
Natural Language Engineering 12 (3): 1–19. c© 2006 Cambridge University Press

doi:10.1017/S1351324905004055 Printed in the United Kingdom

1

An algorithm for the unsupervised learning of

morphology

J O H N G O L D S M I T H
Departments of Linguistics and Computer Science, 1010 East 59th St.,

The University of Chicago, Chicago, IL 60637, USA

e-mail: goldsmith@uchicago.edu

(Received 15 July 2004; revised 1 June 2005)

Abstract

This paper describes in detail an algorithm for the unsupervised learning of natural language

morphology, with emphasis on challenges that are encountered in languages typologically

similar to European languages. It utilizes the Minimum Description Length analysis described

in Goldsmith (2001), and has been implemented in software that is available for downloading

and testing.

1 Scope of this paper

This paper describes in detail an algorithm used for the unsupervised learning of

natural language morphology which works well for European languages and other

languages in which the average number of morphemes per word is not too high.

It has been implemented and tested in Linguistica, and is based on the theoretical

principles described in Goldsmith (2001).1 The executable for this program, and the

source code as well, is available at http://linguistica.uchicago.edu.

Section 2 of this paper gives a brief overview of the theory that lies behind this

work; sections 3 through 10 discuss the details of the algorithm in considerable

detail. Section 11 presents an evaluation of the algorithm in an application to a

corpus of English, and section 12 addresses briefly the theoretical implications of

work on the unsupervised learning of linguistic structure more generally.

2 Brief overview of the theoretical framework

2.1 Introduction

The work described in this paper is part of a project aimed at the automatic

learning of natural language morphology, as one aspect of the larger challenge of

unsupervised learning of natural language grammar – a larger goal which may be

1 I am grateful for comments, suggestions, and criticisms from Yu Hu, Irina Matveeva, Colin
Sprague, Jeni Parham, and the anonymous reviewers of this journal.

2 J. Goldsmith

unreachable in practical terms, but one which informs much of the work described

here. We focus in the present work on morphological analysis based purely on

distributional information, and in particular on the task of segmenting a word

into distinct, successive morphs – rather than the assignment of morphosyntactic

features, for example, which is the goal of many other morphological parsers

under development today. Our goal is partly a practical one: good morphological

parsers for many of the world’s languages would be useful for a number of

functions, ranging from document retrieval to automatic machine translation, all

of which would arguably be superior if trained from a corpus in which words

were morphologically segmented. At the same time, the goal has a theoretical side,

because we seek to understand how much prior (or “innate”) knowledge needs

to be given to the morphological induction device in order to be able to find an

analysis that matches up well to linguists’ considered opinions regarding linguistic

structure.

Goldsmith (2001) proposes a natural division of the process of morphology

discovery into a set of heuristics, on the one hand, and an MDL (Minimum

Description Length) evaluation process, on the other. The heuristics, in turn, divide

naturally into an initial bootstrapping heuristic that is able to determine a first pass

analysis of the words of the corpus into stem and affix, and a set of incremental

heuristics, which modify the analysis, leaving the decision to the MDL component

as to whether the modifications are worth maintaining or should be dropped. The

exposition in this paper follows that division; it begins with a discussion of the

MDL analysis, and continues with a discussion of the bootstrapping heuristic

and the individual incremental heuristics. This is followed by a discussion of

how to evaluate the performance of the approach, and some final concluding

observations.2

2.2 Minimum Description Length (MDL)

Minimum Description Length (MDL) analysis (see Rissanen (1989); see also Wallace

and Georgeff (1983) and Wallace and Dowe (1999) for a related approach, Minimum

Message Length) is a form of analysis rigorously based on information theory.

Given a corpus, an MDL model defines a description length of the corpus, given

a probabilistic model of the corpus: the description length is the sum of the most

compact statement of the model expressible in some universal language of algorithms

(by which one would mean a program for a universal Turing machine), plus the

length of the optimal compression of the corpus, when we use the probabilistic

model to compress the data (see (1)). The length of the optimal compression of

the corpus is the base 2 logarithm of the reciprocal of the probability assigned to

2 There is no natural home in the analysis presented in this paper for the distinction
between inflectional and derivational morphology. This question is addressed, however, in
Goldsmith and Hu (2005), in which an analysis of the distinction is offered in terms of the
geometry of a finite state automaton for the morphology.

An algorithm for the unsupervised learning of morphology 3

the corpus by the model; we return to this notion (a standard one in information

theory) below. Since we are concerned with morphological analysis, I will henceforth

use the more specific term the morphology rather than model ; one can read the M

in (1) as referring specifically to a morphology.

DescriptionLength(CorpusC,ModelM) = length(M) + log2

1

prob(C|M)
(1)

MDL analysis proposes that the morphology M which minimizes the objective

function in (1) is the best morphology of the corpus. Intuitively, the first term

(the length of the model, in bits) expresses the conciseness of the morphology,

giving us strong motivation to find the simplest morphology possible, while the

second term expresses how well the model describes the corpus in question. The

morphology M spreads probability mass over a wide universe of possible words

(by assigning a probability to all possible words in the language, and by being

subject to the requirement that the probabilities sum to 1), and we want one that

assigns as much of it as possible to the words of the particular corpus which we

happen to be looking at. Instead of considering the probability of the corpus, we

consider the log of the reciprocal of that probability, because this is a quantity

which is expressible in information theoretic bits, and which can then be added

to the first term in (1); that is, by multiplying the log probability of the corpus

by −1, we can reasonably add the two terms and attempt to find the analysis

which minimizes the sum of the two terms. Hence the term: minimum description

length.

Thus we need to design a morphology M which assigns a distribution D over

words such that the observed words in the corpus lie in the support of D (the set

to which D assigns non-zero probability), and we need to do this in a way which

allows us to easily calculate the length of M.

