 It would then be 
possible to search for an algorithm just by stepping through each of the natural 
numbers, because each natural number was, in the sense we’ve just described, a 
representation of an algorithm. And if we’re looking for an algorithm that 
accomplished a particular task (say, that generate the sentences of English), we 
would stop as soon as we found one that we could determine was capable of 
accomplishing the task in question (if we could find a satisfactory means of 
testing whether the algorithm did what we wanted it to do, of course).  
 
Now, by the 1930s, logicians were already talking about generating logical 
languages with the formal mechanisms of algorithms. It was only the next step to 
try to apply the same ways of conceptualizing the problem to the task of 
understanding natural language as the product of an algorithm, as Zellig Harris 
and Noam Chomsky began to do in the late 1940s and into the 1950s.  
 
Zellig Harris was developing the idea (among others) that the pursuit of the right 
grammar for a set of linguistic data was the most compact grammatical 
representation of the data. The focus on compactness naturally grew out of the 
way logicians were thinking about algorithms already at this point: as I pointed 
out, the same idea could be formalized (into a Turing machine program) in 
several ways, but two kinds of priority were to be given to the shortest 
formulation among a set of otherwise equivalent formulations. The priority 
derives, first, from the crucial observation that if we are searching for an 
algorithm by going through the universal inventory in order, going from lowest 
integer (0) to ever larger integers, we are naturally looking at all smaller programs 
before all longer programs: that is just a way of saying that a smaller integer is a 
shorter integer, after all.  
 
But there was much more to the size, or compactness, of the algorithm, and 
during the 1950s this idea was pursued along a number of lines. From the 
linguistic point of view, pride of place goes to Chomsky’s work in The Logical 
Structure of Linguistic Theory (1975 [1955]), in which the proposal is made that 
the goal of the designer of the linguistic theory is to build a theory in which the 
shortest grammar consistent with the data is the correct one. Chomsky noted, 

 

                                                 
5 Different sequences of 1’s and 0’s (different Turing machine programs) might 
correspond conceptually to the same algorithm at a human level, of course. 
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In careful descriptive work, we almost always find that one of the 
considerations involved in choosing among alternative analyses is the 
simplicity of the resulting grammar. If we can set up elements in such a way 
that very few rules need be given about their distribution, or that these rules 
are very similar to the rules for other elements, this fact certainly seems to be 
a valid support for the analysis in question. It seems reasonable, then, to 
inquire into the possibility of defining linguistic notions in the general theory 
partly in terms of such properties of grammar as simplicity. (p. 113-114)…In 
constructing a grammar, we try to set up elements having regular, similarly 
patterned, and easily statable distributions, and which are subject to similar 
variations under similar conditions; in other words, elements about which a 
good deal of generalization is possible and few special restrictions need be 
stated. It is interesting to note that any simplification along these lines is 
immediately reflected in the length of the grammar. (117) …It is tempting, 
then, to consider the possibility of devising a notational system which 
converts considerations of simplicity into considerations of length….(More 
generally, simplicity might be determined as a weighted function of the 
number of symbols, the weighting devised so as to favor reductions in certain 
parts of the grammar.)  (117) It is important to recognize that we are not 
interested in reduction of the length of grammars for its own sake. Our aim is 
rather to permit just those reductions in length which reflect real simplicity, 
that is, which will turn simpler grammars (in some partially understood, 
presystematic sense of this notion) into shorter grammars. 118.  
 

At the same time, other developments were taking place, in both the U.S. and the 
Soviet Union. In the Soviet Union, the distinguished mathematician Andrej 
Kolmogorov (1903-1987) was developing a notion by which any algorithm could 
be assigned an apriori probability. You will recall that to assign probabilities to a 
set of distinct items, the probabilities must add up to 1.0, and this obviously 
requires some care when considering an infinite set, such as the set of all 
algorithms. He proposed that the probability is directly and simply based on the 
length of the shortest implementation of the algorithm, and it is not difficult to see 
that if a binary number of length N is assigned a probability equal to 1/22N, then 
these probabilities will sum to 1, and shorter programs will be assigned a higher 
apriori probability: in fact, two programs whose lengths differ by d will have 
probabilities whose ratios are 22d.6 Very similar ideas were being developed at the 

                                                 
6 I leave aside some technical points that are irrelevant to the overall ideas 
involved, such as the fact that we may decide to assign a higher probability than 
this formula suggests, while at the same time allowing only certain strings of 
binary digits to represent legitimate algorithms. 
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same time in the United States, first by Ray Solomonoff7 and a bit later by 
Gregory Chaitin (Li and Vitányi 1997). 
 
