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The problem 

How can we tell whether we are studying the phonological equivalent of the long division 
algorithm? That particular (heuristic-led, stochastic) algorithm was a momentous invention, and it 
undoubtedly changed world history – but it offers little or no insight into the workings of the 
number system, and is no longer a significant part of our world, even though we still use division 
all the time, using a different algorithm that hardly anyone knows. 

This is inexorably linked to the question of the reality of our work as linguists, and to the autonomy of 
linguistics as a discipline. We may ask: who should worry if linguists’ models don’t look like the 
models of the other cognitive sciences (or other sciences tout court) – them or us?  

It is a source of concern that the level of description of our contemporary phonological models is the 
level of analysis that is most convenient for smart phonologists – while the level of analysis preferred by 
most learning algorithms is (a) lower; (b) quantitative in character; (c) one at which computation can be 
understood as optimization using local search techniques. (Optimality theory shares with generative 
phonology in every way the placement of generalizations at the level of analysis convenient for human 
observers; avoidance of what Smolensky 1986 calls the subsymbolic level is the great irony of current 
OT.) 

Quantitative character of analysis: Since the rise of generative phonology, and with the notable 
exception of SPE’s treatment of English stress (utilizing a 0-4 levels of stress, with automatic 
downshifting of stress during cyclic stress reassignment), the watchword has been: 

if numbers are involved, it’s phonetics; if it’s phonetics, it’s not phonology. This maxim can 
be made exceptionless by restricting it to non-integers:  
if numbers other than whole numbers are involved, then it’s phonetics, and it’s not 
phonology. 

Among the apparent violations of the first, but not the second, maxim are: (1) column height on the 
metrical grid (for accent, uniformly; for moraicity, Hayes 1995 among a few others). (2) Measure of 
constraint-violation in OT (Kirchner). 

The irony runs deeper. Generative theory is riddled with quantitative measures of complexity, from 
underspecification theory and phonological markedness considerations (both informal versions of 
information theory) and its intellectual grandfather, phonemic theory, all the way to the generative 
evaluation metric, which proposes a theory of grammar selection based on minimal length of grammar. 
Largely unbeknownst to linguists, sophisticated work in this area, both theoretical and applied, has 
continued for decades (from Kolmogorov and Shannon in the 1930s and 1940s down to Rissanen’s 
minimum description length approach (1989), and others in the 1990s).  

Digression on OT use of continuous variables: OT’s fundamental claim is that "In a variety of 
clear cases where there is a strength asymmetry between two conflicting constraints, no amount of 
success on the weaker constraint can compensate for failure on the stronger one." (Prince and 
Smolensky 1997 Science 275: 1604.) But that claim can easily be made invulnerable to test if we 
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choose to reinterpret violations as "evidence" that constraints should be broken up into pieces. For 
example, in Kenstowicz’s classic Chukchee epenthesis case, things works by the principle: 
"Epenthesize when you need to avoid a consonant cluster inside a syllable, but don’t epenthesize 
inside a morpheme unless you have no way out." That is, using strictly ranked constraints, No 
Coda Clusters is the highest ranked constraint, Align Morpheme to Syllable is the next ranked 
constraint, and No Coda is ranked next. Clearly the right move is to make Coda weight a 
constraint whose value is numerical, and which can outweigh Alignment when its violation is "2 
coda consonants" or greater. As Smolensky himself notes (ibid., 1608), "[t]hat strict domination 
governs grammatical constraint interaction is not currently explained by principles of neural 
computation"; as he doesn’t say, neural models suggest a harmonic phonology as in Goldsmith 
(1990, 1993), itself explicitly based on Smolensky’s harmony theory (Smolensky 1986).  
We want a model in which search -- both for grammar and for individual utterance – is near-local, 
and in the ideal case is a matter of evolution into an attractor of a dynamical system. (Contrast this 
with search in OT, which can be described as: "Search for the representation R which has the 
smallest decimal (or larger radix as necessary) expansion 0.a1a2a3a4," where a1 is the number of 
violations by representation (R) of constraint 1, a2 is the number of violations of constraint 2, etc. 
Call that mapping V, whereby a representation R is mapped to such a decimal expansion; as far as 
I know, no knowledge of the local topography of the map from R to V(R) at a given place is 
helpful in locating the V’s global minimum. Smolensky (op. cit.) implies (as I read him) that just 
such a Lyapunov function (or "harmony function") exists for a neural network implementation of 
OT (and he contrasts P & S’s model to others by virtue of it’s not being an "informal" 
implementation), but how to develop a Lyapunov function whose local (or global) minima 
corresponds to those of V(R) remains a mystery.  

