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This paper derives from an interest in developing algorithms which accept 

raw linguistic data as input, and produce as their output an analysis of the data, or 
a grammar.1 In this day and age, that concern may strike an audience of linguists 
as a bit unusual, but I think it is a reasonable challenge to undertake. In this paper, 
I will discuss the techniques and the results of developing just such an algorithm 
for the purposes of learning morphology on the basis of essentially no prior 
knowledge save for the data. The primary goal described here is the determination 
of the location of the breaks between morphemes inside a word. All of the ideas 
that I will present have been implemented computationally, and the reader is 
encouraged to download the program in question, Linguistica, which runs under 
Windows and which can perform automatic morphological analysis of a corpus of 
the user's choice. 

Linguists with long memories will remember that Zellig Harris published 
a renowned paper in 1955 entitled From phoneme to morpheme with just such a 
goal in mind. Some ten  years later (1967), at the dawning of the age of computers 
for everyman, he tried out his algorithm on a small corpus, and got some 
interesting results, but little overall measurable success. Some years after that, 
Hafer and Weiss (1974) took up Harris’s idea again, refined and sharpened it, 
consider a dozen variants of it, all sympathetic to Harris’ less than fully elaborated 
notion. Again, the results were intriguing, but they were not standing on the 
threshold of unadulterated success.2 

In the first part of this report, I will review Zellig Harris’s idea, illustrate 
where it works well and where it fails.  On the face of things, it seems plausible, 
but the results suggest we should look for alternative approaches.  

 In the second part, I will attempt to explain why no such local account can 
succeed at providing a morphology, and give a brief account of an alternative 
view which selects a morphology on the basis of a global measure of simplicity 
and optimal compression. 

In the final part, I will give a brief overview of how the reader may 
download a working version of the automatic morphological analyzer, part of a 
program called Linguistica, available on the Web. 

1. Zellig Harris: morpheme boundaries occur at positions of maximum 
phoneme choice 
Harris’ proposal in his 1955 and 1967 publications were not quite the same, but 
the later paper had been explicitly developed to make it computationally feasible; 
the procedure of the earlier paper was designed in terms of what questions a 
linguist would ask an informant. Harris’ idea was that after any series of letters3, 
there will typically be 1 or more letters in possible continuations of a word.4 The 

 



more choices there are, Harris reasoned, the more likely the spot is to be a 
morpheme boundary, in the sense that (for example) after the letters jum, one 
might find only two continuation letters in a typical English corpus (p as in jump, 
jumps, jumping, jumped, and b as in jumble). After jump, however, there are five  
possibilities (in the same corpus): s (jumps), e (jumped, jumper), i (jumping), y 
(jumpy), and word-boundary (jump). Each position between letters can be 
associated with such a count, which is called the successor variety. Harris 
reasoned that positions whose right-branching count was relatively large were 
likely to be morpheme boundaries. (One can also define the reverse, or mirror-
image, tally, called the predecessor variety). What does "relatively large" mean? 
There are two natural interpretations: the successor variety at a particular position 
is large (1) relative to the successor variety of the immediately preceding and 
immediately following position, or (2) relative to a particular threshold value. 
Both interpretations have been explored; I will focus in what follows on the first 
interpretation. 

It would seem that the same consideration ought to select prefixes as well. 
In a typical 50,000 word corpus of English (the first 50,000 words of the Brown 
corpus), there are 9 distinct letters that may follow a word-initial d, and 18 that 
can follow word-initial de, while after the first three letters of decided, only 6 
letters can follow. So the Harrisian considers the possibility that positions whose 
successor variety is a local maximum—larger than the successor variety of the 
preceding and following position—marks a morpheme break, we declare a 
morpheme boundary after de (see Table 1 for sample data). 

So far, so good: but the procedure also declares a morpheme boundary 
after (almost) all initial de-s, most of which are not prefixes (as in dead, demon, 
deep, Delhi, and so on). And it also declares equally loudly that there is a 
morpheme boundary after da, after di, and after do, too! Fa, fe, fi, fo and fu are 
likewise declared  morphemes (as are a wide range of CV sequences, and some 
CCV sequences like bla, bri, bro, cha, gra, gri, gro, pla, pre, pri, pro, sha, sho, 
sta, ste, sto, tra, tri as well as imp, qui and wor, for the same reasons – the method 
cannot distinguish between phonological freedom brought on by morphology or 
simply left open by phonology). oppo- is also identified as a morpheme (because 
of the existence of oppo-se, oppo-nent, and oppo-rtunity), and conservatives is 
parsed co-nserv-ati-ves.  