4. It’s fine to have an apriori rating for a grammar, but how well does 
it deal with the data? 
 
 In the development we have considered up to this point, the focus has been on the 
grammar, and developing an apriori (or “prior”) evaluation on the goodness of 
the grammar as such. But that’s only half the story in selecting a grammar: we 
also need to know how well the grammar jibes with the data in question. 
Chomsky’s LSLT touches on the question of disagreement between grammar and 
data (in particular, in his chapter 5 on grammaticalness), but ultimately has little 
to say about the problem.  And the problem is this: would we be willing to accept 
a short grammar for our data even if it did not generate all of the data? If so, how 
much data are we willing to abandon accounting for with each shortening of the 
grammar? What is the fundamental nature of the trade-off between conciseness of 
grammar and fit to the data? Generative grammar had nothing to say to this 
question. 
 
Ray Solomonoff was very directly working on just this problem in the mid 1950s, 
years later posing the problem in a way that sounds to a linguist’s ears just like the 
problem of grammar induction: given a finite amount of data, how do we decide 
what is the best description of the data? In Solomonoff’s words:  
 

On reading Chomsky's “Three Models for the Description of Language” (Cho 
56), I found his rules for generating sentences to be very similar to the 
techniques I had been using in the 1957 paper to create new abstractions from 
old, but his grammars were organized better, easier to understand, and easier 
to generalize. It was immediately clear that his formal languages were ideal 
for induction. Furthermore, they would give a kind of induction that was 
considerably different from techniques used in statistics up to that time. The 
kinds of regularities it could recognize would be entirely new. [Solomonoff is 
undoubtedly referring to Markov models here – JAG] 
 
At the time of Chomsky's paper, I was trying to find a satisfactory utility 
evaluation function for my own system. I continued working on this with no 
great success until 1958, when I decided to look at Chomsky's paper more 
closely. It was easy for me to understand and build upon. In a short time, I 
devised a fast left to right parser for context free languages and an extremely 
fast matrix parser for context sensitive languages. It took advantage of special 
32 bit parallel processing instructions that most computers have.  

                                                 
7 See Solomonoff 1995 for a very readable account. 
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My main interest, however, was learning. I was trying to find an algorithm for 
the discovery of the “best” grammar for a given set of acceptable sentences. 
One of the things sought for: Given a set of positive cases of acceptable 
sentences and several grammars, any of which is able to generate all of the 
sentences - what goodness of fit criterion should be used? It is clear that the 
“Ad-hoc grammar”, that lists all of the sentences in the corpus, fits perfectly. 
The “promiscuous grammar” that accepts any conceivable sentence, also fits 
perfectly. The first grammar has a long description, the second has a short 
description. It seemed that some grammar half way between these, was 
“correct” - but what criterion should be used?  
 
There are other modes of learning in which the “goodness of fit” criterion is 
clearer.  
 
One such learning environment involves a “teacher”, who is able to tell the 
“learner” if a proposed sentence is within the language or not. Another 
training environment gives negative as well as positive examples of sentences.  
Neither of these training environments are easy to obtain in the real world. 
The “positive cases only, with a few errors” environment is, by far, most 
widely available.  
 
The real breakthrough came with my invention of probabilistic languages and 
their associated grammars. In a deterministic (non-probabilistic) language, a 
string is either an acceptable sentence or it is not an acceptable sentence. 
Taking a clue from Korzybski - we note that in the real world, we usually 
don't know for sure whether anything is true or false -but we can assign 
probabilities. Thus a probabilistic language assigns a probability value to 
every possible string. In a “normalized” language, the total probability of all 
strings is one.  
 
It is easy to give examples of probabilistic grammars: any context free or 
context sensitive generative grammar can be written as a set of rewrite rules 
with two or more choices for each rewrite. If we assign probabilities to each 
of the choices, we have a probabilistic grammar.  
 
The way probabilistic grammars define a solution to the “positive examples 
only” induction problem:  
 
Each possible non-probabilistic grammar is assigned an a priori probability, 
by using a simple probabilistic grammar to generate non-probabilistic 
grammars.  
 
