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Abstract. We employ Automorphology, an MDL-based algorithm that 
determines the suffixes present in a language-sample with no prior knowledge 
of the language in question, and describe our experiments on the usefulness of 
this approach for Information Retrieval, employing this stemmer in a SMART-
based IR engine. 

1 Introduction 

The research discussed in this volume is directed at the special character of 
Information Retrieval in the multilingual world which is the future of the information 
age. What special challenges must we be ready for as we prepare our document bases 
and document spaces for texts in a potentially unlimited number of languages? What 
additional technology must we develop in preparation for those challenges?1 

To the extent that current IR methods make assumptions about language which are 
valid for English but not for many other natural languages, these methods will need to 
be updated in the light of what we know about natural languages more generally. Our 
concern in the work reported here is the need for stemming (and related processes) 
that is fast, accurate, valid for as many languages as possible, and that assumes no 
human intervention in the process.  

We are currently in the process of developing software that accepts unrestricted 
corpora as input and produces, as its output, a list of stems and affixes found in the 
corpus, plus additional information about cooccurrence of affix and stem. It does this 
on the basis of no prior knowledge of the language found in the corpus. When linked 
to an automatic language identification system, such a system is able to add to our 
ability to control a large document base which must accept documents in any 
language—such as the Internet, for example. Although the testing done in the context 
of the CLEF experiments deals with some of the larger European languages, we see 
our approach as being most useful when it is used in relatio to a database that includes 
a large number of documents from little-studied languages, because morphologies 
cannot be produced overnight by humans.  
                                                           
1 We are grateful for help and comments from Abraham Bookstein and Craig Swietlik. This 

work was supported in part by a grant from the Univeristy of Chicago-Argonne National 
Laboratory. 



Our background is in linguistics and computational linguistics, rather than 
information retrieval (IR), but in the next section we will survey what we take to be 
the relevant background information regarding the character of stemming for IR in 
English and other languages. 

2 Multilingual Stemming 

The use of stemming in information retrieval systems is widespread, though not 
entirely uncontroversial. It is used primarily for query-stemming and document 
indexing. (Useful reviews may be found in [2], [11], [13].). 

 Stemming in the narrowest sense is "a process that strips off affixes and leaves you 
with a stem" [20:132]. A broader procedure is conflation: "a computational procedure 
which identifies word variants and reduces them to a single canonical form" [17:177]. 
Word variants are usually morphological [2:131] or semantical [23:633]. Stemming in 
the narrow sense is a type of conflation procedure. Very commonly, though, the term 
is used not just in that narrow sense, but to refer to lemmatization [12:654], or 
collapsing [17]. "Stemming" in query expansion refers to that second sense. For our 
purposes, stemming is taken in a broad, but not the broadest,  sense. Any algorithm 
that results in segmenting a word into stem and affixes is a stemming algorithm, or 
stemmer.  

Significant factors  for stemming performance in IR include the type of stemming 
algorithm, evaluation measures of retrieval success, language-(in)dependence, query 
length, document length, and possibly others [15]. These issues have been addressed 
in many studies, but no clear comprehensive picture emerges from the literature. 

By its very nature, stemming is generally understood to  improve recall, but to 
decrease  precision [29:124]. Most research on stemming in IR is on English, a 
language with a relatively simple morphology. In a study comparing three different 
stemmers of English, Harman [9] found that losses in precision from stemming 
outweigh the benefits from increased recall. Krovetz [16] reported results conflicting 
with what Harman found for the Porter algorithm on the same collection using a very 
close evaluation measure [15], and in general the view that overall stemming is 
beneficial for IR is discussed in [28:6], [13], [2], and [17].  

2.1 Types of stemmers and evaluation measures 

Stemmers may be linguistic, automatic or mixed. Linguistic stemmers use a linguist's 
knowledge of the structure of the language in one way or another, typically by 
providing manually compiled lists of suffixes, allomorphy rules, and the like. The best 
known stemmer of this sort is Porter [26], initially developed for English. Porter's 
approach was extended to French and Italian [30] and Dutch [15]. Automatic 
stemmers rely on  statistical procedures, such as frequency count, n-gram  method, or 
some combination of these. Linguistic stemmers that rely on statistical methods as 
subsidiary procedures may be called mixed. Such mixed system include [16] and [23]. 
Krovetz [16] uses frequency of English derivational endings as the basis for 
incorporating them into the stemmer, and the initial shared trigram as a preliminary 



procedure for finding words that are potentially morphologically related. Paice [23] 
requires the words in a manually compiled semantic identity class to share the initial 
bigram. 