What’s wrong with the Harrisian approach? The main problem with 
Harris's algorithm is that it cannot distinguish between freedom due to 
phonological combination and freedom due to a boundary between two 
morphemes. And this is a very difficult problem to fix up with small fixes, for the 
very problem that causes the distress is the problem the algorithm is supposed to 
deal with in the first place.5  

2. Naive description length and an evaluation metric 
Harris asked the right question, but the kind of answer that he offered was in an 
important sense heading off in the wrong direction. (Current received linguistic 

 



opinion, if such could be said to exist, is that his question was the wrong one to 
ask, and that it is a matter of pure indifference whether his answer worked to any 
degree.) There is no local criterion that can determine where and how a word 
should be divided into morphemes; there is only a global criterion, or so I shall 
suggest in this section. A global criterion is one that is based on all decisions 
about all of the words in the entire lexicon: the correct analysis of each word is 
potentially influenced by decisions about any and all other words, directly or 
indirectly. Does this spell the end to Zellig Harris’s dream of a procedural or 
algorithmic account of morphological analysis? Not at all, and that is what I wish 
to show in what is necessarily a sketchy fashion in the rest of this paper; I have 
provided a detailed account elsewhere (Goldsmith 2000).  

Let us begin with some observations which can serve as starting points on 
the road to a precise theoretical formulation: 

 
(1) a. A word which is morphologically complex reveals that composite 

character by virtue of being composed of (one or more) strings of letters (or 
phonemes) which have a relatively high frequency throughout the corpus.  
 
b. An explicit recognition of such high frequency substrings allows for a 
compact description  of the words of a language. Lexicographers know what 
they are doing when they indicate the entry for the verb laugh as laugh, ~s, 
~ed, ~ing; they recognize that the tilde “ ~ “ allows them to utilize the 
regularities of the language in order to save space and specification, and 
implicitly to underscore the regularity of the pattern that the stem possesses. 
A measurement of the degree of compression allowed in this way will be a 
very good measure of the success of a morphological analysis. 
 
c. However: morphological analysis is not merely a matter of frequency of 
particular strings of letters. Not every word that ends in –ing is 
morphologically complex (string, sing, etc.). Even more: every word that 
ends in –ity also ends in –ty, and so final –ty has a higher frequency than      
–ity; but still, -ty is a suffix only in a few words (like sixty), while  -ity is a 
suffix in far more words, despite its lower frequency (insanity, precocity, 
etc.). And y has a higher frequency than either of them, and it is a suffix in 
some words (like dirty, runny, etc.), but it is not in insanity, precocity,  and 
so forth. The point is this: the frequencies matter, but only in the 
overarching context of a total morphological analysis of all of the words of 
the language.  
 

Let us consider the following proposal: 
 

(2) Naive Minimum Description Length: In analyzing a corpus, devise an 
analysis of the words into stem + suffix with the requirement that every stem 
and every suffix must be used in at least 2 distinct words. Tally up the total 

 



number of letters in (a) each of the proposed stems, (b) each of the proposed 
suffixes, and (c) each of the unanalyzed words, and call that total the “naive 
description length”.  

 
This is a perfectly reasonable statement; it faithfully represents the view 

that has suggested for many decades and which in some respects has become 
received opinion: long-term memory is costly, and a grammar should be valued in 
proportion to how little information it presupposes among the underlying entries 
in the lexicon of the language in question. 

I will explain below why I refer to this as a naive Minimum Description 
Length view; but it is not at all a bad initial hypothesis. As a hypothesis, it has one 
important characteristic: using it, we can evaluate two or more competing 
hypotheses independently of how we arrived at the hypotheses. Any particular 
morphological hypothesis regarding a corpus will consists of a list of stems, 
suffixes, and unanalyzed words, and assigning a naive description length is very 
easy, so choosing the best analysis among a set of analyses in hand is easy (except 
in the case where two analyses coincidentally have the same naive description 
length, an unlikely case with a large corpus). For those with long memories, this 
notion of a naive description length corresponds precisely to Chomsky’s notion of 
a evaluation metric of grammar based on the grammar’s total length, a notion 
which Chomsky abandoned in the shift to a principles and parameters view of 
universal grammar, first in Chomsky and Lasnik 1977, and later in Chomsky 
1981.  