Each non-probabilistic grammar that could have created the data set can be 
changed to a probabilistic grammar by giving it probabilities for each of its 
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choices. For the particular data set of interest, we adjust these probabilities so 
the probability that the grammar will create that data set is maximum.  

 
This idea of a probabilistic grammar has become a standard concept in the field of 
computational linguistics; one cannot work in speech recognition, and it is nearly 
impossible to work in syntactic parsing, without using this notion directly. It 
employs the notion of probability in a thorough-goingly formal fashion; it shares 
little or nothing with the urge to view language probabilistically because of some 
perceived fuzziness in linguistic categories or rules.  
 
Summarizing so far: formal analysis provides a new kind of explanation, and 
probability theory is a method to test two aspects of a given analysis – it can test, 
using Solomonoff’s idea, the goodness of fit between the formal grammar and the 
data, and secondly, the preference for a concise grammar can be expressed as a 
probability, a prior probability based on the grammar’s formal length. Given the 
nature of probability theory, it is possible to put these two probabilities together, 
and give a single evaluation for how well a grammar evaluates a set of data, that 
is the probability of the grammar given the data, by combining (multiplicatively) 
the prior probability of the grammar, on the one hand, and the probability that the 
grammar assigns to the data, on the other.8 
 
If we knew nothing about the history of linguistics and had heard the story up to 
here, I think we’d expect that the application of generative models of grammar to 
computational ends would be (or would have been) a piece of cake – nothing 
more natural. In fact, the history was not like that at all, and in the last 15 years, as 
there has been more and more  computational work on natural language, it has not 
been generative grammars that have naturally been applied to this work. Why 
should this be? Is it a sign that something’s wrong somewhere, and if it is, what’s 
wrong?  

 

5. From algorithm to generative grammar, from generative grammar 
to algorithm 
The crooked path that we have followed so far has been intended to illustrate the 
following idea: the development of generative grammar is a step that took place in 
a broader intellectual development that was tightly rooted in conceptual 
developments in the foundations of logic, mathematics, and computation from the 
1930s through the 1960s, and the belief that a concise, algorithmic account of a 
linguistic corpus is a valid form of explanation of the data is of a piece with this 
intellectual movement. 
 
                                                 
8 This evaluation is not a probability unless we divide this product by the 
probability of the data, however. 
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Two things happened in linguistics in the 1960s that bear on this observation.  
The first was that Chomsky emphasized considerably more strongly the human 
and cognitive base for generative grammar than he had in the 1950s (and 
eventually, in the late 1970s, all connection between grammar length and 
grammar preference was abandoned, with the introduction of the remarkably 
simplistic vision of principles and parameters grammars, and essentially a total 
abandonment, with little comment or fanfare, of the central substantive notion of 
generative grammar, that of an evaluation metric); the second was that it became 
possible to start implementing grammars computationally.  
 
Of course, grammars had been implemented computationally before; Chomsky’s 
first employment as a linguist had been working in Victor Yngve’s computational 
group at MIT, developing some aspects of generative grammar computationally.9 
And a number of research groups were implementing grammatical models by 
now, including Zellig Harris’s group at Penn, and Sydney Lamb’s group at Yale. 
[refs] MITRE at MIT, Kuno and Oettinger at Harvard. We could point to the early 
meeting in June 1952 of the MIT Conference on Mechanical Translation, 
organized by Yehoshua Bar-Hillel, as an indicator of the beginning of organized 
work on machine translation (MT), and to the founding of the “Association for 
Machine Translation and Computational Linguistics” ten years later, in June of 
1962, as the beginning of a serious movement in computational linguistics in this 
country.   
 
But with a small number of notable exceptions (the work on Lexical Functional 
Grammar and the work on HPSG being the prime examples, but there are dozens 
of others), mainstream American linguistics has remained aloof from 
computational applications and implementations. It would be a long paper indeed 
– it would be a book – that surveyed the various ways in which computational 
linguistics borrowed from mainstream linguistics, and the ways in which 
mainstream linguistics borrowed notions developed in computational 
communities, and this is not that paper.10 We will limit ourselves to just one 
question, which is: 

