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Morphological analogy: Only

a beginning

John Goldsmi th

All reasoning is search and casting about, and requires pains and application.

John Locke, An Essay Concerning Human Understanding (1975 [1690])

7.1 Introduction

The perspective that I will describe in this paper is the result of some work

over the last ten years or so aimed at building an automatic morphological

analyzer—that is, an explicit algorithm that takes natural language text as its

input, and produces the morphological structure of the text as its output.1

The main conclusion, as far as analogy is concerned, is that formal notions

that correspond very naturally to the traditional notion of analogy are useful

and important as part of a boot-strapping heuristic for the discovery of

morphological structure, but it is necessary to develop a reWned quantitative

model in order to Wnd the kind of articulated linguistic structures that are to

be found in natural languages.

I take the perspective that the three principal tasks (we could call them the

Wrst three tasks) of someone who wishes to develop a theory of morphology

that applies to natural languages is to develop an account for (1) the segmen-

tation of words into morphs; (2) the description of a grammar to generate

words, on the basis of the morphs, among other things; and (3) the labeling of

morphs, in two diVerent ways: (a) a labeling that indicates which morphs are

diVerent realizations of the same morpheme, and (b) a labeling that indicates

the morphosyntactic feature representation of each morpheme. Of these

three, I will focus on the Wrst two, and of the Wrst two, I will emphasize the

Wrst. I underscore this because if we were historians of linguistics in the future

1 I am grateful to Juliette and Jim Blevins, to Susan Rizzo, and to anonymous referees for comments

on the original version of this chapter.
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looking back at what questions were the focus of discussion in the Wrst decade

of the twenty-Wrst century, it would appear that the Wrst question must have

been settled, in view of how little discussion there is of it.2 I mean very simply,

how do we justify the statement (for example) that books is composed of two

morphs, book and s, while tax is not? One of the reasons that the problem of

segmentation is interesting is that we cannot call upon the resources within

generative grammar that most of us are familiar with, and have grown

dependent upon—which is to say, appeal to substance in an innate Universal

Grammar. There is no plausible account of how speakers of English learn that

‘‘ing’’ is a suYx, while speakers of Swahili learn that ‘‘an’’ is a suYx, that

appeals to a small list of discrete parameters, each with a small number of

settings.3 In fact, from a certain point of view, this is one of the reasons why

the study of morphology so interesting: there is so much that must be learned.

I will begin with a discussion of the computational problem of word

segmentation—that is, the problem of dividing a long string of symbols

into words, with no prior knowledge of the words of the language. This is

one of the problems that any child language learner faces. We will see that a

large part of the diYculty that we run into when we tackle this problem

derives from the importance of having a good model of morphology, without

which all of our eVorts to learn words would be in severe trouble. Rather than

trying to solve both problems at the same time (the problem of word

segmentation, and the problem of morphology induction), we will turn

2 There is a perspective onword structure, articulated notably by Rajendra Singh and Sylvain Neuvel

(Neuvel and Singh (2001), Neuvel and Fulop (2002)), which denies the existence of morphs and the

internal segmentation of words. While I appreciate the force of their arguments, it seems to me that the

same arguments against the decomposition of words intomorphs holds, with essentially the same degree

of conviction, against dividing sentences up into words—there are unclear cases, there is semantic

noncompositionality in quite a few cases, and so on. But at the same time, it seems to me that linguists

have to agree that concatenation is the preferred formal operation in bothmorphology and syntax, and
the focus on segmentation into words and morphs can be understood as no more and no less than a

consequence of that preference.

3 There is a tradition of no great antiquity in linguistic theory of seeing the adult grammar as a

collection of objects selected from a Wxed, universal inventory of objects, rather than as an algebraic

representation of some sort whose length is in principle unbounded. The Wrst explicit mention of this,

as far as I know, is found in David Stampe’s work on natural phonology in the early 1970s (see Stampe

(1980) [1972]), followed by Daniel Dinnesen’s atomic phonology (see Dinnsen (1979)); the strategy was

adopted in Chomsky’s principles and parameters at the end of the 1970s, and it has never left the charts

since then. It gained renewed vigor with the rise of optimality theory in the 1990s. Its appeal is no

doubt due to the pious hope it has been known to inspire that the problem of language learning may

turn out to be trivial, because the diVerences between languages will amount to a small number of bits

of information. I Wnd this sad, in part because, if we can’t count on linguists to tell the world about the

richness and variety found across humanity’s languages, there is no one else to do it. It’s doubly sad, in

that even if it were the case that learning a language could be modeled as being much like selecting a set

of, say, 50 items out of a universal set of 1,000, we would still need to do some heavy lifting to produce

an account of learning; since there are some 1000!
50! 950!

ways to do that, the fact that this is a Wnite number

is not much consolation. I will return to this in the conclusion.
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speciWcally to the task of discovering the morphology of a language with no

prior knowledge of the morphology, but with prior knowledge of where word

boundaries are (as if we had already solved the word segmentation problem),

and discuss the role that analogy plays in this latter task. Naturally, we would

like to merge these two tasks, and present an algorithm that takes an unseg-

mented segment stream as input and produces both a word list and a

morphology; we are not yet able to accomplish that (though I suspect we

have the tools at our disposal now to tackle that problem). I would like to

emphasize, however, that the materials on which we base our experiments are

not prepared corpora or toy data; they are in every case natural materials from

natural languages.

There is a more general point behind my account as well, which deserves at

the very least a brief presentation before we settle into a discussion of a

speciWc problem. It is this: the present paper assumes that we can specify a

scientiWc goal for linguistics which is independent of psychology, and which

depends only on computational considerations. Being independent of psych-

ology, it does not presume to tell psychologists what conclusions they will or

should reach in their exploration of the human mind and brain, nor does it

depend on those explorations. Its premise is very simple: given a particular

corpus from a language (that is, a Wnite sample, which can be as little as a few

thousand words, or as large as the internet as of some moment in time, like

today), the goal is to Wnd the best grammar (or set of grammars) that

accounts for that data. This suggestion is only as useful as our ability to

explicate what it means for a grammar G to account for a set of data, or

corpus, C, and we will deWne this as the probability of the grammar G, given

the data C; and we will see below that by this we shall have meant the

grammar G such that its probability (based on its form) multiplied by the

probability that G assigns to C, is the greatest. How such a view is possible and

reasonable will become clearer shortly.4

Before proceeding any further, I would like to say what I mean by analogy

in morphology. Unless speciWed otherwise, I will assume that our goal is to

analyze the internal structure of words, and also that we actually know where

words begin and end in the sound (or letter) stream of the language we

happen to be looking at. In fact, I will assume that our problem is to Wnd

internal structure when presented with a word list in a language. In traditional

terms, book : books :: dog : dogs would constitute an analogy; so would jump :

jumped : jumping :: walk : walked : walking. A more perspicuous way to look at

this sort of analogy is as in (1), which we call a ‘‘signature’’; a computer

4 This notion is also presented, in greater detail, in Goldsmith (2007).
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scientist would prefer to represent the same data as in (2), which he would call

a representation of a Wnite state automaton (FSA).
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But before we talk about morphological analysis, let us turn Wrst to the

problem of word segmentation.