It has been pointed out in the literature that it is difficult to evaluate and compare 
the performance of different stemming algorithms for IR purposes because the 
traditional IR evaluation measures are not aimed at highlighting the contribution of 
stemming to query success [10],[11],[16],[23]. Several studies that compare the 
effectiveness of different stemming algorithms for IR [9],[10],[16],[17],[23] were 
conducted on English materials, with Paice [23] and Hull [10] developing new 
measures of evaluating stemming performance for IR. The results are inconclusive.  

Lennon et al. [17] evaluated seven stemming algorithms for English for their 
usefulness in IR.  The automatic algorithms in this study were the RADCOL [19], 
Hafer-Weiss [8], a similarity stemmer developed by the authors on the basis of 
Adamson and Boreham's bigram stemmer [1], and a frequency algorithm developed 
by the authors on the basis of RADCOL. The linguistic stemmers were Lovins and 
Porter. The Hafer-Weiss algorithm fared much worse than all others. With this 
exception, they found an undeniable, but very slight improvement on stemmed 
queried compared to unstemmed ones.  They also found "no relationship between the 
strength of an algorithm and the consequent retrieval effectiveness arising from its 
use".  

Harman [9] tested three linguistic stemmers: Porter, SMART-enhanced Lovins 
stemmer, and the primitive s-stripping stemmer for IR effectiveness. She found that 
the minimal s-stemming did very little to improve IR effectiveness, and more rich 
stemming hurts precision as much as it improves the recall.  

Hull [10] evaluated five linguistic stemmers for English: s-remover, an extensively 
modified Lovins stemmer, Porter stemmer, Xerox English inflectional analyzer and 
Xerox English derivational analyzer. He proposed  a set of alternative evaluation 
measures aimed to distinguish performance details of various stemmers. In his 
analysis, stemming is much more helpful on short queries, on which the inflectional 
stemmer looks slightly less effective, and the Porter stemmer slightly better, than the 
others; the simple plural removal is less effective than more complex stemmers, but 
quite competitive when only a small number of documents is examined. His detailed 
analysis of queries shows how linguistic knowledge may be beneficial for IR in some 
cases (failure/fail—only the derivational stemmer makes this connection) but not in 
others (optics/optic—the derivational and inflectional stemmers do not make this 
connection). 

Paice [23] developed a direct measure of evaluating accuracy of a stemmer "by 
counting the actual understemming and overstemming errors which it commits". He 
evaluated three stemmers for the English language— Porter, Lovins and Paice/Husk 
[24]. It was found that his measure provides a good representation of stemmer weight, 
but no clear comparison of accuracy for stemmers differing greatly in weight. There is 
no clear relationship between IR measures and Paice's evaluation.  

The upshot appears to be that for English, the choice of stemmer type ultimately 
does not matter much (though cf. [3]). Krovetz [16] found that his inflectional 
stemmer always helped a little, but the important improvement came from his 
derivational stemmer. Lennon et al. [17] and Hull [10] found no overall consistent 
differences between stemming algorithms of various types, though on a particular 



query one algorithm might outperform other, but never consistently. Most studies note 
that stemming performance varies on different collections. Paice [22] notes that heavy 
stemmers might be preferable in situations where high recall is needed, and lighter 
stemmers where precision is more important. 

For languages with morphology richer than that of English, differences between 
inflectional and derivational morphology—and, consequently, between performance 
of stemmers oriented towards one or the other—should be greater. Stripping off 
inflectional morphology should result in more than slight recall improvement without 
significantly hurting precision. In Russian, for example, the nominal declension has 
two numbers and six cases (declension paradigms are determined by the gender of the 
noun and the phonological form of the stem). Dictionary entries are listed in the 
nominative singular, and one would expect most queries to be entered in the 
"dictionary form"—the nominative singular. However, actual occurrences of the word 
appearing in the texts could be more frequent in oblique cases and in the plural. For 
example, a search for the nominative singular of the word ruka 'hand' in Leo Tolstoy's  
Anna Karenina (over 345,000 words) would locate 18 occurrences of the exact match. 
The stem ruk, on the other hand, appears 690 times—in forms inflected for case and 
number. Most frequent forms are ruk-u (accusative singular) and ruk (genitive 
singular, nominative plural). Nozhov [21,22] reports that all Russian IR system 
routinely use stemming (linguistic or mixed) even when the degree of morphological 
recognition is not extremely high.  