  

  

Dynamic Computational networks (with Gary Larson) 

1. Motivations:  

1.1. Integration of rules and representations: a continuation of the unfinished task of 
enriching representations; explicate the notion of stress clash. 

1.2. Make available continuous-variable learning algorithms. 

1.3. Deal with cyclicity non-derivationally. 

1.4. Integrate accent and sonority. 

1.5. Do away with irregular and representationally clumsy use of numerical values 
(Continuous column constraint, moraic mismatch (Hayes 1995)). .  

2. Model 

We model each syllable with one node; each node has an activation level (which can be positive or 
negative). The activation level of each unit is the sum of four terms: 
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1. Positional activation – by virtue of position in a word (initial, final, penult)  
2. Inherent activation – in quantity sensitive systems, heavy syllables get extra activation  
3. Bias – in some models, we assign a constant (non-zero) activation to all units  
4. Local effect – activation from left- and right-hand neighbors. Activation from the right-hand 

neighbor is that neighbor’s activation times α; activation from the left-hand neighbor is that 
neighbor’s activation times β.  

1. Limitations 
1. Values of the derived activation remained largely uninterpreted.  
2. The units appeared to be hard-wired: how do we deal with insertion and deletion?  
3. The waves are epiphenomenal, and rhythm is not explained.  
4. No natural way to deal with consecutive stresses: stress clash avoidance is built-in too 

strongly.  
5. No way to link lengthening to stress clash avoidance. 

 

Harmonic OSCILLATORS: some background 

Oscillators are at home in the material world:  

4. There are two empirical traditions studying the implementation of rhythm, one (evolutionarily) 
higher and one lower. The higher is summarized in Scott Kelso, Dynamic Patterns (MIT Press 
1995), itself heavily indebted to the work of Hermann Haken; the lower is more informed and 
interested in problems that can be defined at the cellular level, or in terms of networks of 
countable numbers of neurons. 

4.1. A typical presentation of the problem of rhythm: 

Rhythmic phenomena abound in biology at all levels of analysis (refs.). At the behavioral level, rhythms can be 
observed in which the entire body or parts of the body move in a cyclic, repetitive fashion. Running, swimming, 
flying, breathing, chewing, and grooming are the most cited examples, but rhythmic behaviors need not be so 
stereotypic, a fact attested to by the musical accomplishments of humans. Although they are commonplace, 
behavioral rhythmicities are not well understood. To date, the efforts of neuroscience to explain behavior such as 
locomotion have been shaped in part by the issue of whether the behavior is generated centrally, by properties 
intrinsic to the central nervous system, or whether it is achieved by sensory feedback from moving parts of the body 
(refs.) Conventional wisdom and the weight of evidence favor the view of central pattern generation: a repetitive 
rhythmic output is said to be the product of a neural "oscillator" conceived either as a single pacemaker neural 
(ref.) or as a network of neurons (ref.) The pioneering work of von Holst (ref), an early proponent of central-
pattern generators, addressed the problem of the coupling of two or more neural oscillators… 
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Glass and Mackey (op.cit): Periodic stimulation of spontaneously oscillating physiological rhythms has powerful 
effects on the intrinsic rhythm. As the frequency and amplitude of the periodic stimulus are varied, a variety of 
different coupling patterns are set up between the stimulus and the spontaneous oscillator. In some situations the 
spontaneous rhythm is entrained or phase locked to the forcing stimulus so that for each N cycles of the stimulus 
there are M cycles of the spontaneous rhythm, and the spontaneous oscillations occurs at fixed phase (or phases) of 
the periodic stimulus (N:M phase locking)….The stable zones of the phase locking most commonly observed 
correspond to low-order ratios between the number of cycles of the forcing stimulus and the intrinsic rhythm (i.e., 
2:1, 3:2, 1:1, 2:3, 1:2).(119-123). 