7.2 The problem of word segmentation

In the mid-1990s, Michael Brent and Carl de Marcken (both graduate students

in computer science at the time working with Robert Berwick at MIT) devel-

oped computational methods for inferring word boundaries in a continuous

stream of discrete symbols, relying on MinimumDescription Length (orMDL)

analysis (Brent (1999), de Marcken (1996), Rissanen (1989)). Their projects

could be interpreted (as they did interpret them) as representing an idealization

of how a child can learn the words of a language when exposed only to a stream

of phonemes. This is the word segmentation problem: how to Wnd words in a

larger stream of symbols. Now, there are two fundamentally diVerent ap-

proaches that one could take in dealing with the word segmentation problem

(and one could certainly adopt both approaches, since they are not incompat-

ible): one can either focus on Wnding the boundaries betweenwords, or focus on

Wnding words themselves in the stream, the sequences of recurring symbol

strings, and inferring the boundaries from knowledge of the words. I think

that there is awidespread (and natural) tendency to feel that theWrst of these two

methods (Wnding cues in the signal that show where the boundaries between

words are) is the more appealing way to approach the problem, perhaps on the

grounds that you cannot take the second approach without engaging in some

kind of inappropriate circular reasoning. This intuition is probably encouraged,

as well, by the observation that in a good number of European languages, there

are relatively straightforward superWcial phonological cues to mark the delimi-

tations betweenwords, such as can be found inwords inwhich the initial syllable

is regularly stressed (as in Finnish, and as was once the case in German), or in

which the penultimate syllable is stressed.5

5 As an aside, I would mention my belief that this approach is hopeless as a general solution to

the problem of word segmentation. The reason for this pessimistic view is that the diVerence in
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The second approach, as I noted, is to say that we will Wrst Wnd the words in

the signal, and then divide the signal up into words in the most likely way

based on that knowledge of the words, along with the assumption that the

speech signal can be partitioned without overlap into a succession of words.

But how can this kind of learning be done?

I will give a brief summary here of the Brent-de Marcken approach to

answering this question, based on MDL modeling. My account leans more

heavily on de Marcken’s speciWc approach than on Brent’s, but it is a sim-

pliWcation of both, and the reader who would like to learn more is strongly

advised to read the original works.

Minimum description length modeling was Wrst developed by the Finnish-

American statistician, Jorma Rissanen, notably in a book published in 1989

(Rissanen (1989)). The question he is concerned with is not speciWcally

linguistic at all. It is simply this: given a body of data, how can we be sure

to extract all and only the regularities that inhere in the data? We want to Wt

the model to the data, or the data to a model, and we want neither to overWt

nor to underWt. UnderWtting would mean failing to extract some signiWcant

regularity in the data; overWtting would mean misinterpreting something that

was, in some sense, accidentally true of the data which was sampled, but

would not be true of a larger sample from the same source.

Rissanen’s approach is inherently probabilistic in two ways. To explain what

these ways are, I shall discuss the problem of word segmentation in particular,

even though Rissanen’s approach is very general and was not developed with

linguistic problems in mind. The Wrst way in which the MDL approach is

probabilistic is that an MDL analysis is a model (or grammar) that assigns a

probability to every conceivable string of phonemes (or letters, if we are

working with a language sample from a written source). This is a stringent

condition: a probabilistic model is by deWnition one which assigns a non-

negative number to every possible input, in such a fashion that the grand total

of the probabilities adds up to 1.0—and this must be true even if the set of

possible inputs is inWnite (which is virtually always the case). Probability is

thus not a measure of something like uncertainty or randomness; if anything,

imposing the condition that the model be probabilistic imposes a very tight

probabilities that such approaches can assign to cuts in diVerent places in a sound stream are far too

small to allow a successful overall division of the stream to be accomplished in a local way, that is,

based only on local information. The problem can only be solved by maximizing the probability of a

parse over the longer string, which allows us to take into account the probabilities of the hypothesized

words, as well as the conditional probabilities of the hypothesized words. To put this in a slightly

diVerent way, in order to segment a stream into words, it is not suYcient to have a model that predicts

the phonetics of the word boundaries; one must also have a language model, assigning a probability to

the sequence of hypothesized words. The interested reader can Wnd a survey of much of the material on

segmentation in Goldsmith (2009). See also Roark and Sproat 2007.
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overall constraint on the system as a whole. In the language of probability, we

are required to specify ahead of time a sample space and a distribution over

that sample space; the distribution is essentially a function that maps a

member of the sample space (or a subset of the members of the sample

space) to a real number, in such a way that the whole sample spacemaps to 1.0.

The second way in which an MDL analysis is probabilistic is more abstract.

We set a condition that the grammars themselves are the subject of a prob-

ability distribution; which is to say, every possible grammar is assigned a

probability (a non-negative real number), subject to the condition that these

probabilities sum to 1.0—and this must be true even if the set of possible

grammars is inWnite (which is virtually always the case). The reader may note

that this condition puts MDLwithin the broader context of approaches which

includes Bayesian approaches to modeling; MDL puts the priority on the

quantitative notion of encoding, both regarding the data and the grammar,

but there is an overall commonality from a distant enough perspective.

Although it may not sound like it at Wrst, this second condition is very similar

in spirit to Chomsky’s view of grammar selection in early generative grammar

(that is, in classical generative grammar (Chomsky (1975 [1955]), which in the

late 1970s many generative grammarians abandoned—after little discussion—in

favor of the principles and parameters approach (Chomsky and Lasniik (1977))).

According to this perspective, the primary goal of linguistic theory is to make

explicit a formalism for grammar writing, but not just any formalism. The goal

was a formalism with which predictions (or, more modestly, claims) could be

made as to which grammar was correct among a set of grammars all consistent

with the given data; those predictions would be based purely on the length of the

grammar in the some-day-to-be-discovered formalism.