2.3 Calculating the length of the morphology

And what is the information that composes the morphology of a language such as

English? Most of the information is to be found in the phonological (or logographic)

content of the morphemes, but some of the information is contained in information

regarding the ordering of possible morphemes in the language. We condense all

of this information into essentially three components of the morphology: a list of

stems, a list of affixes, and a list of signatures, which are structures indicating which

stems may appear with which affixes. A signature can be visualized as in (2a), or

better as in (2b).

(2)a

4 J. Goldsmith

(2)b

As the structure in (2b) suggests, the role of pointers in the construction of the

formal morphology is critical. We must ask precisely how long a pointer is in such

a diagram, and we must get an answer to that question expressed in units of bits.

Information theory provides an answer to this question, or rather, to the question:

what is the shortest encoding system that we can set up for pointers in such a

situation, measured in bits? The answer is the base 2 logarithm of the reciprocal

of the frequency of the item being pointed to, or − log2 freq(•) (see, e.g., Bell et al.

(1990)). Intuitively, this means that up to this limit, we can find an encoding that

allows frequently used items to be more easily accessed, if by “easily” we mean

pointed to in a more concise fashion. It is possible to quite literally encode a pointer

to an object X by a string of binary digits no larger than 1 greater than the base

2 logarithm of the reciprocal of the frequency of X, and thus this quantity is often

referred to simply as the “length of the pointer” to X. When we speak of the

“length” of a pointer, then, one may paraphrase that as the length of the optimal

encoding of the pointer.

2.4 Calculating the probability of the corpus, using the morphology

As we noted above, we must also compute the probability of the corpus – or rather,

in order to derive a unit in the natural unit of bits, we compute the base 2 logarithm

of the reciprocal of the probability of the corpus. The log probability of a given

word w, analyzed as belonging to signature σ with stem t and suffix f, is as given in

(3); the probability of the corpus, as given in (4).

log prob(w) = log prob(σ) + log prob(t|σ) + log prob(f|σ)(3)

log2

1

prob(Corpus)
= −

∑
w∈Corpus

log prob(w)(4)

An algorithm for the unsupervised learning of morphology 5

3 Searching for the right morphology: begin by bootstrapping

We have framed the problem of morphology learning, given a specific corpus, as

one of finding a morphology which leads to a minimum value of the expression in

(1). In order to be able to find this morphology in a reasonable period of time, it

is most effective to have a bootstrapping algorithm that gets us reasonably close

to the correct morphology quickly. After that, we can use alternative methods to

modify the morphology in relatively small steps, that is, to modify it plank by plank

to achieve the lowest possible description length.

The bootstrapping algorithm that we have found to be most effective in dealing

with a language such as English or French consists of two parts, the first based

loosely on a method proposed by Zellig Harris (1955, 1967), utilizing his notion

of successor frequency (and see now Xanthos (2003)), and the second consisting of

identifying successful signatures from among the cuts proposed by the first part.3

3.1 Successor frequency

Harris originally made a proposal as a solution to the general problem of morpheme

discovery, despite the fact that even early implementations of it established quite

clearly that it was not adequate for that end (Hafer and Weiss (1974)).

Harris used the term successor frequency in the following way: after the nth letter

in a word W, in a given corpus, the successor frequency is the number of distinct

letters that appear immediately after the string prefix defined by W [1 . . . n], the first

n letters of W, where space and punctuation count as a single, distinct letter. For

example, after the string prefix “gover” in most English corpora, only one letter

will be found to follow, and that letter is “n”; hence the successor frequency of the

position after gover is 1, while in a particular corpus, the successor frequency after

the string prefix govern is 6, if we find the words governed, governing, government,

governor, governs, and govern in that corpus.

Harris’ basic insight can be easily implemented if we organize the words of a

lexicon in the form of the data structure called a trie – a tree in which there is a

node for each shared string prefix, in the following sense. Each node in the trie is

responsible for a set of strings which share a common string prefix, and each node

contains a (distinct) pointer to a (distinct) node for each letter which immediately

follows the common string prefix in the set of strings that the node is responsible

for. Thus the root node is responsible for all the strings, and has a pointer to a

node for each letter that begins at least one word in the string set. If “a” is such

a letter, then there is a node “a*” which responsible for (and which we may think

of as dominating) all strings beginning with “a”, and if there is more than one

string in that set, then that node has pointers to nodes corresponding to each of the

letters which appear immediately after word-initial “a”, etc. Such data structures

are widely used today, and will be familiar to most readers of this paper, especially

3 An extension of this heuristic is discussed in Hu and Goldsmith (2005).

6 J. Goldsmith

in the context of a Patricia trie, a trie in which all nodes with only unary branching

beneath them are merged with their daughters.

Harris proposed that peaks in successor frequency would be suitable detectors

for the discovery of morpheme breaks. As Hafer and Weiss (1974) note, Harris’s

apparent proposal is actually a family of closely related proposals, and none of

them work anywhere close to perfectly, for various reasons, some of which we

will review here. There are a number of parameters that one can modify in the

actual implementation of Harris’s suggestion, and we adopt a set of parameters

that increases the precision, while decreasing its recall. In short, we adjust Harris’

proposal so that it is makes fewer analytical claims about the words, but those that

it makes are relatively trustworthy. We do this in the following way.

Looking at peaks in the successor frequency in the first three letters of a word

tends to give rise to a large number of spurious peaks, in the sense that the peaks do

not signal morpheme boundaries. Since there are more consonants than vowels, and

since vowels tend to follow consonants, just as consonants tend to follow vowels,

there is a strong tendency for the successor frequency to be larger after a vowel

than after a consonant within the first three letters of a word, and hence for this

algorithm to find a (spurious) morpheme break after any vowel in the first 3 letters

of a word. Since we are at this point looking for “stem-suffix” breaks, we restrict

our attention to candidate stems that are at least three letters in length, recognizing

that there are some shorter stems (e.g., be) which will only be discovered at a later

point.