                                                 
9 See, for example, Huck and Goldsmith 1995; see also Yngve 1982. 
10 A question was asked at the meeting after this paper was presented: does not 
the message offered here risk making linguistics more dependent on the vagaries 
of the current computer metaphor, at a time when we would prefer to have our 
notions be motivated by strictly linguistic concerns? The answer to this (quite 
reasonable) concern, I suggested, is that linguistics already is heavily dependent 
on the vagaries of current computational metaphors, notations, and assumptions – 
probably far more than most linguists are aware. The role played by feature 
inheritance and unification in both LFG and HPSG are good examples of this 
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5.1 Why don’t we really try to minimize our grammar lengths? 
So why don’t we really try to minimize the length of the grammars we write? 
Oddly enough, I think this brings us to the heart of the question, and I’ll give a 
simple answer to this question. The answer is: it doesn’t do any good to try to 
minimize the length of your grammar unless you add the restriction that your 
grammar is responsible for dealing with all of the data, where “all of the data” is 
established in some fashion antecedently to the analysis – typically by collecting a 
corpus of data ahead of time. If you don’t set such a condition, then it is truly 
inevitable that the analysis will be given free rein to pick and choose the data that 
it analyses best, and that is tantamount to giving the analysis permission to make 
itself very short.  
 
The demand to make the grammar compact makes sense, and works, only if we 
set a condition that the grammar must deal with all of the data, and that includes 
the data that seems somehow “wrong,” and it also includes all of the data that lies 
inbetween the data that is handled very well and the data that seems really wrong. 
It is sometimes surprising just how much data lies in that inbetween area; in many 
cases, it is the bulk of the data.  If we are interested in morphology, then we need 
a morphology of the data that analyzes every word in the corpus; if syntax, then a 
grammar that includes every node expansion and so forth.  
 
It’s only in this way that grammars can be compared, and I’m emphasizing here 
two distinct points: first, if they don’t make the effort to describe the same data, 
then two grammars are not comparable, and second, if we don’t establish 
grammars of a language (or corpus) that describe all of the data in the corpus, then 
we haven’t pushed the grammar, we haven’t put it to the test – where the test 
consists not just of dealing with the cases that come out nicely, but all of the rest 
as well.  
 
The problem of dealing with all of the data is essentially the problem of scaling, 
which is to say, extending an analysis from a toy set of data to a realistically large 
set. This challenge is one of the central concerns of work in computational 
linguistics, and just about all of the work on applications involving computational 
implementations. Scaling up to real data (from toy data) presents all sorts of 
challenges, and the heart of the problem lies in the fact that you just don’t know 
what the hardest challenges will be in a particular case until you actually 
undertake it. Linguists have mixed feelings about this challenge: linguists dealing 
with individual languages that have not been well-studied often view this 
challenge very positively, recognizing that every morpheme and every word is a 

                                                                                                                               

phenomenon: the exploitation by linguists for their own purposes of ideas 
developed in the computational community. 
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value unto itself in the language. Mainstream theoretical linguists do not always 
share this perspective, perhaps due to the feeling that value is not uniformly 
distributed across data, and the challenge to the linguist is to find those data of 
great value: these are the data which can be shown to shed bright light on 
theoretical divides, serving as decisive data in crucial experiments setting one 
theory against another.  
 
6 Two applications 
It might be a good idea to descend from these abstract altitudes and discuss a 
couple of application areas, where algorithmic interpretation of linguistic 
problems have been applied computationally. I’ll discuss two briefly: first, speech 
recognition, and then the area that I have been working on, unsupervised learning 
of morphology. 
 
Speech recognition involves the assignment of a correct grammatical parse to a 
sentence. But in particular, speech recognition requires what’s called in the biz a 
language model that determines, from the point of view of what is known about 
the language, what is the most likely word-interpretation of a chunk in the sound 
stream. Computational speech recognition, just like human speech recognition, is 
an interplay of two things: paying close attention to the sound stream and using 
your knowledge of what’s been said and your knowledge of how the language 
works to decide what the most likely interpretation of the sounds. “Your 
knowledge of how the language works”: that phrase sounds remarkably like 
words we linguists use to describe grammar. So the question naturally arises, can 
speech recognition systems use linguists’ grammars to serve the function of a 
language model in a speech recognition system?  
 
To date, the answer has largely been No, and this may come as a surprise to 
linguists. There are three major reasons for this negative answer: 1. a probabilistic 
model is necessary, in order to integrate knowledge of language with perception 
of sounds coming in; 2. knowledge of words that have been used is extremely 
important, and largely more important than syntactic structure; 3. current 
grammatical models are very poor at dealing with a question like: if a sentence 
begins with the following string of words, figure out what their syntactic structure 
is and the likely candidate categories and words to immediately follow. Syntactic 
theory largely works with entire sentences, and speech recognition doesn’t have 
that luxury.  
 