MDL employs a few simple ideas to assign a probability to a (potentially

inWnite) set of grammars, and we should at least sketch these ideas. Perhaps

the most important is what is known as Kraft’s inequality. Kraft’s inequality

holds for uniquely decodable codes, but we will consider (as does most MDL

modeling) a special case of that—those codes which are said to respect the

preWx condition. The term coding here should simply be interpreted as

meaning something like formalized as a grammar, and in general we want to

consider the class of all grammars that are permitted by a certain formalism.

The preWx condition sounds innocuous: it says that there are no two gram-

mars (G and H, say) which have the property that H equals all of G plus some

additional material (as computer scientists put it: there are no two grammars

G and H such that G is a preWx of H—but remember that computer scientists

just use ‘‘preWx’’ to mean a substring that starts at the beginning of some other

string). Another way to put it is this: when you are reading a grammar, you
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know when you reach the end of it. (The condition seems innocuous, but its

consequences are major, for reasons that we will not go into here.)

Kraft’s inequality says that if a set of strings (here, grammars) does indeed

respect the preWx condition, then we can assign a probability to each string

(grammar) S equal to 2�length(S). Why the number 2 here? I have assumed

(as computer scientists tend to) that we encode the grammar using strictly

binary encodings, the way a computer does, using only 0’s and 1’s. If we want

to use a vocabulary like the Latin alphabet, then the base is going to be 26—or

more likely 27, if we include a punctuation symbol, like space,6 and so below

I will replace ‘‘2’’ by ‘‘27.’’ If the length of a grammar is 100 0’s and 1’s, then we

assign it a probability of 1
2100

; if it’s 100 letters, then we assign it a probability

of 1
27100

. Unless we’re very careful with our assignment of lengths, this quantity

(based solely on grammar length) will sum to a Wnite number less than 1 (call

it k); and then, to turn these numbers into true probabilities, we divide each

of them by k, so that the sum totals 1.0.

In short, with a very mild condition (the preWx condition) imposed, we can

easily specify a natural probability distribution over the inWnite class of

grammars, according to which a shorter grammar is a more probable gram-

mar. In fact, if grammar G has length g, and grammarH has length h, then the

ratio of their probabilities is simply 2(g–h) if binary encoding is used, and

27(g–h) if the Latin alphabet is employed.

Now we take two further steps. The Wrst involves Bayes’ rule, which is

nothing more than an algebraic restatement of the deWnition of conditional

probability. The second involves the assumption that there is a single correct

answer to our question.

Bayes’ rule says that (in the case that we are considering) the probability of

a grammar, given our corpus, is closely related to the probability of the

grammar, given the corpus, as follows:

pr(GjD) ¼ pr(DjG)pr(G)
pr(D)

(3)

The left-hand side refers to the probability of a grammar G, given the data

D at hand (i.e., the corpus), while the right-hand side is the product of the

probability of the corpus assigned by the grammar G, times the probability of

the grammar, divided by the probability of the data. Since our goal is to Wnd

6 There is a Wne line here between clarity of exposition and accuracy of modeling. In general, we

don’t want to use special boundary symbols to demarcate the ends of representations, because this is

typically a wasteful and ineYcient way of marking boundaries; an encoding which respects the preWx

condition is better. But ease of exposition will sometimes trump formal niceties in this chapter.
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the grammar whose probability is the greatest (given the data at hand, and

what else do we have other than the data at hand?), we can interpret (3) to

mean: Wnd the grammar G for which this quantity is the greatest. The

denominator, pr (D), is perhaps the hardest to compute, but we do not in

fact need to calculate it, because it is a constant. Since we have just Wnished

discussing how to calculate the probability of the grammar G, based on its

length, calculating pr (G) is not a problem. And calculating pr (DjG) is not a
problem, either, since we have assumed from the start that our model is

probabilistic, which is to say, that it assigns a probability to every conceivable

corpus. So in the end, our task simply boils down to this: Wnd the probabilistic

grammar G such that the probability of the corpus, given the grammar, times

the probability of the grammar itself, is the greatest.

Brent’s and de Marcken’s insight was that the method that we have just

described could be applied to the problem of word segmentation and lexicon

induction. We need to do three things: Wrst, Wgure out how a lexicon (with

its probability) actually assigns a probability to any corpus; second,

Wgure out how to associate a lexicon with a length, so that we can in turn

assign it a probability; and third, Wgure out how to actually come up with a

candidate lexicon, along with probabilities assigned to each word in the

lexicon. It turns out that none of these is too diYcult, at least as a Wrst

approximation.

First, how do we assign a probability to a corpus D, given a probabilistic

lexicon? We need to take into consideration the fact that there will, generally

speaking, be many ways of parsing a corpus up into words. If all we know

about English is its words (and nothing about syntax, meaning, and so on),

then a string like: THISMEANSTHAT that can be divided up in many ways.

There is THIS-MEANS-THAT, but then (since every individual letter can be

used as an individual word in languages, in general), there is also THIS-ME-

AN-S-THAT, and T-HIS-ME-AN-S-T-HAT, and many others. So Wrst of all,

we make the assumption that only one parse of a given corpus is actually

correct,7 and that the parse that is assigned the highest probability by our

corpus is the correct one. And the probability assigned to a given parse is

deWned as the product of two factors: the Wrst is the probability that the

corpus has exactly as many words in it as the parse has pieces, while the

second is the product of the probabilities of all of the words in the parse. In

7 That this assumption is a bit too strong is illustrated by the ambiguity of phrases like ‘‘cookmea-

napplesauce’’, which has perhaps two reasonable parses: cook me an apple sauce and cook mean apple

sauce. The reader is invited to construct similar examples in other languages.

Blevins and Blevins / Analogy in Grammar Blevins and Blevins-Chapter07 Revise Proof page 144 20.2.2009 11:19am

144 Morphological analogy



the case of THIS-MEANS-THAT, the probability of that parse is equal to

the probability that a string has three words in it, times the product of the

probabilities of each of the three words this, means, and that.8

Second, what is a lexicon’s length? If we deWne a lexicon as a concatenation

of words, then as long as we separate each of the words by a space, the words

satisfy the conditions for Kraft’s inequality, and we can assign a (prior)

probability to a lexicon equal to 1 divided by 27 raised to the power of the

length of the lexicon, in letters: 1
27length(lexicon)

.