Let us next observe that a theory which has an explicit description length 
formula ( = evaluation metric) can be associated with an explicit automatic 
learning algorithm if two further conditions hold: (1) first, we must have an initial 
boot-strapping procedure which can devise some sort of morphological analysis of 
the data; (2) second, we must have toolbag of procedures which can take a good 
look simultaneously at the data and the analysis, and propose changes that might 
improve the analysis. It is extremely important to understand that the toolbag of 
procedures–heuristics, we may call them–need not be particularly clever or even 
good at what they do, for their effects will be accepted if and only if they reduce 
the total naive description length. (Later we will have a description length  which 
is not “naive”, but that will have no effect on this basic notion.) Selecting a 
grammar reduces now to a problem of optimization.  

Consider an example such as the following. Suppose the corpus that we 
were analyzing consisted of the following words: walk, walks, walking, walked, 
jump, jumps, jumping, boy, boys, sing, sings. There are 54 letters in this set of 
words, and thus the strictest morphological analysis, which posits no analysis for 
each word, would have a naïve description length of 54 letters. An analysis which 
proposes a stem list {walk, jump, boy, sing}and a suffix list {s, ing, ed} has a total 
naïve description length of 15 + 6 = 21 letters, which is clearly an improvement. 
Observe that if we consider an analysis in which the word sing were analyzed as s 
+ ing, the total description length would increase, since it would require positing 

 



a new stem s; hence the desire to achieve minimum analytical length keeps us 
from embracing that hypothesis. 

3. Bootstrapping heuristic 
It is not difficult to construct algorithms to produce an initial morphological 
analysis of a corpus of languages whose morphology is as simple as those of 
Indo-European languages.6 The first step is to produce a candidate set of suffixes 
(or prefixes). I will describe one very simple method which gives surprising 
accurate results. 

As we have already noted, we would expect a morpheme to have the 
property that the letters (phonemes) that compose it occur far more frequently in 
the right order – the order that spells the morpheme! – than would be expected 
letters were combined in a random fashion. That seems so obvious that it may be 
hard to imagine that its implementation could return something of value – and yet 
it does. Let us count the raw frequencies of occurrence of each letter in a corpus, 
and call the probability p(λ) of a letter λ simply the proportion of the count of λ to 
the total number of letters. If language were random – if there were no 
morphemes and no phonotactics – then the expected frequency of a sequence of 
letters would be the product of the probabilities of each of the letters: 
p(λ1)p(λ2)...p(λn). So we will compare the actual frequencies of all such 
sequences to those expected probabilities, and to keep the numbers manageable 
we will compute the logarithm of this ratio of comparison: log p(λ1 λ 2 ... λ n) / 
p(λ1)p(λ2)...p(λn ).7 This measures, if you will, the stickiness of the sequence of 
letters (phonemes), but we also care about how often the sequence as such 
appears, and hence we use the measure in (3), where λn is a word boundary "#" in 
all cases. 
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It is straightforward to apply this measure to all sequences of 2 – 6 letters 

(phonemes) from a corpus and select the top 40 sequences according to the 
measure in (3); illustrative examples from corpora of 50,000 words are given in 
(4). 

In this fashion, we select the top 100 suffixes in our corpus, and consider 
analyzing into stem + suffix any words which end in a candidate suffix. Many 
words will not be analyzed at all; others will be multiply analyzed; a few will 
have unique factorizations. We wish to know how many occurrences there are of 
each stem and each suffix. In the case of words with a unique factorization, the 
task is simple, but in the case of words with multiple factorizations (say, an 
English word such as laughing may be analyzed as laugh-ing, laughi-ng, or 
laughin-g), we assign part of the word's count to each of the analyzes, in a 

 



proportion that depends both on the length of the suffix and on the stem's and 
suffix's frequency elsewhere. Such a process requires an iterative computation,  
(4) The top 40 suffixes in 50,000 word corpora based on (3) 

English French Latin Italian 
Spanish 
(Quijote) 