I should say a bit more about the notion of a probabilistic model. Probabilistic 
models are versions of familiar formal grammars to which some additional formal 
devices have been added which permit the human who is evaluating them to 
determine quantitatively how well they fit the data. It’s perhaps worth making 
explicit that (despite rumors to the contrary) probabilistic models are not different 
in formal ways from non-probabilistic models, except that they may be a bit more 
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formal than formal (since there are some mathematical conditions that they must 
respect). The critical property that probabilistic models have is that in assigning a 
probability to each analysis that is consistent with a set of data (in the case at 
hand, we’re talking about assigning a syntactic structure on the basis of the words 
that we believe we have heard so far), it’s possible to merge or integrate those 
probabilities with the probabilities which the sound part of the speech recognizer 
is simultaneously developing. To repeat, a speech recognition system consists of 
two parts, a sound model which attempts to determine what linguistic sounds 
most reasonably fit the physical sounds which are input to the device (crudely 
speaking, what phones most likely correspond to the rich physical input) and a 
language model, which can determine what is a reasonable or likely continuation 
of the words, with their structure, that have been said up to this point. The central 
point is that if both the speech and the language model are probabilistic, then they 
speak the same conceptual language, and it is easy to integrate the information 
that they are computing: it is most likely that what the speaker is actually saying 
is that which is jointly, or at the same time the most likely word, given the sounds 
and given the expectations set up by the words and grammatical construction up 
to that point. A probabilistic model is well suited for judging what the relative 
ranking is of various alternative analyses, given some particular set of data.11  
 
One of the most striking things about the models used in most speech recognition 
systems is how little they exploit what is known about phonetics and phonology. 
The standard models take into account the notion that speech is a realization of a 
sequence of phonemes, but little else: little or no knowledge of dialect variation, 
of prosodics, of intonation, of features or feature structure, of underspecification, 
or anything else that phonologists and phoneticians worry about and, we may 
hope, have learned a good deal about. Some phonologists have taken this 
observation to heart, but quite few, and the fact of the matter is that if a more 
sophisticated phonological approach were to bring real improvements to speech 
recognition, they would be instantly adopted by the speech community, which 
cares very much about performance. Phoneticians and phonologists should 
explore the value that their experience and their theories can bring to this area. 
 
The second application that I would like to say a bit about is a system called 
Linguistica that I have been working on for several years. It is a system whose 

                                                 
11 If this sounds vaguely like optimality theory, and the perspective that a theory 
should be called upon to choose the top candidate of a ranked set, rather than to 
establish a fence between those representations that are legitimate and those that 
are not, it is no coincidence; optimality theory can certainly be viewed as a 
computational system for approximating the calculation of probabilities, if a 
bound on the number of violations a constraint can have is established. 
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goal is to automatically analyze the morphological structure of a language; I 
reported on its early design in a paper to the Chicago Linguistic Society in 2000 
(see also Goldsmith 2001).  I have to think twice when asking myself whether it is 
in fact an application, and whether it is an application of linguistic theory. It is a 
stand-alone system which accepts as input linguistic data, either in phonetic or in 
orthographic form, and performs an analysis which could quite naturally be of use 
to someone other than its designer, so that makes it an application, I would say. 
The publisher of a multi-lingual electronic or on-line encyclopedia could use such 
a system to automatically create a morphologically-aware index, in the following 
sense. If we were designed an encyclopedia like Microsoft’s Encarta in a variety 
of world languages, we would want the user to be able to enter any inflected form 
of a word, and to be able to access paragraphs containing alternate word-forms in 
the same lexeme as the one the user had typed in. This is a relatively well-
understood problem in English, but it is a challenge in a language for which 
computational morphologies are not easily available. Such a company could easy 
perform a morphological analysis of the entire corpus in a few minutes, and 
achieve the goal in short order. 
 