We actually place a more stringent requirement on the cuts motivated by a peak

in successor frequency at this point: we require that to make a cut after the ith

letter, the successor frequency must be exactly 1 after both the i–1 th letter and the

i+1 th letter. This decision is a conservative one, in the following sense. The two

most common reasons to find a successor frequency greater than 1 in two successive

positions are these: either both peaks are accurate indicators of morpheme breaks,

and the first morpheme is one letter long (for example, with the words petit, petits,

petite, petites, a successor frequency of 3 is found after petit and a successor frequency

of 2 is found after petite), or a morpheme break is found after the first position,

and two of the suffixes that occur begin with the same letter (e.g., many stems are

followed by both –ing and –ion, in addition to –ed and –s). It is difficult to be certain

which is the correct cut at this point; by putting this condition on the bootstrapping

heuristic, no cut is made for the –ing and –ion words at this point. The algorithm

will very soon have considerable knowledge about the morphology of the language,

and it will know that –ing and –ion are common suffixes, but that –ng and –on are

not common suffixes, so it will be able to make a much more informed choice than

it can right now.

3.2 Organization into signatures

After finding appropriate cuts of some of the words into two pieces, we treat the first

piece as a stem and the second as a suffix, and for each stem, we organize the entire

set of suffixes with which it appears in the corpus as an alphabetized list: a suffix-list.

An algorithm for the unsupervised learning of morphology 7

We then create a list of such suffix-lists, and associate with each such list the set of

stems that appears with precisely that set of suffixes. This association is exactly a

signature, as described earlier in this paper, as in (2). Each stem is associated with

exactly one signature. Common signatures in English include NULL.s (primarily

nouns), NULL.ed.ing.s (verbs), and NULL.er.est.ly (adjectives).

We then apply a set of filters in order to eliminate certain implausible signatures,

because our goal in this first heuristic is to prefer precision over recall, in the sense

that we would rather fail to uncover some morphological structure than detect

spurious or false structure. We set a threshold (of 3) for the minimum number of

words an affix may appear in; a hypothetical suffix occurring less often than that is

eliminated.

The second heuristic we use to eliminate signatures is based on an apriori

probability of the length of a suffix being just one letter in length. NULL is a

likely affix in general (in the sense that languages often build words with no overt

affixes), but suffixes with only one letter (phoneme) are both rare and suspect. Even

if we did not know English, we would be wise to be suspicious of a morphological

analysis which posits a stem car that can be followed by the affixes NULL, e, t, p, b,

and d. These are really distinct stems (in English: car, care, cart, carp, and card). As

noted by Brent (1999), natural languages do act as if they select their morphemes

with an eye to keeping their mean length to the neighborhood of 5, with the average

less for affixes than for stems, but with a relatively low probability of morphemes of

length 1. To be sure, NULL.s is the most common signature in English, French, and

Spanish, so we can take this length consideration only as a tendency, and be willing

to accept a signature such as NULL.s as legitimate if it is found in association with

a sufficient number of examples.

A certain amount of experimentation has led us to the following heuristic.4 Any

signature with a large number of stems (defined as 25) is permitted, while those with

fewer are subject to the following test. A signature must have at least two affixes

that are of length at least 2 (where a NULL affix is considered to be of length 2 for

these purposes); otherwise it is dropped. Thus by this latter criterion, NULL.t, or

b.p, would be eliminated, while br.tr and NULL.br would be accepted.

What is the connection between finding signatures and MDL? Each signature

represents a considerable savings in the number of letters that are needed in the

stem lists. We may think of the null morphology as being the morphology in which

there are no affixes, and the only structure present is that the words of the corpus are

each individually represented in the list of stems. When we are able to reduce a set of

t stems and f affixes to a description as a signature (and such a signature represents

t times f words altogether), we are able to save f–1 copies of each stem, and t–1

copies of each affix. If the average length of a stem is S and the average length of

an affix is F, the signature will save approximately log2(27)[S(F − 1) + F(S − 1)],

measured in bits – which is a considerable amount of savings in practice. In an

4 The value chosen for this parameter has been chosen somewhat arbitrarily, and here, as at
a few other places in this paper, experiments with a large number of gold standards for
different languages might lead to somewhat different optimal settings.

8 J. Goldsmith

intuitively straightforward sense, the quantity [S(F − 1)+F(S − 1)] is the number of

letters saved by the use of the signature, and we may refer to this as the robustness

of the signature. In presentation of a language’s signatures to the user, this quantity

is used to sort the signatures, with the signature with greatest robustness ordered

first.

4 Check signatures

The Check signatures function directly incorporates the insights of the Minimum

Description Length perspective on grammar induction. It examines each signature

in turn, and attempts to determine if the transfer of material (letters, phonemes)

from stem to suffix will improve the overall description length of the morphology.

For example, if there is a large set of words ending in –ion and –ive, the function

described in the prior section will draw the conclusion that there are suffixes –on

and –ve in these cases, and place the –i in the stems, not in the suffixes. The purpose

of this function is to identify and correct that error.

Now, each signature consists of a list of pointers to stems, and pointers to

suffixes, and in most cases, there are more stems than there are suffixes in a

signature. When we examine a signature, we typically expect a healthy variety

of different final letters: while there may be a skew in the distribution of letters

that may appear stem-finally, there should nonetheless be a good variety. Check

signatures computes the entropy of the set of stem-final letters. If that entropy is

greater than the threshold value (experimentally set at 1.4), the function returns,

performing no change. If the entropy is less than the threshold amount, it considers

the entropy of the set of stem-final bigrams, and performs the same check for

measure against the entropy threshold. The function successively considers the

entropy of stem-final strings of up to 4 characters, and determines what the largest

k is for which the set of k -long stem-final letters has an entropy less than the

threshold.5

It then considers each of these restructurings of the signature, and calculates an

approximation of the change in the morphology’s description length brought about

by the change in the cuts between stem and suffix that would be caused by shifting

a certain amount of stem-final material to the beginning of the suffixes, such as the

–i– alluded to above.