Third, how do we Wnd a lexicon, given a corpus? We proceed in a bottom-

up fashion, assuming initially that the lexicon consists of all the letters of the

corpus. Then we iteratively repeat the following process: we look at all

‘‘words’’ that appear next to each other in the corpus, and pick the most

frequent such pair. (Initially, this may be T-H in the case of a written corpus of

English, since our initial assumption is that the words of the lexicon are the

letters of the language). We use our MDL criterion to decide whether to

declare that T-H is really a word TH. Our MDL criterion is simply this: does

the expression described in (3) increase when we add our candidate to the

grammar? Does the probability of the corpus increase enough by the addition

of TH (for example) to oVset the decrease in probability of the lexicon that

comes about from increasing its length (from 26 real members to 27, the

alphabet plus TH)? If so, then we include the new member; if not, we leave the

grammar as it is and try some diVerent candidates. This process stops when

there are no neighboring chunks in the corpus whose addition would increase

the overall probability of the corpus.9

There is one more step that we need to take to appreciate the beauty of

Rissanen’s MDL framework. If we take the logarithm of both sides of equation

(3) and multiply these two expressions by �1, we obtain the following

quantity: �log pr(DjG) � length(G) + log pr(D). The third term is a constant.

However, the Wrst term has a very real signiWcance: it is called the optimal

compressed length of the data, and the second term also has a real signiWcance:

it is, quite simply, the length of the grammar, which we use in order to

evaluate how well the grammar succeeds at being a compact formulation.

The Wrst term, the optimal compressed length of the data, given the model,

is a well-understood quantity expressing how well the model does at extract-

ing generalizations from the data. Thus the task of Wnding the grammar

that minimizes this quantity (minimizes instead of maximizes because we

8 There are several ways to establish a reasonable distribution over number of words in sentence,

but they do not bear on our discussion here.

9 See the Appendix.
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multiplied it by �1, and the logarithm function is monotonic increasing) is

equivalent to Wnding the most probable grammar, given the data at hand.

We intend by this to mean what was suggested above: there are no con-

straints on the forms of possible grammars, above and beyond the condition

that they be programs for a Turing machine, and thus are algorithms.10 This

means that the purpose of linguistic theory is to serve as a set of heuristics to

help the linguistic scientist come up with a tight, snug grammar, given a set of

data. MDL can determine which of a set of grammars is the best one, given the

data; no feasible process can search all possible grammars, so there is no

guarantee that another linguist will not come along tomorrow with a better

grammar for the data. But it will be truly better, better as far as the length of its

Turing machine program is concerned. We know that there is a best analysis

(up to the unlikely possibility that two or more grammars have (along with

the data) an equal description length), because the minimum description

length will be some positive number less than the description length provided

by the (dumb) grammar consisting of exactly the corpus with no internal

structure (along with some reasonable closure conditions).

7.3 Success with word discovery?

How well does this method work? Anyone who has worked with corpora

knows that, to some extent, an answer to this question depends heavily on the

corpus used for training and for testing. In the case at hand, there is no

training corpus as such; the input to the algorithm is a long string that has no

indication of word boundaries, and the output is a guess (or prediction) as to

where the word boundaries are, or should be. In view of the fact that the

system has no prior knowledge of the language, the results are in some

respects very impressive, but at the same time, when we look at the results

with the eyes of a linguist, we quickly see some linguisticky things that have

gone awry.

In Figure 7.1 is the beginning of a passage from the Wrst 100,000 words of

the Brown corpus and Figure 7.2 is the beginning of a similar passage from a

Portuguese document.

Three things jump out when we look at these results. First, there are many

errors caused by the algorithm Wnding ‘‘pieces’’ that are too small, such as

produc-ed: it seems as if the system is Wnding morphemes in this case, while in

10 The point may be purely terminological, but I would argue that the position I am describing

clearly falls under the deWnition of generative grammar, at least as it was considered in Chomsky (1975)

[1955]; algorithmic complexity is the simplicity metric utilized.
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other cases it is Wnding words. Second, in some cases the algorithm Wnds

pieces that are too big: they are ‘‘pieces’’ like forthe which occur together often

enough in English that the algorithm erroneously decides that the language

treats them as a word. Third, there are far too many single letter words: we

need a prior probability for word length that makes the probability of one-

letter words much lower.

We will focus here on just the Wrst of these points. Why should the system

Wnd morphemes rather than words some of the time? The answer is perhaps

obvious: the system that we are considering is nothing more than a lexicon,

bereft of any ability to Wnd structure in the data other than frequency of

appearance of strings of various lengths. There is no ability built into the

system to see relationships between words, nor any ability to see that words

may enter into relationships with the words around them. We need to add

linguistic structure to this approach, then. And that is what we turn to now.

7.4 The Linguistica project

I have been working since 1997, along with Colin Sprague, Yu Hu, and Aris

Xanthos, on the development of a software package, Linguistica, whose

primary goal is the automatic inference of morphological structure on the

basis of an unmodiWed sample corpus from a real language, and whose

The Fulton County Grand Ju ry s aid Friday an investi gation of At
l anta ’s recent prim ary e lection produc ed no e videnc e that any
ir regul ar it i e s took place. Thejury further s aid in term - end
present ment s thatthe City Ex ecutive Commit t e e, which had
over - all charg e ofthe e lection , d e serv e s the pra is e and than k
softhe City of At l anta forthe man ner in whichthe e lection was
conduc ted.

Figure 7.1 The Wrst sentences of the Brown Corpus

De muitosoutros re curso s da X o r esta ,não apenas folh as, X ores
era ı́z esma s também de se mente se da cas ca de árvo res re ti ram
produto s medi cin a i s comos quai s se habitu aram nas u a s o li
dão e nos seu s s o nhos a en fre nta ra s do ença s que hoje coma
chega da dos branco s começa ma trata r comos re médi os da
indústri a u r ba na–e que muitas vezes não produz em e feito.

Figure 7.2 The Wrst sentences of a Portuguese document
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method is MDL as we have described it in this chapter; see http://linguistica.

uchicago.edu11

A big, and I would say controversial, assumption made by the Linguistica

project is that meaning can be ignored in the process of inferring or inducing

the morphological structure of a word or a language. The fact is, the proced-

ures we have explored make little or no reference to meaning. Any successes

that we achieve can be interpreted as showing that reference to meaning is not

necessary, but we certainly cannot infer that human language learners do not

use meaning in their search to discover language structure. It is natural to

interpret our project as an eVort to Wgure out, from a linguistic point of view,

exactly where a learner, one who has access neither to a rich innate component

nor to the meaning of utterances, will fail.

In some ways, the work that I am describing could be viewed as a neo-

Harrisian program, in the sense that Zellig Harris believed, and argued, that

the goal of linguistic theory was to develop an autonomous linguistic method

of analyzing linguistic data, in which the overall complexity of the grammar

was the character that the linguist would use in order to evaluate competing

analyses, and in which the linguist was, in the Wnal analysis, more interested in

the methods of analysis than in the analysis of any particular language.12 As

long as we are clear what we mean by the term discovery procedure, it would be

fair to say that this work aims at developing a discovery procedure for

morphology. While it does not propose a simple step-by-step process for

this end, it does propose something so close to an algorithm as to be

indistinguishable from a computer program—which is why it has been

relatively easy to encode the proposals as computer code which can be tested

against small and large natural language corpora.