Kraaij and Pohlmann [15] compared the Porter-style algorithm they implemented 
for Dutch, another morphologically complex language, with their more linguistically 
sophisticated derivational and inflectional stemmers. The best performance was 
achieved by the inflectional stemming combined with a sophisticated version of 
compound splitting and generating. Applying both derivational and inflectional 
stemming generally reduces precision too much. 

Wexler et al. [30] developed a four-language search engine (French, Italian, 
German and English) with stemming implemented for each language. For German, a 
language morphologically close to Dutch, they apparently implemented some 
inflectional stemming and a dictionary-based compound-breaking algorithm. 

A derivational stemmer could produce a theoretically irreproachable result which is 
not just irrelevant, but harmful for IR purposes, since the stem and its derivates are 
rarely fully synonymous. The problem is to distinguish derivation that preserves word 
sense relevant to the query from the derivation that does not. Hull's study gives 
examples of the derivational stemmer outperforming others on queries like bank 
failures (failure converted to fail), and superconductivity (stem superconduct 
conflated with the one in superconductors). Since the relevant documents contained 
both failure and fail, and superconductors rather than superconductivity, the 
stemming was beneficial. However, in cases like client-server architecture (conflate 
with serve) and Productivity Statistics for the U.S.Economy (conflate with produce) 
the linguistically correct analysis lowers precision dramatically, since serve and 
produce have a much less specific meaning than the query term. The lexical 
equivalence requirement may be maintained through manually compiled lists ([23], 
[16] for English), or by word sense disambiguation in a full-blown NLP system ([11] 
for French). 



2.2  Automatic stemmer on more than one language 

The increasingly multi-language character of  IR [7] presents a special challenge to 
language-specific tools. Statistical language processing tools, with their universality 
and speed, are understandably attractive in this regard. Whether stemming based on 
such universal methods helps to increase accuracy and scope of IR is a question 
without a definitive answer yet. 

Xu and Croft [31] tested the performance of an automatic trigram stemmer, a 
"general-purpose language tool" against the performance of Porter stemmer and 
KStem [16] on English and Spanish corpora for construction of "initial equivalence 
classes". The initial equivalence classes were further refined with statistical methods 
that differed for English and Spanish. The "trigram approach" was used as an 
auxiliary procedure to clean up the equivalence classes for English after the 
application of the connected component algorithm: A "prefix" in an equivalence class 
is defined as "an initial character string shared by more than 100 words. Examples are 
con, com and inter. If the next 3 characters after the common prefix do not match, the 
similarity metric is set to 0. Thus, the trigram model is at work again, shifted further 
inside the string. The results were comparable with the performance of the linguistic 
Porter and KStem stemmers, showing some portability problems due to corpus-
specific character of equivalence classes.  

2.3 Compounds 

 
As virtually all studies on IR in German have documented (and as reported in this 
year's CLEF results by the West Group; see also [15]), it is crucial to analyze 
compound words in German, and no doubt in other languages with similar use of 
compound structures. Use of automatic morphology can be of significant help in this 
area, as reported in [6] in connection with Automorphology. Because our algorithm 
identifies stems, it is possible to identify compounds, which take the form Stem-
Linker-Stem-Suffix; that is, the first half of the compound need not be a free-standing 
word. 

3 Automatic Morphology 

The identification of a lexical stem consists of the identification of a string of letters 
which co-occurs in a large corpus with several distinct suffixes, and typically we will 
find consistent sets of suffixes that appear with a wide range of stems. This 
observation serves as one of the bases for our algorithm, whose goal is to establish as 
wide a range of stems and suffix possibilities as possible, given a corpus from a 
natural language. The following discussion is a summary of material presented in 
[4],[5]. Its goal is to establish a method which is language-independent, to the extent 
possible, and which will provide a useful result despite the lack of any human 
oversight by a speaker of the language in question. 