Both of these traditions are of interest to us, and both are in agreement in viewing the system as a 
dynamical system, that is, as a set of differential or difference equations which trace the evolution of a 
system in an n-dimensional space, where a variable can be identified as time (either discrete time, in the 
case of difference equations, or continuous time, in the case of differential equations).  

There are two distinct families of models of coupled oscillators – one in which the coupling is 
continuous throughout the phases of both oscillators, and one in which one oscillator "kicks" the other 
when its phase is 0. Both families of dynamical systems have large zones of regular behavior as well as 
large zones of chaotic behavior. We will focus on the first class here (in part, because what we want is to 
explore systems where coupling of low rational numbers – especially 1:1, 2:1, and 3:1 -- emerges out of 
a broad range of parameter settings, rather than to build that in).  

In the simplest cases, systems of multiple oscillators can be viewed as sets of oscillators �i, where d/dt �i
(t) = ωi + Hi( �1, �2, …, �n ). (1) 

For the very simplest case, we could make two additional assumptions: all the effects can be understood 
as the sum of pairs of interacting oscillators; and oscillators interact on the basis of the difference of 
their phase. That is,  

Hi = Σ j hij ( �i - �j ) (2)
 

So, what are the hi,j? The Hi are periodic (every 2π, they come ’round again), so we consider the Fourier 
expansion (i.e., model it with sines – cosines are unnecessary because hij(0) = 0 ). 

In short, d/dt �i(t) = ωi + Σ j aij sin ( �i - �j ) (3)
 

A model like this allows for excellent (1:1) phase-locking between oscillators whose inherent frequency 
(ωi) are quite different. 

Linguistic Model of prosodic rhythm 

6. Back to linguistics. How can we think about phonological problems as dynamical systems? 
What do we get by trying to do so? What we gain is two things, possibly three: first, the 
possibility of more rich, powerful models, if the continuous variables involved can be mapped to 
observables; second, we may be able to explain qualitative (discrete) behaviors if we can show 
that they correspond to attractors, or basins of attraction, in the phase space of such a dynamical 
system (and third, we may be able to improve channels of communication with our sister 
disciplines). 
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I will assume that there are three oscillators available (mora, syllable, and foot). Each have an 
inherent period, of increasing magnitude, from mora to foot. I would like to show that the metrical 
grid is a simplified idealization of such a dynamical system.  

 Sum of two waves, and … 

x x x x x 

x x x x x x x x x x ….. Metrical sketch of that graph: 

Equation (3), as it stands, deals only with 1:1 phase locking, but it can be generalized to the more 
general case of M:N phase locking (M, N integers) by dropping the assumption that each oscillator is a 
"pure tone" (that is, of constant angular velocity) and assuming only that it is periodic. 

Now, saying that the oscillators are periodic implies that they can be modeled with a Fourier series, 
which is to say (ignoring the cosine term as before – remember this from phonetics?).  