7.5 MDL, grammar simplicity, and analogy

Oneway to summarize whatMDLmethods have in common is to say that they

seek to extract redundancy in the data. In the case of word segmentation, the

redundancy is the reappearance of the same substrings on many occasions,

while in the case of morpheme discovery, it is the reappearance of morphemes

under quite particular and restricted conditions. What I will describe here is a

considerable simpliWcation of the model as it actually works, and the reader

can Wnd detailed discussion in Goldsmith (2001, 2006). As we saw above,

the prior probability that is assigned to a grammar is based entirely on its

11 See Goldsmith (2000, 2001, 2006).

12 See Goldsmith (2005) for a recent discussion.
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length, quite literally, and hence any redundancy in the formulation of a

grammar leads to a heavy cost paid by the grammar, in terms of the lowering

of the probability assigned to it. Conversely, a grammar which has been

shortened by the elimination of redundancy is assigned a considerably higher

probability. And, as we will see, analogy is one essential way in which redun-

dancy can be discovered by the language learner.

The basic idea is this: when sets of words can be broken up into two pieces

in precisely parallel ways (as in the signature shown in (1), repeated here as

(4)), we can extract measurable redundancies. Here, we have taken the six

words jump, jumped, jumping, walk, walked, and walking, and observed that

there is a pattern consisting of two distinct stems, and three distinct suYxes,

and all combinations of stem and suYx appear in our data set.

walk

jump

� � ;
ed

ing

8<
:

9=
; (4)

Before any such analysis, we were responsible for encoding all the letters of

the six words, which comes to forty letters (including a Wnal space or word

boundary), while after we extract the regularity, only sixteen letters need to be

speciWed (again, counting a boundary symbol along with each suYx).

In somewhat more useful—that is, generalizable—terminology, we can

describe this data with a Wnite state automaton (FSA), as in (2), repeated

here as (5).

walk

jump
ing

ed

0

ð5Þ

To encode this, we need a formal method for describing the three states and

their transitions, and then we need to label each transition edge; we have

already seen a simple (and, as it turns out, overly simple) way of measuring

the complexity of the labels, which was by counting the number of symbols.

We will ignore the computation of the complexity of the FSA itself; it is very

simple from a technical point of view.13

13 Each FSA consists of a set of pointers to nodes, along with labels that are themselves pointers

to strings. A maximum likelihood model provides probabilities in each of those two domains; the

complexity of the overall FSA is the sum of the inverse log probabilities of all of the pointers in

the representation.
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This overall system can then naturally be regarded as a device capable of

expressing morphological analogies of the book : books :: dog : dogs sort. How

does it operate in practice? Does it work to Wnd real linguistic morphological

regularities?

The answer, in a nutshell, is this: we can Wnd patterns, locally and in the

small; but a very large proportion of them are spurious (that is to say,

linguistically wrong and irrelevant) unless they participate in larger patterns

of the language as a whole. An example of a linguistically real discovery is as in

(4) or (5), and a spurious example is as in (6), which captures the nongener-

alization inherent in the words change, changed, charge, charged, or (7), which

captures the nongeneralization inherent in the words class, cotton, glass, gotten

(and I could oVer dozens of examples of this sort from any language of which

we have a few thousand words in computer-readable form: it was not I, of

course, who discovered these patterns, but rather an over-eager analogy-

seeking computer program):

cha
n

r

� �
ge

;
d

� �
(6)

c

g

� �
lass

otten

� �
(7)

What is wrong with the spurious generalizations in (6) and (7) is that the

proposed morphemes do not appear outside of this generalization, more

generally in the language. Analogy, as we see it here, is an excellent and

important source of hypotheses, but it is not more than that. We need to

develop means (and, it appears, largely formal means) to evaluate the hy-

potheses suggested by analogies.

The use of MinimumDescription Length analysis provides at least a part of

the response to this need, and it sheds some interesting light on the role played

by information theory in linguistic description. Embedded within the work

cited above by de Marcken is the key insight formalized by the use of infor-

mation-theoretic formalisms—namely, that reuse of a grammatical object

(such as a morpheme, a context, or anything else) is the best kind of evidence

we can have of the linguistic reality of the object. What makes the n, r pairing

in (6) linguistically irrelevant is the small number of times it is found in

the linguistic analysis of English—unlike the %, d pairing, but like the c, g

pairing in (7).
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But this should not lead us to thinking that we simply need to count

occurrences and look for some magic threshold count, because information

theory provides a much better method for understanding what is at play. The

key point is this: the edges in the Wnite state automaton in (5) should be

understood not as being labeled with strings of phonemes, but rather as being

labeled by pointers to morphemes in a separate inventory of morpheme spell-

outs. This simple formal decision has two consequences. The Wrst is a

consequence that comes from information theory: the complexity (in quan-

tiWable bits) of a pointer to a morpheme is directly controlled by the fre-

quency with which a morpheme is used throughout the grammar. The second

is that we arrive at a natural understanding of the view, famously voiced by

Meillet, that language is a system in which everything is interconnected.14

The decision to label edges of a morphology with pointers rather than

phonic substance makes strong predictions: strong enough to build a pro-

gram that Wgures out the structure by itself, without human oversight.

Linguistica discovers aYxes by seeking robust clusters of stems and aYxes,

such as the large set of stems in English that take exactly the suYxes %, ed, ing,
s. But what of stems that occur with an idiosyncratic set of aYxes, a set of

aYxes shared by no other stem? Consider the examples in (8) and (9).

act

;
ed

s

ion

8>><
>>:

9>>=
>>;

(8)

car

d

e

l

p

8>><
>>:

9>>=
>>;

(9)

Each of these signatures is an example of a stem that appears with exactly

four suYxes in a pattern shared by no other stem in a particular corpus. But

the information-theoretic cost of building a pattern with the suYxes in (8) is

much less than that of building the pattern shown in (9)—not because of the

number of letters (phonemes) in each case, but rather because /l/ and /p/ are

both rare aYxes in English (note: aYxes, not phonemes). An aYx that occurs

14 In particular, ‘‘Comme pour tout autre langage, les diVérentes parties du système linguistique

indo-européen forment un ensemble où tout se tient et dont il importe avant tout de bien comprendre

le rigoureux enchaı̂nement’’ (Meillet (1915) p. x).
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on one word in a lexicon of 20,000 words will ‘‘cost’’ approximately log2
20,000 bits (about 14 bits), while a suYx that occurs on 1,000 words will

cost about 4 bits—a very large diVerence, in the event; and the cost of positing

/l/ and /p/ as aYxes outweighs the gain saved by positing /car/ as a stem in (9).