There are several methods that can be used to establish an initial set of candidate 
suffixes on a statistical basis, given a sample of an unknown language. One of the 
simplest is to consider all word-final sequences of six or fewer letters (schaft is a 
German suffix), and to rank their coherence in the text on the basis of the formula in 
(1). In order to deal appropriately with single-letter suffixes, it is preferable to 
consider all words to end with a special symbol, and to increase the maximum size to 
seven letters. The frequency of a letter is defined as the number of occurrences of the 
letter in the text divided by the total number of letters in the text. 
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We select the top 100 suffixes ranked by coherence (1) (these are our candidate 
suffixes), and divide all words into stem and suffix if they end in one or more 
candidate suffixes. We associate with each such candidate stem the set of suffixes it 
occurs with, and call each such set a candidate signature. We accept only signatures 
with at least two suffixes, and we establish a threshold number of stems which a 
signature must be associated with, failing which a signature is eliminated; a suitable 
threshold is 5.  

Various improvements can be made to the results at this point. For example, 
common combinations of suffixes are certain to be identified as suffixes (e.g., ments, 
ings in English), but they can be identified and their stems reanalyzed. A large part of 
our work is devoted to determining in an abstract way what kinds of errors our 
algorithms are likely to create, to determine what they are, and to find ways either to 
avoid the errors or to undo them after the fact, but always without human 
intervention. Our current system is heavily based on a Minimum Description Length 
analysis [26], one consequence of which is that if a language has an unusually high 
frequency of occurrence of a specific letter in stem-final position, it is likely to be 
misanalyzed as being part of a suffix; this is the case for t in English. When viewed 
up closely, suffix systems tend to have certain kinds of orthographic structure which 
derives from their history and which can confuse an automatic analyzer; for example, 
Romance languages contain sets of verbal suffixes which are derived historically from 
inflected forms of Latin habere, which itself has a stem-suffix structure. The suffixes 
-ai,-ais, -ait, etc., of French may in some cases wrongly be analyzed as being -i,- is,- 
it, and attached to a stem that ends in -a. We employ the techniques of Minimum 
Description Length in order to select the analysis of the complete corpus which is 
most compact overall and which provides the most succinct and accurate analysis of 
the stem/suffix distribution. 

There are two notions at the heart of the MDL approach. The first is that an 
analysis (here, the morphological analysis of a corpus) must provide a probabilistic 
measure of the data; this allows us to assign an optimal compressed length to the 
corpus on the basis of that model, for reasons central to information theory. In this 
case, each word of the corpus is identified as belonging to one of a relatively limited 
number of stem groupings defined by the set of suffixes the stem appears with in the 
corpus; this grouping is called a signature, and each signature is associated with an 
empirical probability. Each word in the corpus is also associated with a stem and a 
suffix, and these associations are assigned an empirical probability, conditioned by 



the signature of the word. Each of these three probabilities (signature, stem, suffix) 
for each word is converted to an optimal compression length (which equals the 
logarithm of the reciprocal of the probability), and the sum of these optimal 
compression lengths is the compressed length assigned to the corpus by the 
morphological model, measured in bits. The shorter that total length, the better the 
morphology models the corpus.  

The second notion at the heart of MDL is that length of the model itself can be 
measured in bits, and the optimal analysis of the corpus is that for which the sum of 
the length of the model and the compressed length of the corpus is the smallest.  Our 
algorithm searches the space of possible analyses by considering changes to the 
signature set, to the affix set, and to the stem/suffix separation, evaluating and 
accepting each change only if the change brings about a decrease in the total 
description length of the (corpus + morphology). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The basic design of the Chicago IR system, using Automorphology to 
stem terms from queries and documents, and employing standard SMART 

vector-based retrieval. 