The first step is to calculate how much length the signature σ is responsible for

in the overall morphology – so that we can compare that length to the length of

the alternative signatures which attempt to handle the same data. Now, a signature

is composed essentially of the following: a list of pointers to stems, and a list

5 It should be clear that this strategy is just a heuristic, and a more complex heuristic may
prove worthwhile in more complex cases. Testing the entropy of the last k letters of the
stems is a rough test as to whether we have wrongly cut up one or a small number of
suffixes between the stem and the affix, but it works well in practice.

An algorithm for the unsupervised learning of morphology 9

of pointers to suffixes. From here on out, it will be convenient to have a good

notation to indicate the frequency of a word or morpheme in the corpus, and we

shall henceforth indicate it as square brackets; thus, [the] indicates the number of

occurrences of the morpheme the in the corpus in question. As we have seen, the

length of (the encoding of) a pointer to C (where C is an element in a list labeled

by the category A) is log2
[A]
[C]

, so the length of the pointers to stems is the sum

of the inverse log frequencies of the stems, and in a parallel fashion, the length

of the pointers to suffixes is the sum of the inverse log frequencies of the suffixes,

though there is a difference in that a suffix will typically be associated with several

signatures.

Indeed, a suffix which is associated with only a single signature is a bit suspect;

being able to reanalyze a signature (such as on.ve) so that it is replaced by a signature

that consists only of suffixes that “already” and “independently” exist is a good

thing, as it decreases the description length of the morphology by increased use of

a smaller inventory of parts. In order to be able to keep track of the possibility of

making such a move, when we calculate the bit-length (information content) of a

signature, we assign to it a portion of the information content of the suffix entry

itself that is proportional to the relative use made of the suffix by that signature.

For example, if signature σ is the only signature to use the suffix on, and storage of

the suffix on takes 9.2 bits, then signature σ is charged the full 9.2 bits at this point,

in addition to the length of the pointer to on which the signature needs in order

to do its work. If, however, there was another signature σ′ which used the suffix on

to cover an equal number of tokens in the corpus, then signature σ would only be

responsible for 9.2/2 (= 4.6) bits in the present calculation.

In sum, we can thus calculate an approximation of the description length (DL) of

an individual signature σ, and we have a resulting value in bits. This DL consists of

three terms: the sum of the lengths of the pointers to stems, the sum of the lengths

of the pointers to suffixes, and the partial responsibility of each signature for the

information content of the suffix entries of the suffixes it uses. However, since under

most circumstances the lengths of the pointers to the stems will not change when we

restructure the signature, we leave this consideration out of the calculation at this

point. As we shall see in a moment, there are cases where the length of the pointer

to the stem changes (because the stem “already” existed), and we shall then calculate

the difference directly. We expect that each stem associated with a signature will

contain a pointer to its signature, so we also include the cost of all of these pointers,

which is equal to the number of stems [Stems(σ)] times the log frequency of the

signature. As we will see, under certain conditions, each of these may vary in the

modified forms of the signature.

We now move on to consider alternative signatures to σ′ which will be constructed

by shifting increasingly long sections of material from the stems to the suffixes,

stopping when the entropy of the set of transferred material exceeds the threshold.

For example, a set of stems ending in a and in i might be associated with the

signature –ble by the Successor Frequency function, and the present algorithm

would calculate the total description length of the two signatures that would be

10 J. Goldsmith

created by shifting all stem-final a ’s to form a suffix –able, and all of the stem-final

–i ’s to form a suffix –ible, meanwhile shortening all of the stems by one letter.6

The description length of one of these alternative signatures is calculated as

follows: to determine whether the restructuring is preferable, we must total each of

the description lengths, and compare them to the original description length, opting

for the situation in which the description length is the least.

Consider first the length of the pointers to stems. Since by design, each stem T is

associated with exactly one signature, these numbers will not generally change when

we restructure the signature–whether the stem is positi- or posit- will not change

the number of occurrences of position and positive in the overall corpus; but as

this example suggests, the removal of a portion of material from stem T (in this

case, the material i) may well give rise to a “new” stem T ′ which independently

occurs elsewhere in the corpus (for example, as an unanalyzed word). Indeed, that

discovery should speak in favor of this reanalysis, for the stem posit is being used

more often. Restructuring the entire morphology in order to calculate the overall

effects of this change would be the most accurate way to proceed; however, we

accept a simplification, and merely decrease the length of the stem-pointer in the

signature by increasing the frequency of the stem in question: it becomes the sum of

the number of occurrences of the stem T in the present signature σ, plus the number

of occurrences of the stem T ′ in its other signature or its unanalyzed occurrences.

Thus the length of the pointer to T will shift from log [W]
[T]

to log [W]
[T]+[T ′] (where [W]

is the total number of words in the corpus), a difference equal to log(1 + [T ′]
[T]

) (the

reader may recall that log(1 + x) is approximately x − x2/2 + x3/3 for small x), and

similarly change in the length of the pointer to T ′ will be equal to log(1 + [T]
[T ′]).

Furthermore, the stem T is now entirely removable from the list of stems, and

therefore an additional savings equal to approximately |T | ∗ log(27) occurs, which is

likely to be a considerably larger amount.

Even when a new stem is created which did not exist before (e.g., posit- instead

of positi-), if it is shorter, then the amount of information in the stem list decreases;

hence if the number of stems associated with signature σ is [Stems(σ)], and a final

string of length k is removed from them, there is a total savings of approximately

[Stems(σ)] ∗ k ∗ log(27) bits associated with the new signature.