The same is not true of the case in (8), where the cost of building a

subgeneralization to deal with the words based on the stem /act/ is much

cheaper, because all of the observed suYxes are cheap, in an information-

theoretic sense: they are independently used enough throughout the grammar

that using them additionally in the creation of a new generalization costs the

grammar very little. This implicit ‘‘thought process’’ is easy to formalize and

to embed within an automatic morphological analyzer.

In Table 7.1, I have given some data from a sequence of steps of learning the

morphology of the Wrst 100,016 words of the Brown Corpus.

The Wrst row in Table 7.1 shows the length of the ‘‘trivial’’ morphology at

the beginning: it expresses the phonological cost (so to speak) of listing all

13,005 distinct words without any analysis: all words are stems, no stems are

analyzed (we speak of ‘‘cost’’ to underscore the fact that we try to minimize

this quantity). Row 2 shows the result of a relatively conservative eVort to Wnd

signatures with several stems and several aYxes, and we see that the infor-

mation stored in the analyzed stems is now 53,835, while the information that

we have taken away from the unanalyzed stems is greater: it is the diVerence

between 486,295 and 390,160 (or 96,135). The additional infrastructure (aYxes

plus signatures) to accomplish this cost 1,220 + 22,793 (¼24,013), for a total

cost of 53,835 + 24,013 ¼ 77,848. This cost (77,848) is much less than what was

saved (96,135); the diVerence is 96,135 � 82,848 ¼ 18,287. (Against this gain

must be reckoned a slight decrease in the probability computed for the

corpus.)

In the third, fourth, and Wfth rows, we see the result of extending the

discovery of signatures, stems, and aYxes accomplished on the Wrst pass to

Table 7.1 Description Length of morphology evolution during learning

Steps Total
Unanalyzed
stems

Analyzed
stems AYxes Signatures

1. Before analysis 486,295 486,295 0 0 0
2. Bootstrap heuristic 468,008 390,160 53,835 1,220 22,793
3. Extend known stems

and aYxes
456,256 377,635 58,835 1,220 23,566

4. Find new signatures 434,179 320,405 74,440 1750 37,584
5. Find singleton signatures 429,225 235,390 128,830 1710 63,295
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analyze words that were not initially analyzable. These are words for which the

simple analogies of the Wrst step were insuYcient to uncover them, which

include the discovery of patterns as in (8) and the rejection of those like in (9).

The algorithms explored in Goldsmith (2006) are remarkably good at

discovering morphemes and morphological structure in a language with a

complexity comparable to that of English. In the next sections, I will focus not

so much on what they get right (which is better covered in the papers I have

cited) but rather on where the challenges (some of them quite daunting)

appear to be.15

7.6 The challenging of ‘‘collapsing’’ cases

Consider once more the case of English, where stems can be followed by a

rather small set of aYxes: verbs by {%, ed, ing, s}, nouns by {%, s}, adjectives by

{%, er, est}. In even a modest-sized corpus, we will Wnd a large number of stems

that appear with all of their suYxes inside the corpus. But in addition, we will

Wnd a good number of stems that only appear with a subset of their possible

suYxes. In the simplest case, this is due to the fact that the stem did not

appear very often in the corpus. This is illustrated in (10), where each node

represents one of the signatures, or small FSAs, that we have considered, and

it is labeled with its set of suYxes. Below the label are two numbers: the Wrst

indicates the number of distinct stems that occurred in the corpus with this

set of suYxes, and the second indicates the total number of words that

occurred with these stems and suYxes. The two Wlled nodes are the ‘‘satur-

ated’’ ones in which, from a linguistic point of view, all the suYxes that could

have appeared have appeared. The node on the top row has four suYxes;

those on the middle row have three suYxes, each a subset of those of the node

on the top row; and the node on the bottom row has two suYxes, a subset of

the two nodes from which it hangs on the middle row.

15 A reviewer of this chapter noted that ‘‘work on morphological processing (e.g. Baayen and

Moscoso del PradoMartı́n (2005); Hay and Baayen (2005)) and [other work by Ernestus and Baayen])

suggests analogical relations are sensitive to semantic similarity, phonetic similarity, frequency eVects,

and more’’. The information-theoretic models of the sort discussed in the present chapter give a Wrm

theoretical foundation for why frequency eVects are found; the reason is that information links in a

grammar contribute a measurable amount to the complexity of the system, and that amount is equal

to the reciprocal of the logarithm of the element being linked to. In the morphological analyses that we

have studied in the Linguistica project, phonetic similarity has never emerged as a factor which, if

integrated, would allow for superior performance. The relevance of semantic information is a diYcult

question; while I believe that it is relevant and could potentially improve performance in many cases, it

is not easy to integrate meaning into a learning algorithm in a way that does not beg the question of

learnability by building in too much information and treating that information as if it had been

observable.
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0 ed ing s
43 : 1110

0 ing s
25 : 458

0 ed s
45 : 564

0 s
442 : 4406

ed ing s
2 : 7

0 ed ing
38 : 508

ð10Þ

We need a method that determines that the white nodes in (10) are only

partial generalizations, while the Wlled nodes are complete. To be sure, I have

expressed this in categorical terms, when it is clear (or it becomes clear, when

we look at more data) that the distinction is a soft one, rather than a hard

one—but discussion of this point would lead us aWeld. I will return below to

this question in the context of a language like Swahili, where it becomes even

more pressing. To rephrase the problem, we can ask, when we have two

signatures that are partially identical and partially diVerent, when is the

similarity between them great enough to allow us to generalize the suYxes

that are seen in one, but not in the other, to both of them? This remains an

unsolved problem.

7.7 From analogy to algorithm

How does one actually Wnd analogies along the lines of book : books :: dog : dogs

in a language? It turns out that questions of this sort are not at all easy to

answer, and a large part of the work devoted to the Linguistica project has been

aimed at providing answers to this question. In this section, I will describe two

problems that seem simple enough, and are certainly typical, and try to give a

sense of why they are not as simple as one might expect them to be. The Wrst

example is the treatment of gender and plural marking of adjectives in French;

the treatment of parallel forms in a number of other languages, such as

Spanish, would be similar. The second is the treatment of morphological

patterns in a rich system like that of the Swahili verb. ‘‘Treatment’’ in this

context means the breaking up of the string into substrings corresponding to

morphemes and the correct formulation of a Wnite-state automaton (or its

equivalent) to generate the observed patterns. Thus we address both the Wrst

and the second question articulated in the Wrst section of this paper.
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As I noted above, some pre-generative linguists took such questions very

seriously—notably, Zellig Harris (1955, 1967) did (but see Hafer and Weiss

1974). Harris apparently believed that he had solved the problem through the

computation of what he called successor frequency (and predecessor fre-

quency) in a large corpus. By successor frequency, Harris meant a character-

istic of a speciWc string, in the context of a speciWc corpus: given a string S of

length n (typically the Wrst n letters of a word), one considers only the subset of

words in the corpus that begin with the string S (computer scientists would

say: consider the set of words with the preWx S—but then computer scientists

use the term preWx rather diVerently than linguists), and then one asks: in this

subset, how many diVerent letters are there in the (n + 1)st position (which is

the position right after the string S)? That value is the successor frequency of

string S, in the corpus.