4 Experiment 

The information retrieval engine we used in our CLEF experiments is based on the 
freely-available SMART system, running under the Linux operating system on a 
commodity, off-the-shelf PC.  We modified the system to incorporate our custom 
stemmer, which was automatically derived from the corpora for each language.  The 
results of applying our stemmer to the document collections were stored in a file for 
SMART to consult at the time of indexing the documents and queries.  A schematic 
diagram of our system architecture is presented in Figure 1.  Although not represented 
in Figure 1, statistical compound-breaking using Automorphology was also 
performed on the German collection before indexing the documents and queries. 
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The  vector-based SMART backbone is a simple retrieval models, treating each 
document as an unordered  “bag” (i.e., retaining only frequency information), and 
computing document-query similarity by means of the cosine distance between these 
two vectors.  Our expectations regarding results in this experiment were therefore 
guarded.  Our hope is that these runs will help to highlight the strengths and 
weaknesses of the statistical approach to stemming for IR, and point out directions for 
us to progress in our development of Automorphology. 

4.1 Generation of the stop and stem lists 

As a stopword list for each language, we created a list of the approximately 300 
highest-frequency words in a corpus of the language, and removed by hand any 
entries that appeared obviously inappropriate.  While the resulting stop lists were by 
no means perfect, the lists were not long enough to create a serious problem with 
incorrect stopwords blocking the retrieval of documents which ought to be returned.  
Imperfect stoplists might, however, be blamed for not filtering out as many 
documents as they should, and thereby reducing our system’s precision.  Since our 
results do not seem to display a profile of high recall offset by low precision, though, 
the stoplists do not seem to be an area in which to look for major improvements. 

The stem file for each language, which associates terms with their stem forms for 
indexing (a stem may be identical with the term itself), was produced by running our 
statistical stemming program, Automorphology, on the document collection for each 
language.  The length of time that this process required varied from three days, for the 
Italian document collection, to as much as fourteen days for German, with its higher 
mean word length and larger document collection. Improvements in the algorithm 
since that work has speeded up these times considerably. The stems produced by 
Automorphology were accepted without any sort of human revision; the only 
constraint we imposed was that no stem could be shorter than three letters in length.  
While we do not have a concrete analysis of the conflation classes produced by our 
stemmer for each language, it seems likely that some of our performance deficit is due 
to permitting the stemmer to apply so freely.    

4.2 Indexing 

The indexing of documents and queries was done using standard SMART facilities, 
with the inclusion of the stemming routine described above into the process.  Terms in 
document and query vectors were weighted according to the tf*idf measure which has 
proven effective in previous IR work.  Our group used all of the permissible data 
fields for retrieval in each of our experiments. 

Our performance on the CLEF monolingual runs might have been improved if we 
had invested more time in preprocessing the document collections.  We did not, for 
example, handle issues related to diacritics at all.  Thus, our system would not 
conflate French Ecole with École, or German müssen with muessen.  However, such 
issues were probably not a major factor in determining the system’s retrieval 
accuracy. Another interesting area for future exploration is the relative contribution of 



statistical stemming and statistical compound-breaking in indexing the German 
document collection.  Intuitively, decompounding is less likely to do harm, since it 
alters terms which are less likely to be independently searched on anyhow, but it also 
has less potential for improvement of retrieval accuracy, because compounds are 
simply less frequent than non-compounds.  

4.3 Retrieval 

Once SMART was configured to use this new stemmer, the retrieval process for each 
language was straightforward.  SMART uses the vector-space model to retrieve the 
documents most similar to the queries, using the stemmed forms of words as 
components of the vectors.  We returned a ranked list of the top 1000 documents 
returned for each query, the maximum number allowed. 

5 Results 

Our system was run in monolingual IR tests in the CLEF project in 2000 involving 
Italian, French, and German. The principal results are presented in Figure 2. 
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Fig. 2. Precision rates for CLEF experiments on French, German, and Italian 



6 Conclusions 

Our work in the area of IR is still in its preliminary stages, and we hesitate to draw 
any conclusions at this time from the quantitative results described here. If our work 
has a long-run contribution to make, it is as a component of a larger IR package, and 
indeed, Oard et al., in this volume, describe experiments employing our automatic 
morphological analyzer which in some regards goes further than our own pre-
conceived ideas of its applicability. We are currently engaged in drastically reducing 
the time and storage needs of the algorithm to permit it to be used with databases of 
the magnitude typical of IR tasks, and we will continue to test the value of this work 
for IR tasks. 
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