And what of the list of suffixes in this new signature? In the first place, it is possible

that this list of suffixes already exists in the morphology as an independently needed

signature σ∗, and if that is the case, then a considerable simplification can be

achieved by simply merging the signature σ with σ∗. Let us construct a list of all the

places in the morphology where this merger will give rise to a simplification. First,

the length of a pointer to σ∗ will shift from log [W]
[σ∗]

to log [W]
[σ∗]+[σ]

, and that difference

is log(1 + [σ]
[σ∗]

); in parallel fashion, the length of the pointers to σ will change by

an amount equal to log(1 + [σ∗]
[σ]

). Using the approximation mentioned above, we see

6 As this example illustrates, it may be that the best analysis would be one where one of
these letters was transferred to the suffix, and the other was not. This possibility is not
currently considered by the algorithm.

An algorithm for the unsupervised learning of morphology 11

that this means a savings of about [σ∗]
[σ]

) bits for every place where the signature σ

was mentioned in the grammar previously. Thus the savings are considerable when

a signature is replaced, or superseded, by a signature which occurs considerably

more times. And these savings will indeed accrue quite a few times, for there are

many places in the grammar where pointers to signatures occur: minimally, there

is a pointer to a signature associated with each stem. The savings to σ∗ that occur

when signature σ can be replaced by an already existing signature σ∗ due to the

collapsing procedure alone are thus [Stems(σ∗)] ∗ log(1 + [σ]
[σ∗]

), while savings of the

cost of the pointers to σ∗ from the stems of σ is equal to [Stems(σ∗)] ∗ log(1 + [σ∗]
[σ]

).

One is tempted to see this as a quantitative evaluation of Meillet’s classic dictum

that a language is a système où tout se tient.

If the new signature σ∗ did not independently occur, we must calculate the

relevant parts of its description length: the length of its pointers to its individual

suffixes. The length of the pointer to suffix f is log [W]
[f]

. We continue, as we noted

above, to prorate the information content of the actual phonological material of the

suffix between this new signature and all the other signatures that also point to this

suffix. The more signatures point to the suffix, the less any of them will have to be

responsible for that suffix’s phonological content.

5 Extending known stems to known suffixes

One of the conditions that we placed on the successor frequency bootstrapping

algorithm blocked it from associating a stem with a particular suffix if there were two

or more suffixes that began with the same letter (e.g., conservation and conservative

could not be analyzed as conserv-ation and conserv-ative, even in the presence of

conserve and conserving). We now make up for this initial conservatism, by scanning

through our list of discovered stems and looking to see if there are any unanalyzed

words which consist of such a stem followed by a suffix that had been discovered

elsewhere. When such words are found, they are analyzed and divided into stem and

suffix. If there should be two such ways found, the one with the more common stem

is preferred.

6 Extending known signatures

We now consider all signatures containing at least two stems and two suffixes, and

scan through the words unanalyzed so far, to see if they fall into any such signatures.

We sort the signatures by robustness, and look for the most robust signatures first.

When we find that a signature matches a set of words, we analyze the words into

stem and affix with that signature. One of the consequences of this is that we now

can find stems whose length is shorter than the limit we placed on stems in the

initial boostrap heuristic, because our knowledge of the morphological patterns is

now greater.

12 J. Goldsmith

7 Extending known stems

As we pass through each successive function, our formal analysis of the morphology

of the corpus has improved. We now consider whether the stems which we have

analyzed up to now can serve as a means to finding new suffixes.

We consider each stem t (optionally setting a lower bound on stem length), and

consider the signature σt that it is currently associated with. The robustness of σt (as

defined above) is a rough MDL-based measure of how good a signature σt is, and

we set an empirical threshold of 10 for σt’s robustness. If the stem t passes this test,

we consider all words that begin with t but whose continuation is not in σt, and

we put all of these continuations into a tentative suffix collection. When we have

considered all of the stems, we eliminate from the tentative collection any suffix

which has occurred fewer than 3 times, and accept all other suffixes, integrating

them into their new stems’ signatures.

8 Extending known suffixes (“loose fit”)

Our knowledge of morphology is encoded in our knowledge of signatures, stems, and

affixes, and the degree of secure knowledge in each of these is greatest for signatures,

and least for affixes. In the preceding functions, we have leveraged our knowledge

of stems and of signatures to deepen the analysis; now we use our knowledge of

suffixes to consider the possibility of finding both new stems and new signatures.

We look at all words which have not yet been morphologically analyzed, and find

all divisions of such a word w into two pieces t+f such that the second piece is a

known suffix f. For such a case, we consider all words that begin with t that have

not yet been analyzed, and tentatively analyze them as being based on a stem t

associated with a signature which is composed of all of these observed continuations.

These constitute the new hypothetical signatures which we now analyze.

For each such signature σ, if it is already a recognized signature (which rarely

happens), we accept the new stem introduced into to the discussion in the preceding

paragraph. In all of the other cases, we calculate the effect that its inclusion would

have on the description length. If that effect would be salutary – that is, it would

decrease the total description length – then we accept the new signature and the new

word-divisions that it indicates; if not, we reject it and its word-divisions. We can

rapidly approximate the effect on description length in the following terms: as above,

the size of the set of words in the morphology is [W]; then the cost of the current

analysis of a particular word w (i.e., no analysis at all) is equal to the “graphological

information” of the entire word (see above: log2(27) times length of each word),

plus one pointer from the null signature to this word (of length log [W]
[w]

) plus one

pointer from the word to the null signature (of length log [W]
[NullSignature]

).7 The cost

of the new analysis, with the new signature, is equal to the sum of three terms: a

7 In this paper, we have simplified things slightly by assuming each observed word occurs
once (so that stem frequencies can be derived from number of different affixes they are
observed with); in general, this is a simplifying assumption that does not need to be made,
but if it is, then [w] here is equal to 1.

An algorithm for the unsupervised learning of morphology 13

stem term, a suffix term, and a pointer to the signature itself. The stem term is the

sum, over all of the stems in the signature, of the graphological information of the

stem and a pointer to that stem; the suffix term is the sum, over all of the suffixes

in the signature, of the graphological information of the suffix if the suffix did not

already exist, and a pointer to that suffix. If the cost of the new analysis is less

than the cost of the current analysis, we select the new analysis and its concomitant

word-analyses.