Harris believed that by calculating the successor frequency and the prede-

cessor frequency at each point in each word of a corpus, he could Wnd the

morpheme boundaries (although Hafer and Weiss note that on the basis of

their experiments neither choosing a threshold nor looking for a local max-

imum of successor frequency works very well in English). To make a long

story short (see Goldsmith (2001, 2006) for the long version), such a purely

local method does not work, and some more global characteristics of the

overall grammar need to be taken into consideration, as we have already

suggested.

Still, Harris’s notion of successor frequency can serve as a useful heuristic

for locating potential breaks, as the simple data in (1) suggest: the presence

of the words jump, jumped, and jumping in a corpus leads to a successor

frequency of three after the stem jump, just as it is after walk.

But successor frequency fails to work, even as a heuristic, when we turn to

languages with much richer morphologies (that is, where the average number

of morphemes per word is considerably higher than it is in English), and as

linguists know, the morphological richness of English is on the poor side,

as languages go.

The Wrst case we will consider is that of the regular inXectional pattern of

written modern French, which represents an earlier form of spoken French

(some of this material is discussed in greater detail in Goldsmith and Hu

(2004)). In the treatment of a subcorpus like petit, petits, petite, petites, grand,

grands, grande, grandes (the masc. sg., masc. pl., fem. sg., and fem. pl. forms for

small, large), the systemwe have described in Goldsmith (2006) will generate an

FSA as in (11), and an algorithm described in Goldsmith and Hu (2004)

generates the FSA in (12) rather than (13), which is the correct structure. The

FSA in (11) misanalyzes the segmentation of the feminine plural forms, and (12)
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correctly segments, but does not represent the correct grammar, which is that

given in (13). In terms of analogy, all three systems capture the analogy petit :

petits : petite : petites :: grand : grands : grande : grandes, but only (13) expresses the

analogy petit : petits :: petite : petites and also petit : petite :: petits : petites. (In fact,

it appears to me easier to understand the nature of the generalization being

captured by looking at the FSA than by using the traditional notation associated

with analogy expressed with colons.)

petit

grand

s
Ø

e

es

ð11Þ

petit

grand s

s

Ø

Ø

e ð12Þ

petit

grand s

Ø Ø

e
ð13Þ

The two big questions are: does a natural complexity measure unambigu-

ously choose (13) over (11) and (12), and do we have a good search procedure

that Wnds (13)? A relatively brief summary provides a positive answer to the

Wrst question; the second is more diYcult to answer, and Iwill leave it open for

now. The complexity of an FSA is almost exactly equal to the sum of the

informational complexity associated with each of its nodes plus that of each

of its edges plus that associated with the labels on the edges. As noted above,

the informational complexity is in each case the inverse log probability of the

item in question. In (11), there are three nodes, each of which has roughly

the same informational complexity, equal in this case to �¼�log S, where S is

the frequency of words that is described by this FSA in the corpus (that is, the

total count of the words in this FSAdivided by the total number of words in the

corpus). The information complexity of the labels on each edge are also equal

to the inverse log frequency of their usage, and es is a relatively rare suYx in

French (i.e., there are relatively few feminine plural adjectives), and hence its

informational cost is quite large. In addition, one must pay twice for the two

pointers to each of the suYxes ø and s, and there is one more node in (12) than

in (11). Hence (12) turns out to be more costly than (11). By contrast, (13) is less
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complex than either (11) or (12), despite the fact that it has onemore node than

(11). By avoiding positing amorpheme es (expensive because rare—it costs less

than (11)), while by positing s only once, it costs less than (12).

I think this example clearly illustrates the basic point of this paper: formal

complexity can, in many cases, be used to evaluate and compare alternative

analyses, and algorithmic and information-theoretic complexity suYces to

deWne the relevant complexity.

The second example we will look at represents still uncharted waters. It

come from Swahili; consider (14), which gives a sample of some of the

richness of the Swahili Wnite verb; I use the traditional Bantu terminology

where appropriate. The positions indicated in this diagram illustrate subject

markers, tense markers, object markers, verb roots, the passive/active marker,

and the Wnal vowel, respectively; there are also other aYxes, such as a relative

clause marker that can appear after the tense markers, which are not indicated

here. There is little question but that the correct solution is formally much

simpler than any of the partial solutions; algorithmic complexity will correctly

identify an FSA as in (14) as a very simple grammar.

ni
u
a
tu
wa

li

na
ta

ka
ni

tu
m
ku

wa

imb
fik

pend

w
a

Ø

chaku
som

ð14Þ

In order to even have a chance to discover these morphemes and the

structure that lies behind them, we need to implement the notion of analogy

in a richer fashion; what follows is taken from Hu et al. (2005).

We Wrst look for elementary alignments between pairs of strings, as in (15),

where m1 or m4 can be null, and m2 or m3 can be null. These elementary

alignments can be found using the well-known string edit distance algorithm.

m1

m2

m3
m4

ð15Þ

We expand these structures by Wnding ways to collapse them, either as

suggested by (16), or as in (17) and (18).

li

na
a yesema

ð16Þ
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li

na
a mfuata

ð17Þ

yesemali

na
a

mfuata

ð18Þ

But establishing a clear and workable algorithm to correctly collapse these

FSAs is no simple task, in the presence of only a realistic amount of data (and

it is not clear that increasing the amount of data available would change the

diYculty in an essential way). The simple cases illustrated here work Wne to

collapse small FSAs when the diVerence between them is small. But the

problem becomes harder quite quickly when we try to induce the correct

structure, for example, of what is perhaps the structure best represented in the

data, that found in the Wrst two ‘‘columns’’ of (14), representing the subject

markers and the tense markers. Because each column has a large number of

possible morphemes in it, the subgeneralizations that we easily Wnd—typiWed

by the one in (18), which has a single subject marker (a) followed by two tense

markers (li and na)—become harder and harder to analogize to.