�i(t) = Σ n an sin(nωit) (4)
 

The an form a series in which only the first few terms make any difference to us: we’ll get enough 
mileage for now just looking at the first two. This means that (3) isn’t quite general enough; in the case 
of two coupled oscillators, each oscillator will have two terms to describe it: 

�1(t) = a1,1 sin ω1t + a1,2
 sin 2ω1t (5)

 

�2(t) = a2,1 sin ω2t + a2,2
 sin 2ω2t

 

and so the new form of (2) is a bit more complicated: instead of there being just 2 parameters specifying 
the coupling between oscillator 1 and 2, there are 4: 

Hi = some function of (�1, �2 ) =
 

some function of (a1,1 sin ω1t + a1,2 sin 2ω1t,
 

a2,1 sin ω2t + a2,2 sin 2ω2t ) 
 

and we’ll actually assume it’s … 

= a linear combination of  

(sin ω1t - sin ω2t) and (sin ω1t - sin 2ω2t) and (sin 2ω1t - sin 2ω2t) (6)
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[but the first and third can be collapsed to a single term]. 

So when this is all done, what we end up with is a pair of oscillators whose frequency is determined by 
the following equation, and without loss of generality we can consider a system with two degrees of 
freedom: we fix ω2 as 1, letting ω1 vary; and α can take on any value between 0 and 1 (see note 2).  

d/dt �1(t) = ω1 - α sin ( �1 - �2 ) - ( 1- α ) sin ( �1 - 2�2 ) (7)
 

d/dt �2(t) = ω2 + α sin ( �1 - �2 ) + ( 1- α ) sin ( �1 - 2�2 )
 

What we would like to find is this: 

a setting for these parameters whereby the system would easily move from 1:1 to 2:1 phase-locking and 
back again on the basis of the linguistic context.  

This highlights an important point: a system of coupled oscillators is a dynamic system with attractors, 
unlike the model of dynamic computational networks. The model will contribute to our understanding of 
linguistic problems if its attractors can be shown to correspond to common linguistic patterns.  

8. Linguistic concerns 

7. Quantity-Sensitive stress systems: with proper parametric settings, we can establish a triple of 
oscillators (mora, syllable, foot) which forms a dynamical system, and which has two attractors, 
one in which the foot:syllable ratio is 1:2 and another in which the ratio is 1:1. The system 
chooses 2:1 when the syllables are light, and 1:1 when they are heavy – i.e., it displays the 
core quantity-sensitive accent placement algorithm. This is a remarkable result, I think. We 
want to replace the hand-crafted process of assigning constituency on the basis of factors that we 
eyeball with dynamical systems whose attractors just happen to have the appropriate integral 
phase-locking relationships. 
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above: Mora-Syllable waves without coupling 

 

above: Mora-Syllable waves, same wavelengths, with coupling 

 

above: Syllable-Foot waves, no coupling.
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above: Syllable-Foot waves, with coupling: Here we see the transition from 1:1 coupling to 2:1 
coupling. 

  

 

above: Same as previous, but with all three coupled waves illustrated (mora, syllable, wave), 
displaying 1:1 coupling on first 3 syllables, then 2:1 coupling – i.e., quantity sensitivity. 

Conclusions 

Phonology can be a sophisticated descriptive domain, playing by its own rules. To some degree, it must 
be so. But mainstream theoretical linguistics has fallen behind in the cooperative venture that we call the 
cognitive sciences in some important respects. (The most important respect is a cavalier attitude towards 
learning algorithms, and an unwillingness to let work on learning algorithm drive linguistic theory – as 
opposed to be perfectly willing to let linguistic theory drive learning theory, which inevitably leads one 
to a learning theory that looks like an expert system, and hence devoid of serious interest.)  

Phonology must thus continue to develop its own domain-internal descriptive tools. But both 
foundational concerns and the ability to translate linguistic models into systems that can be linked to 
other cognitive systems requires us to make the effort to understand the mathematical underpinnings of 
linguistic systems and to be willing to be open to the possibility that successful phonological modeling 
is not reducible to convenient generalizations that are easily grasped at the phonologist’s most 
comfortable level of analysis.  
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