Approximate information content of an analysis, where F is the set of suffixes

which already existed in the morphology, and G is the set which did not:

|t| log2 27 +
∑

f∈F
⋃

G

log
1

freq(f)
+

∑
f∈G

(
|f| log2 27 + log2

[W]

[f]

)
(5)

Following this, we use the MDL-based check-signatures function (see section 4).

9 Finding singleton signatures

We have known since Zipf that a high proportion of words found in a corpus have

very low frequency, and the same is true of stems. Given a word formed by a stem

that occurs only once in a corpus, it is not always easy to know whether the word is

morphologically analyzed, and if it is, which is the correct analysis. Given the word

pringles, is it to be analyzed as pringle + s? Given the word framness should it be

analyzed at all, and if so, is the suffix –ness, –s, or something in between?

Here we have to do the best we can with considerable less certainty. Our algorithm

considers each unanalyzed word which ends in a known suffix (including the null

suffix) and assigns it a probability based on a model that assumes that a stem is

chosen based solely on its length, and then a suffix is chosen based on the suffix’s

frequency. We must, therefore, compute the probability of each stem length, using the

frequency of known stem-lengths in the stem collection, and taking the unanalyzed

words to be members of the set of stems that have null suffixes.

10 Allomorphy

Determining the correct segmentation of an arbitrary word is only the first step in

analyzing the morphology of a language: in addition, virtually all languages display

allomorphy, that is, variation in the realized form of a given morpheme. In English,

the same morpheme appears as love (in the word love, lovesick, and loves) and lov (in

the words loving, lover, and loved). More generally, word-final –e in English deletes

before a range of suffixes, including –ed, –ing, and –ity. Suffixes too take different

forms: the plural –s in English appears as –es after stems that end in s, sh, or ch

(hisses, masses, hitches, etc.). It is often not obvious to the analyst or to the native

speaker just where this allomorphy begins and ends (a point we discuss in greater

detail in section 11 below). For example, it is reasonable to assert that the stems

receive and recept (as in recept-ion) are alternate realizations (that is, allomorphs)

of the same morpheme, paralleled by deceive/decept(ion), perceive/percept(ion) and

conceive/concept(ion), but it is less clear whether the correct form is recep or recept.

14 J. Goldsmith

And other conceivably related forms are not in fact related at all: for example, the

stems resolut- and revolut- (from the words resolution/revolution) are not related by

any rule relating s and v in English.

In this section, we present an algorithm that takes certain steps towards dealing

with this challenge. At present, the algorithm to be presented is capable only of

detecting rules of allomorphy that delete stem-final material, like the deletion of

word-final –e in English, and rules that cause alternations of a stem-final letter (e.g.,

y becomes i) before certain suffixes (e.g., –es). This capability is useful, however,

for a range of languages, including English. Considerable work remains before the

range of actual alternations can be automatically detected; some further examples

are discussed in the next section.

Let us step back and think about this problem more generally. The task of finding

the principles that relate the forms (allomorphs) of a stem is generally conceived of

as the task of discovering the phonology of a language, a problem that has been

attacked by a number of researchers, especially in the past ten years (Ellison (1991),

Albright (2002), Albright and Hayes (2003), Neuvel and Fulop (2002), and others.)

Most, but not all, of this work has assumed that some “oracle” – some outside

source of information – provides the phonology learner with the information that

two words are morphologically related: the two words may be explicitly marked

as being part of the same morphological paradigm, for example. But the present

algorithm does not have access to that information, by the ground-rules that we

have set for it.

The most reliable information the framework has is the set of robust signatures

in the language, and it is this information that it uses to determine if there is

stem-final deletion at play in the language it is considering. Suppose there is a

suffix F which deletes stem-final L, and suffix F appears with stems that appear

with a null suffix. (For example, F might be the suffix –ing in English, and L the

letter –e.) Then there will appear to be two distinct signatures in the language:

NULL.F (from “regular” stems that do not end in L) and L.F (from stems that

end in L). In addition, under these phonological conditions, the morphology may

have wrongly analyzed some cases of stem-final L’s as having been part of a larger

suffix.

Since signatures are the most reliable distributional information we have about

the language at this point, we use them to detect this situation in the following

way. We consider all 1-letter suffixes, and for each one (which we will mnemonically

enough call ‘e’, in honor of one of the suffixes that actually passes the tests we are

about to describe), we wish to establish three classes of suffixes:

1. suffixes that might delete e (e.g., –ing deletes stem-final e);

2. suffixes that were erroneously given an initial e (e.g., if a suffix ement were

established for English, which should actually be ment with a stem-final e),

and

3. suffixes (e.g., –d) which were erroneously analyzed, because they are actually

of the form eX (e.g., –ed) and delete stem-final e.

An algorithm for the unsupervised learning of morphology 15

In cases (1) and (3), we indicate that a suffix f deletes a preceding e with this

notation: <e>f. For example, if ing deletes a preceding e, we henceforth represent

the suffix as <e>ing rather than as simply ing.

We identify a potentially deleting suffix fdel , a member of our class 1, by finding

pairs of signatures, σ1 and σ2, where σ1 is of the form NULL.fdel , (for example,

NULL.ing) and σ2 is of the form e.fdel (for example, e.ing), with the further

condition that the number of stems in the signature NULL.fdel exceed those in

the signature e.fdel .: that is, if a suffix (such as –ing) is a deleter, it is still the case

that its non-deleting occurrences are more frequent than its deleting occurrences.