(e)s (r)e (((i)b)u)s (((e)n)t)e se 
(t)e ((l)e)s ((t)u)m ((a)t)o ar 
((t)e)d (((m)e)n)t (i)t ((a)t)a ó 
(((t)i)o)n (((t)i)o)n (u)e ((n)t)i ado 
(l)y (e)r (t)a ((i)o)ne le 
(((t)i)n)g ée (t)i (a)no an 
(s)t a (t)is (a)re ra 
(e)r le o ia (n)te 
(a)l ue (u)r (a)le to 
ts te ((r)u)nt ni (a)ndo 
(((i)o)n)s (o)ns (t)es li ía 
rs ne am (i)co en 
((e)n)t l em io ro 
m (i)que as ((i)c)a (a)ba 
an ant que ra la 
ers ts at ri ón 
h it et ro ta 
ic és tur ono ada 
ss ie rum do ia 
ce res ae si dos 
us (t)é ia na er 
 tes os nto is 
 se re se on 
 ce te ati lo 
 x tus mos mos 
 ées mus so so 
 me    

 
but rather quickly a preliminary morphological analysis is achieved. To this 
analysis we apply the condition mentioned in (2), that is, we eliminate any 
hypothetical stems or suffixes that occur in only one word. In fact, we impose a 
much stronger restriction, one which goes back to Greenburg's criterion: every 
stem and every suffix must participate in at least one commuting structure as in 
(5). Every stem must share with at least one other stem the set of suffixes with 
which it appears in the corpus. 

When we apply this algorithm to English, we derive sets of suffixes, called 
signatures, all of which appear with a set of stems. In English, the most frequent 
signature is composed of the suffixes –ing, -ed, -s and a null suffix (NULL). We, 
of course, call these "verbs", and a typical 50,000 word corpus will find about 15 
such stems, such as ask, add, attend, end, record, kick, talk, etc. Other high-

 



frequency signatures discovered are nouns, most of which appear with two 
suffixes, NULL and s; some nouns appear with three suffixes: NULL, -s, and 's. 
Adjectives emerge with the signatures NULL and ly, some others with these 
suffixes plus –ment.  

 
(5) Greenburg square 
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While the result of the first pass bootstrapping heuristic is quite good, it 

contains a number of errors in the detail. To discover them and correct them, we 
need to allow the iterative heuristics to suggest modifications, and then to 
calculate whether those modifications lead to an overall improvement in the 
compactness of the analysis.  

 
4. Minimum Description Length 

The quantitative evaluation which we compute needs to be more complex 
than the simple formula that we have termed in (2) "naive description length." An 
adequate description length, as proposed and explored by Rissanen 1989 in a 
quite general framework (which is to say, it does not explicitly address the field or 
problems of linguistics), is composed of two parts: a first term which describes 
how well the analysis fits the data, and a second term which describes the length 
or complexity of the analysis. Notions derived from information theory are used 
in both parts, and the two are added together to provide the total description 
length. By seeking the analysis that minimizes this figure, what we are led to is 
that analysis which best fits the data without paying too large a price by creating 
an analysis without too much detail and without overfitting the data. 

The details are rather complex, and available elsewhere (see note 1). But 
the essence of the approach can be summarized here, though I will nonetheless 
issue the following warning: it is easy to get lost, at first approach, and to wonder 
whether behind such arithmetic complications could lie any insight that could not 
just as easily be formulated without numbers. A considerable amount of 
experimentation with this material has convinced me that this approach does an 
excellent job of making explicit what it is that we as linguists prefer when we 
compare two analyses of the same data.  

We determine how well the analysis fits the data by computing the 
probability p assigned to the data by the model, and we interpret that as 
corresponding to a compression into -log2 (p) bits (i.e., the base 2 logarithm of the 

 



value of p). The probability that a morphology assigns to an entire corpus is the 
product of the probabilities that it assigns to each individual word, and the 
probability that a morphology such as ours assigns to an individual word w, 
composed of stem t and suffix f, in signature σ, is the product of three terms: the 
probability of signature σ, the probability of the stem t given the signature, and 
the probability of the suffix f given the signature. The probability of a signature σ 
is essentially the fraction of the words of the corpus that represent that signature 
σ, just as the probability of a stem t, given a signature σ, is the fraction of the 
occurrences of that signature σ in which the stem is t. The higher the probability 
that the analysis (that is, the morphology) assigns to the corpus, the better the 
analysis has done in modeling the data, all other things being equal. Of course, the 
higher the probability is, the smaller will be its base 2 logarithm multiplied by -1. 