There are many challenges in building such a system, but perhaps the most 
striking one is the globality of the problem. Perhaps that is not the best word to 
describe the challenge, but what I have in mind is this. In contemporary linguistic 
theory, it is a commonplace that the linguist who gets ready to tackle a problem 
has to define well what he or she will deal with, and in the same moment a whole 
host of other problems are left aside. There is nothing wrong with this, to be sure, 
and linguistic theory could not advance if this were not the norm. But the 
development of an application is often forced to deal with a range of questions 
that current theories have little interest in. The theories may have no interest in it, 
but the application requires their solution if it is to move forward. 
 
I have been faced specifically with this situation in the development of automatic 
morphological analysis, in the following way. Morphological analysis is a 
significant and sophisticated subfield of mainstream linguistic theory, with a host 
of theoretical questions ranging from morphology’s interaction with semantics, to 
its interaction with syntax, to its interaction with phonology. But the down-to-
earth task of determining how many morphemes there are in a word, where they 
begin and where they end, is question that linguistic theory frankly does not take 
very seriously: we may expect our students to figure out how to do it in an 
introduction to linguistics, but no theoretical question in mainstream morphology 
I know of is answered by finding a better way to discover the morphological 
parsing of a word.  But: if finding a better way to discover the morphological 
parsing of a word is what it takes to turn linguistic theory into an application, then 
it is linguists who should take up the challenge: there is nobody better equipped 
than us to perform the job!  
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In the end, of course, I think that there is a great deal to be learned by developing 
systems that stay close to the data, as all applications do.   
 
7 In conclusion 
 
I will conclude by putting together again some of the points we have been 
discussing. First of all, that there are deep connections between the algorithm and 
the rise of generative grammar; second, that these connections suggest a deep 
connection between formalist accounts of language and a thorough-goingly 
empiricist account of natural language, rather than a rationalist point of view; 
third, viewed in this way it becomes necessary to consider not only a formal 
treatment of the internal structure of the grammar but also a formal (which is to 
say, quantitative) treatment of the relationship of the grammar to bodies of 
evidence; and fourth, bodies of evidence can play this role most legitimately when 
they are established independently of the grammars which are conceptually 
responsible for explaining them.  
 
Such a style of formal linguistic analysis has a better chance to undergo a 
transformation to an application – if you should believe that to be an important 
goal. (I do.) 
 
On the other hand, algorithmic explanation is only one of several kinds of 
explanation; others that continue to play an important role in linguistics include 
historical, sociological and psychological explanation. How do we make choices 
among these different types, or styles, of explanation, and how do we evaluate 
their (relative) success? Ultimately in three ways, it seems: first, the degree of 
insight that they offer the scientist; second, their ability to connect hitherto 
unrelated fields of inquiry; and third, their ability to give rise to useful 
applications. These are the criteria by which any scientific (and many non-
scientific) approaches are evaluated. In light of this, the take-home message (as I 
see it) is that formal linguistics should be looking for more applications, and that 
more and better applications will be possible as formal accounts develop 
probabilistic models that offer an account of a wide body of data. 

 

References 
 

Chomsky, N. (1975 [1955]). The Local Structure of Linguistic Theory. New York, Plenum. 
  
Bar-Hillel, Y. (1960). “The present status of automatic translation of languages.” Advances in 

Computers 1: 91-163. 
  
Berlinski, D. (2000). The advent of the algorithm : the idea that rules the world. New York, 

Harcourt. 
  



Papers from the 40th meeting of the Chicago Linguistics Society (2004) 

 17

Goldsmith, J. (2000). Linguistica: An Automatic Morphological Analyzer. The Proceedings from 
the Main Session of the Chicago Linguistic Society's Thirty-sixth Meeting.  Volume 36-1. 
A. a. J. B. Okrent. Chicago, Chicago Linguistics Society: 125-139. 

  
Goldsmith, J. (2001). “Unsupervised Learning of the Morphology of a Natural Language.” 

Computational Linguistics 27(2): 153-198. 
  
Huck, G. J. and J. A. Goldsmith (1995). Ideology and linguistic theory : Noam Chomsky and the 

deep structure debates. London ; New York, Routledge. 
  
Li, M. and P. M. B. Vitányi (1997). An introduction to Kolmogorov complexity and its 

applications. New York, Springer. 
  
Solomonoff, R. (1995). The discovery of algorithmic probability: a guide for the programming of 

true creativity. 
  
Stephenson, N. (1999). Cryptonomicon. New York, Avon Press. 
  
Yngve, V. (1982). Our double anniversary. http://acl.ldc.upenn.edu/P/P82/P82-1018.pdf 
 