We identify those in class 2 (like the spurious suffix ement in English; call such

a suffix fL) if fL is of the form eX (i.e., it begins with e), and X is also an

existing suffix, and X occurs with more stems than eX (= fL) does: that is, the

correctly analyzed suffix is more frequent than the misanalyzed one. We identify

those in class 3 (call one d ; e.g., –d in English) if the concatenation ed also

exists (that is, the concatenation of the ‘e’ that we are exploring), and the number

of stems that occurs with ed is greater than the number of stems that occur

with d – again, the non-deleting case must be more frequent that the deleting

case.

In each of these three cases, we associated with each suffix f a modified form of

the suffix, which we will refer to as T(f). T can be thought of as a mapping to a

more abstract morphophonological representation. In the case of a suffix in Class 1,

such as ing, T (ing) = <e>ing; for one in Class 2, such as ement, T (ement) = ment;

for one in Class 3, such as d, T (d) =<e>ed. T(e) is defined as the f suffix. For

any suffix x that has not been assigned a modified form by the three methods

defined in this paragraph, we define T(x) as x. The map T can then be taken to

apply to concatenations of suffixes by applying to each of the suffixes individually.

For example, T (d.ing) =<e>ed.<e>ing. We will also need an operation that maps

these more complex signatures to a simpler representation, in which the deleting

elements <x> are suppressed; we refer to this as []∗: e.g., [<e>ed.<e>ing]∗ =

ed.ing.

The preceding identifications are preliminary to the next step, which is crucially

linked to description length. The computational motivation for discovering these

more complex relationships between various pairs of stems is that by recognizing

these relationships, we can decrease the total number of signatures, which in turn

significantly reduces the description length of the morphology and of the corpus. In

fact, we can say that the push to discovery allomorphy is motivated by the desire to

extend the reach of a small number of signatures.

We now consider all signatures σ that contain suffix L such that [T (σ)]∗ also

exists. For example, e.d.ing is such a signature, because of (6a); hence (6b) follows.

(6a) T(e.d.ing) = NULL.<e>ed.<e>ing

(6b) [T (e.d.ing)]∗ = NULL.ed.ing

In addition, the signature NULL.ed.ing independently exists in English. We count

the number of distinct signatures that satisfy this property, and count the total

16 J. Goldsmith

number of stems that are associated with these signatures, setting thresholds of 5

and 50, respectively. A suffix L that passes this test is interpreted as being erroneously

analyzed as a suffix, and is reintegrated into preceding stems; suffixes are reassigned

according to the function T, as defined above.

A similar method is used to identify a stem-final segment that mutates under the

influence of a following suffix (for example, stem-final y mutates to i before suffixes

such as –al : bury + al > burial, beauty + ful > beautiful, dry + ed > dried). For each

1-letter suffix Y, we do the following. For each suffix Z that occurs with Y in a

signature Y.Z (e.g., Z might be the suffix ies in the signature y.ies), we look to see if

Z can be decomposed into IZ*, where I is a single letter, and Z* is an existing suffix

(in the cases just mentioned, the Z* would be –al, –ful, or –ed). If that condition is

met, we define T(Z) as the ordered pair (I, Z*), written a bit more perspicuously

as {Y |I}Z∗. Intuitively, {Y |I}Z∗ means a fixed suffix Z* which has the property of

mutating an immediately preceding Y to I, much as <e>ing refers to a fixed suffix

ing which mutates a preceding e to the null string. Note that the letter identified as

I can be distinct in the case of each suffix; it is merely the first letter of the suffix. If,

however, there exists a common letter (call it I) that is shared by a majority of the

suffixes, then we conclude that all suffixes Z such that T (Z) = (I, Z∗) are indeed of

the form Z* (e.g., –ial is reanalyzed as –al) with the property that they mutate a

stem-final Y to I. The corresponding stems are then modified, so that they take on

a final –Y.

These procedures illustrate how the drive for simplification of signatures can lead

to the discovery of simple patterns of allomorphy.

11 Evaluation

As is the case with most natural language efforts, a quantitative evaluation of

the accuracy of morphological analysis of English is fraught with issues that were

initially unexpected. We built by hand a gold standard of some 15,000 words and

the target morphological analysis we expected. This turned out to be a much greater

challenge than we expected, and we will explain why in what follows.8

We decided to evaluate with an accuracy measure, rather than with precision and

recall as in Goldsmith (2001). This was based on a practical consideration: in a

certain sense, all that we care about is getting the “right” answer, and on producing

a system that gets the “right” answer as often as possible, so we decided to assign a

positive value only to the analyses of those words which matched our gold standard

analysis. The gold standard contains an indication of where the final suffix is in each

(non-compound, non-proper noun) word, if there is one.

We ran into the following sorts of issues in developing the gold standard:

1. Words in which we did not know whether there was a morphological analysis.

Is there a morphological analysis in such words as boisterous, ambassador,

annual, poem (cf. poet), agrarian, armor, benediction, crucial, or worn?

8 The initial preparation of this gold standard was done by Nikki Adams.

An algorithm for the unsupervised learning of morphology 17

2. Words in which we were certain that there was a morphological analysis, but

we were not sure which of two different analyses was the “right” one: is allergic

based on a stem allerg, or is it from allergy plus the suffix ic? Is alphabetical

based on alphabet or on alphabetic? Is Algerian from Algeria plus –n, or plus

–an, or plus –ian? We know there is a suffix –ian in Corinth-ian (and maybe

in Belg-ian), and Palestin-ian, and probably in Canad-ian. But what about

Cuban? Is that a suffix –an or –n? In a different area, is dogmatically to be

analyzed as dogmatic plus ally? Most words ending in –ally are arguably made

up of two suffixes, -al- plus –ly, as in abnormally (from abnormal plus ly); but

dogmatical is not a word: shouldn’t this play a role in our analysis?

3. Words in which simple segmentation of the words into stem plus suffix was

not sufficient; the true stem of the word was different from the result of

segmenting the word into two pieces. The clearest example of this involved

final –e’s: loving is composed of love plus –ing. In other cases, the modification

is greater: decision is decide + ion, cutting is cut plus ing, decency is decent

plus y. Curiosity is curious + ity. Is application built from apply plus ation?