The complexity of the morphology is a bit more complex to explain, but 
most of it can be summarized as follows. Almost all structure—structure of a 
morphology, or even the structure of a grammar more generally—can be 
understood and presented as a set of lists, in which each item in the list is a 
"pointer": a connection either to another list, or to a primitive item (such as a 
letter or phoneme). The complexity of a list with N items in it can be calculated in 
a straightforward way: it consists of the sum of the length of each of the pointers 
on the list, plus the length of the statement which makes it explicit that there are 
exactly N items, no more and no less; this latter statement takes slightly more than 
log2 N bits to formulate. Finally, the length of a pointer to an a item i on a list is of 
length -log2 prob(i), where again the units in which this length is measured is bits. 
When all of this is tallied up, a clear measurement of the complexity of an 
analysis is produced, and an automated process can determine which of two 
analyses is to be preferred.8 

One of the great strengths of an approach such as this is that one knows 
exactly how much it costs to express a generalization in one's grammar (here, 
morphology), and one knows exactly how much improvement in the treatment of 
the data one has gained by investing that much additional effort in the analysis.  
 
5. Improvement heuristics 

There are four heuristics that are explored by the program.  
First, the suffixes are examined to see if they are accidentally 

combinations of true suffixes. For example, the bootstrapping heuristic is likely to 
come up with the hypothesis in English that ments is a suffix, but it is necessary to 
come to the conclusion that a word ending in such -ments really has the structure  
[ [ X-ment ] s ]. So every suffix is checked to see if it is composed of the 
concatenation of two independently identified suffixes, and the overall analysis is 
examined to see if its overall compactness is improved by splitting such a suffix 
in two. 

Second, signatures are examined to see if an error in analysis has occurred. 
For example, there is such a high proportion of stems that end in t in English 
(defeat, subject, respect, draft, merit, etc.) that the bootstrapping algorithm 

 



routinely hypothesizes that these are the stems defea-, subjec-, etc., which take the 
suffixes t, ted, and ts. But noticing the letters common to all of the suffixes, the 
program can try out the modified analysis in which the t is shifted to the stems, 
and since the overall compactness is improved by this move, the shift is carried 
out. Putting this another way, a simple letter-counting approach may lead one to 
conclude that a more economical analysis is available for English if, in addition to 
the suffixes ed,ing,s  we also include the suffixes ted, ting, ts, extracting the 
generalization that t is a very high frequency stem-final letter. The more 
articulated information-theoretic model described above rejects this alternative on 
the grounds that the pointers to the suffixes ted, ting, and ts are too much longer 
than the pointers to the suffixes ed ,ing, and s (and they are longer because of their 
lower frequencies). 

Third, individual stems are examined, and if two stems differ only by one 
letter, they are examined to see if one stem should really be eliminated in favor of 
the other. For example, the analyses celebrat-ed and celebra-tion give rise to two 
stems, celebrat and celebra-. The overall compactness is improved if celebration 
is instead analyzed with the suffix –ion, and the stem celebra is eliminated in 
favor of the sole stem celebrat-.  

Finally, the decision must be made as to whether some analyses involve 
too few examples exist which illustrate the pattern to justify maintaining it 
altogether.  

After the heuristics have been tried out, the final analysis is quite an 
accurate overall morphology. The most difficult aspect is the last one mentioned – 
determining whether a pattern with few examples supporting it is worth including 
in the overall morphology. 

6. An implementation available to the reader 
The analysis described in this paper is implemented in a program called 

Linguistica, which is available for downloading and which runs under Windows. 
The user must have a text file containing the data which will be analyzed.  

By clicking on Help on menu bar, the user can get some basic information 
about how to use the program and some of the options open to the user. In order 
to perform morphological analysis, the user first chooses the number of words 
which she wishes to analyze with the command size followed by the number of 
words.  The command "read;" then brings up a dialog in which the user can 
indicate which file should be read as input. Finally, the command "AM;" calls the 
automatic morphological analysis. To view output, one can display various 
collections that have been computed, notably signatures; stems; and stems;  

 
Table 2 and Table 3, we present a small sample of the output of this 

algorithm applied to a 500,000 word corpus of English.  
In work in progress, we are applying similar techniques to parallel 

questions in phonology and syntax, using machine learning techniques to provide 
answers to questions regarding classification and cooccurrence. 

 



Table 1 Successor variety  
 
Initial sequence Successor variety examples 
d 9  
  da 11  
  de 18  
    dea 5  
    deb 2  
    dec 6  
    ded 2  
      dedi 1 dedication 
      dedu 2 deductible 
    dee 1 deep 
    def 3  
    deg 1 degree 
    del 5  
    dem 2  
    den 6  
    dep 5  
    deq 1 dequindre 
    der 2  
    des 7  
    det 3  
    dev 3  
    dew 1 dewey 
    dey 1 dey 
  di 13  
  dj 1 djakarta 
  do 16  
etc.   
   
ap 3  
  apa 1 apartment 
  app 5  
    appa 1 apparent 
    appe 2   
    appl 3  
    appo 1 appoint 
    appr 3  
  apr 1 april 

 

 

 



Table 2 Sample from top 10 signatures, English 500,000 word corpus 
1. NULL.ed.ing.s 4. NULL.s 7. NULL.ed.ing 
accident aberration applaud 
ad abolitionist arrest 
administer abortion astound 
afford absence blast 
alert abstractionist bless 
amount abutment bloom 
appeal accolade boast 
assault accommodation bolster 
attempt accommodation broaden 
2. 's.NULL.s 5. e.ed.es.ing cater 
adolescent achiev 8. NULL.er.ing.s 
afternoon assum blow 
airline brac bomb 
ambassador chang broadcast 
amendment charg deal 
announcer compris draw 
architect conced drink 
assessor conclud dwell 
association decid farm 
3. NULL.ed.er.ing.s describ feed 
attack 6.e.ed.er.es.ing feel 
back advertis 9. NULL.d.s 
bath announc abbreviate 
boil bak accommodate 
borrow challeng aggravate 
charm consum apprentice 
condition enforc arcade 
demand gaz balance 
down glaz barbecue 
 invad bruise 
 liv catalogue 
 pac costume 
  10. NULL.ed.s 
  acclaim 
  beckon 
  benefit 
  blend 
  blister 
  bogey 
  bother 

 



 
 
 
Table 3 English suffixes from Tom Sawyer 

Suffix Occurrences Remarks 
s 3290  

ed 2447  
ing 1685  
er 1531  
e 1174  
ly 857  
's 738  
d 738  
y 625  
n 472  

on 346 spurious (bent-on, rivers-on) 
es 329  
t 291  
st 270 signature NULL.ly.st, for stems such 

as safe 
en 229 behold, deaf, weak, sunk, etc. 
le 176 error: analyzed le.ly for e.y (stems 

such as feeb-, audib-, simpl) 
al 167  
n't 164  
nce 151 signature nce.nt, for stems fragr-

dista-, indiffere- 
ent 148 spurious: (stems such as pot-) 
tion 135  

r 135  
ter 132 spurious 
k 129 spurious 

ful 125  
ion 124  
'll 117  
an 117 spurious 

ness 116  
nt 84 (see above) 
ted 84 chat-ted, submit-ted, etc. 
est 75  
ity 71  
ous 68  
ard 65 drunk-ard, etc. 
able 64  
ious 57  
less 51  
ment 48  

id 48 signature id.or for horr-, splend-, 
liqu- 

ure 47  

 



 
ive 44  
ty 39  as in novel-, uncertain-, six-, proper- 

ence 38  
ily 31  

ward 21  
ation 21  
led 18 spurious 
'd 18  
ry 17 spurious: stems such as glo- with 

signature rious.ry 
rious 15 see immediately preceding 

rs 12 spurious 
ned 11 awake-ned, white-ned, thin-ned 
ning 11 begin-ning, run-ning 
age 9  
h 7 spurious 
te 6 should be ate: e.g., punctua-te 

ant 4 triumph-ant, expect-ant 
r's 4 spurious 

ance 4  
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Notes 
 
1. I have profited from the assistance of a large number of linguists and non-linguists over 

the course of the work described in this paper, most recently that of Derrick Higgins and Svetlana 
Soglasnova. The work is described in greater detail in Goldsmith 2000, which is available at 
http://humanities.uchicago.edu/faculty/goldsmith, as is the software described herein. This work 
has been supported by a grant from Argonne National Laboratory/University of Chicago. 