Not so clear.

4. In some words, segmentation is the wrong thing to worry about: crises is crisis

in the plural form. How do deal with that: treat it as crisis + s?

5. In some cases, it is not clear what the “right” form for the suffix is. Is the

analysis of churches to be church plus s or plus es?

6. We know there is morphology involved, but is it English morphology? Is

corpus based on a stem corp plus a suffix us? I am not sure, though I

am reasonably confident that alumnus is alumn + us (related to alumn + i).

Similarly: debutante.

We decided that our research goals would be best satisfied by the following set of

decisions:

1. Make the standard of the gold standard extremely high; a low score is

an acceptable consequence. It should not be the case that the algorithm is

penalized if it comes up with an analysis that is in some sense correct, and

yet “better” than the one placed on the gold standard. For example, if the

algorithm discovers the analysis of alumnus as alumn plus –us, it should not

be penalized for this, even if we are surprised that it does so.

When it is really not clear what the analysis is, do not score the algorithm one

way or the other on the word. The word will still be part of the input, but it

will not be scored. We also made the assumption that the analyses of proper

nouns were not to be tested.

2. When there is clear allomorphy, make a decision ahead of time as to which

aspects of the morphology the algorithm is responsible for. At this point

in time, we decided that we wanted our algorithm to be tested on learning

the stem-final –e deletion and stem-final –y allomorphy, and so we set the

gold standard correct analysis of words such as loving and cries as love+ing

and cry+es (but not cry+s), respectively. In future work, we will add to our

18 J. Goldsmith

gold standard, and make it possible to select which other aspects of English

allomorphy one wishes one’s algorithm to be tested against.

3. The gold standard must be made publicly available.

On the first 200,000 and the first 300,000 words of the Brown corpus, Linguistica

achieved accuracy of 72%. Of the errors (that is, of the 28% of the words that were

not correctly analyzed), approximately 30% were due to inaccurately reconstructing

“missing” stem-final –e’s. For example, when the words abused and abusive were

found (but no other related words, notably abuse), the algorithm was unable to

reconstruct abuse as the stem, and it reconstructed instead abus, and these analyses

were scored as errors. (That is, if we did not demand the reconstruction of these

–e’s, accuracy would rise to approximately 80%).

12 Conclusions and additional word

We have summarized in this paper the critical elements of an algorithm for

the unsupervised learning of the morphology of a language like English. It has

been implemented and tested, and is available at http://linguistica.uchicago.edu.

Executable for Windows and Linux and source code can be downloaded from that

site.

One of the goals of the present work is to determine what the limits of language

learning are when the input data contains no semantic information and little or

no use of syntactic context. It seems to me that determining such limits is a very

important scientific question – even if it is difficult to make absolutely precise how

to determine in any given case whether semantic or semantic-like information is

being used. I think it is fair to say that we do not know what the limits are of how

much morphological structure can be inferred without access to such resources as

dictionaries, bilingual corpora, full semantic representations, and so on. There is only

one way to find out, though, and that is to try as hard as we can to develop a system

that infers the morphology from the very limited resources used in Linguistica and

then see what can, and what cannot, be learned. I believe that it is fair to say that

we have not hit any evident roadblocks so far, even if it is too soon to say where

and when the first one may appear.

References

Albright, A. (2002) Islands of reliability for regular morphology: Evidence from Italian.

Language 78, 684–709.

Albright, A. and Hayes, B. (2003) Rules vs. analogy in English past tenses: a

computational/experimental study. Cognition 90, 119–61.

Bell, T. C., Cleary, J. G. and Witten, I. H. (1990) Text Compression. Prentice Hall.

Brent, M. (1999) An Efficient, Probabilistically Sound Algorithm for Segmentation and Word

Discovery. Machine Learning 34(1–3), 71–105.

Ellison, T. M. (1991) The iterative learning of phonological constraints. Dissertation.

http://citeseer.nj.nec.com/ellison91iterative.html

Goldsmith, J. (2001) The unsupervised learning of natural language morphology.

Computational Linguistics 27, 153–198.

An algorithm for the unsupervised learning of morphology 19

Goldsmith, J., and Hu, Y. (2004) From signatures to finite state automata. Midwest

Computational Linguistics Colloquium, Bloomington IN.

Hafer, M. A. and Weiss, S. F. (1974) Word segmentation by letter successor varieties.

Information Storage and Retrieval 10, 371–385.

Harris, Z. (1955) From phoneme to morpheme. Language 31, 190–222.

Harris, Z. (1967) Morpheme boundaries within words: report on a computer test.

Transformations and Discourse Analysis Papers 73.

Harris, Z. (1970) Papers in Structural and Transformational Linguistics. D. Reidel.

Hu, Y., Matveeva, I., Goldsmith, J. and Sprague, C. (2005) The SED heuristic for morpheme

discovery: a look at Swahili. In: W. Sakas, A. Clark, J. Cussens and A. Xanthos.

Psychocomputational Models of Human Language Acquisition Workshop at ACL 2005.

Neuvel, S. and Fulop, S. (2002) Unsupervised learning of morphology without morphemes.

Proceedings of the ACL Workshop on Morphological and Phonological Learning, pp. 31-40.

Philadelphia.

Rissanen, J. (1989) Stochastic Complexity in Statistical Inquiry. World Scientific Series in

Computer Science. World Scientific.

Wallace, C. S. and Georgeff, M. P. (1983) A general objective for inductive inference. Technical

Report 32, Department of Computer Science, Monash University.

Wallace, C. S. and Dowe, D. L. (1999) Minimum Message Length and Kolmogorov

Complexity. The Computer Journal 42(4), 270–283.

Xanthos, A. (2003) Du k-gramme au mot: variation sur un thme distributionnaliste. Bulletin

de linguistique et des sciences du langage (BIL) 21.