I do not discuss here other, very recent work on this subject, notably by Sylvain Neuvel and 
by Derrick Higgins (see his paper on this in the present volume) of the University of Chicago, and 
also by Marco Baroni of UCLA. 

2. I became aware just days before this conference of a dissertation on the subject of 
morphological analysis by Hagen Langer (1991).  Langer's remarks on the problem in general are 
insightful and very much a propos.  

3. Throughout I shall refer to either phoneme or letter interchangeably. It is true that 
English (and French) have orthographies which are rather far from either phonetic or phonological 
reality, but what we are interested in are algorithms that work over a vast range of languages. One 
reasonable way to interpret what we are doing is to say that we are investigating what the 
morphological structure of a language would be if its phonological representations were just like 
our present English orthography.  

4. In Harris 1955, he is concerned with utterances, while in 1967, Harris is concerned with 
words. The difference is not important for our discussion here, as it was not for Harris. 

5. I have not done justice to Harris' account here, nor to Hafer and Weiss' (1974) careful 
empirical study of the various ways in which Harris's insights could be algorithmically 
implemented. But if I have not done justice to the details, I do believe that I have done justice in 
the final analysis; there are, I am convinced, no modifications within the program that Harris 
proposed, strictly construed, that solve the morpheme identification task. 

Another place where the Harrisian algorithm fails turns up in cases where a set of stems 
appears with a set of suffixes that all begin with the same letter. This is more common than one 
might have expected if one had not looked at some corporal for several languages. French presents 
several cases of this sort. A number of nouns and adjectives end with the suffixes al and aux 
(nouns such as journal-journaux ‘newspaper(s)’ and adjectives such as amical-amicaux ‘friendly 
(masc. sg. and masc. pl.)’). For these forms, the Harrisian analysis will point towards an incorrect 
stem such as journa and amica, and this decision will appear to be supported, spuriously, by the 
words mieux ‘better’  and miel ‘honey’ (mie + l-ux).  The Romance languages present quite a few 
cases like this, where due to the historical origin of the verbal suffixes, many of the common 
verbal suffixes all begin with the same letter. For any verb stem that happens to appear in a corpus 
with only suffixes beginning with the same letter, the algorithm will give the wrong result, shifting 
the suffix-initial letter wrongly to the stem. 

6. I do not really wish to underestimate the difficulty of coming up with an algorithm that 
produces an initial morphology of a corpus. Zellig Harris' is the only algorithm to be found in the 
prior literature, that I am aware of, that begins with no prior knowledge or analysis provided by a 
linguist and which produces a reasonably small set of hypothetical suffixes. Bear in mind that 
crude brute force is not the right way to go. For example, suppose we confronted a corpus of 5,000 
words, each of length 7 letters. Each word can be divided into stem + suffix in 7 ways, and there 
are thus 75000 possible morphologies. This is an unimaginably large number. But no crude brute 
force is indicated. 

7. This is sometimes called the pointwise mutual information in the computational 
linguistics literature. 

8. Providing an explicit means for algorithmically comparing solutions, instead of having a 
human being make the comparison "by eye" or by seat-of-the-pants intuition, is entirely parallel to 

 



                                                                                                                                     
the requirement established by early generative grammar to make grammatical analyses explicit 
and not dependent on linguists' intuitions about a language.  That is, one of the major points that 
generative grammar succeeded in making was that it was not sufficient for a linguist to offer a set 
of informal guidelines explaining how to use (for example) the dative case in German; what was 
necessary was a set of procedures explicit enough that they could be implemented by someone 
who knew nothing about German—a computer, for example. The reason was never that a 
computer would do a better job; it was, rather, that if we allow an intelligent person to be 
responsible for applying the informal specifications of our analysis, we will never know how 
much of the success is due to the human's tacit contribution to the implementation. The situation is 
quite parallel in the present case: what we need is a way to select among hypotheses, given a 
(large) set of observations from a language. If we allow that judgment to be made by unanalyzed 
human intuitions, we cannot know (in the case of either success or failure) whether success or 
failure is due to the linguistic theory or to the fuzzy application of human intuition. 
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