Let’s be a bit more speciWc, to make concrete what we’re talking about. In

a corpus of 25,000 Swahili words (4,100 distinct words among them), we Wnd

254 three-state FSAs with the methods we have sketched, and of these,

virtually all of them are linguistically reasonable; the place where the strings

are cut are, indeed, morpheme boundaries from the linguist’s perspective.

These three-state FSAs (and I have sketched the top eight in (19–26)) can be

ranked with respect to how much information they compress: those that

compress a good deal of information are necessarily those that express a

large number of words with relatively few edges in the automaton. In theory,

that kind of compression can happen in either of two ways: by specifying an

FSAwith a single stem but a wide range of aYxes, or by specifying an FSAwith

a smaller set of aYxes and a wide range of stems. It turns out that the latter is

by far the most common kind of generalization obtained.

The task now is to generalize, which is eVectively just another way of saying

to learn what the morphological pattern of Swahili is. As far as I can see, there

is little or nothing that we can posit as a simple innate premise that will help,

nor will appealing to analogy help us, because the question now is really:

when should two (or more) patterns be treated as analogous? Now, it is very

likely true that if these strings of letters were labeled as the morphemes that
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they are (that is, if the labels told us more than just the phonemes: if they

furthermore identiWed the functional category of the morpheme), our task

would be considerably lightened. But taking that information for granted

seems to me like question-begging. Swahili, just like most languages, often

employs the same sequence of phonemes to realize diVerent morphemes (for

example, the subject and object markers for various person and number

classes is the same: tu marks both subject and object marker for Wrst-person

plural, etc.) It is morphological analysis, and the inference of a morphological

generator, that is an important step on the way to understanding the mor-

phological identity of strings of letters (or phonemes); we risk circularity if we

assume that knowledge of morpheme identity can serve as the basis of our

knowledge of the morphological grammar. We would like to understand how

a learner would generalize by recognizing the identity of the preWx a in

patterns (19), (20), (22), (24);16 but a is the most common phoneme and

also the most common morpheme in the language, and occurs with several

functions; mere phonological identity is simply not enough to lead the learner

to treat all occurrences of a in the same way.

a Subject

wa Markers

� � 55 stems:
baki

ende

fanye

. . .

8>>>><
>>>>:

9>>>>=
>>>>;

(19)

a Subject

m Markers

� � 17 stems:
cheni

kaanguka

kapoteza

. . .

8>>>><
>>>>:

9>>>>=
>>>>;

(20)

17 stems:
akaongez

alifany

ameja

. . .

8>>>><
>>>>:

9>>>>=
>>>>;

NULL active

w passive

� �
(21)

16 And perhaps (25): the system posits ana as a preWx, and it is an inductive leap to treat this as the

concatenation of a and na at this point.

Blevins and Blevins / Analogy in Grammar Blevins and Blevins-Chapter07 Revise Proof page 159 20.2.2009 11:20am

Goldsmith 159



a Subject

wa Markers

� � 14 stems:
changa

heshimuni

lilokataa

. . .

8>>>><
>>>>:

9>>>>=
>>>>;

(22)

12 stems:
akawaachi

amewaweke

fany

. . .

8>>>><
>>>>:

9>>>>=
>>>>;

a default ending

eni plural imperative

� �
(23)

a Subject

Marker

� �
li Tense

na Markers

� � 11 stems:
batiza

chaguliwa

kwenda

. . .

8>>>><
>>>>:

9>>>>=
>>>>;

(24)

ana Subject Marker

and Tense Marker

� �
NULL default

ye Rel Clause marker

� �

�

10 stems:
fanana

ishi

kuja

. . .

8>>>><
>>>>:

9>>>>=
>>>>;

(25)

18 stems:
akili

bahari

dunia

. . .

8>>>><
>>>>:

9>>>>=
>>>>;

NULL default

ni postposition

� �
(26)

We are currently working on a method to link the low-level FSAs illustrated

in (19–26) to the larger, simpler, and correct pattern, that of (15), and I will

sketch the intuition that lies behind it. These FSAs can be thought of them-

selves as expressions (for example, by alphabetizing all the elements in a

column and concatenating them with a punctuation marker between them),

and we can establish a distance measure across pairs of string expressions

which we can then use to hypothesize which items should be collapsed to
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form a larger generalization. When two or more morphemes—especially

high-frequency morphemes—appear in the same column (that is, in a para-

digmatic morphological relationship), then they may be analyzed as likely

alternatives for the same morphological position.

This is easier to explain with a real example. There are several high-

frequency FSAs that begin with the subject marker a, followed by two

alternative tense markers, followed by a set of verbal stems. In the Wrst case,

the two tense markers are li and na; in the second, the two tense markers are li

and me; in the third, they are ka and na; in the fourth, ka and li (I have not

listed these FSAs here). We can capitalize upon each of these pairings to create

a distance metric among these morphemes with this information, increasing

the simplicity of assigning them to the same morphological position. We do

this in order to overcome the problem of the sparsity of the data: we never

Wnd a single stem in a Wnite corpus appearing in all of its possible forms; what

we need to do is use the partial information that the data actually provide,

and much of that information is bundled into the observation that various

subsets of morphemes appear in the same position of the word—and we can

infer that even before we have a clear global understanding of what the overall

structure of the word is. In a sense, that’s the key to understanding learning:

understanding how we can incrementally advance the analysis of the data,

through analyzing the data, even though we have not yet achieved a global

understanding of how everything Wts together. In this case, the appearance of

a pair of stems (keti, mtuma) appearing with the subject marker a and three of

the four tense markers (ki, li, na, in fact) strongly supports the hypothesis that

they are all realizations of the same morphological position. The sense in

which this is true can be mathematically formulated and integrated into the

search algorithm. But considerable work remains if we are to correctly induce

the simple, and globally coherent, morphological structure of forms like the

Swahili verb.

7.8 Discussion and conclusion

We have covered—or at least touched on—quite a number of topics, all

closely joined by the question of how morphology can be learned. We have

focused on the task of learning to segment words into morphs and discover-

ing the grammar which puts them back together. This task is already diYcult

enough, but I hope it is clear that in a sense this task is a surrogate for the

larger and more diYcult task of segmenting entire utterances (into the pieces

we call words) and discovering the grammar which puts them back together.
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In the case of morphology, there is little or no hope that an appeal to a

magical slate of innate principles will greatly simplify the task (I refer, of

course, to an information-rich Universal Grammar). As far as learning

morphology is concerned, Locke was surely right: all the reasoning is search

and casting about; it requires pains and application. But we must not lose

sight of the fact that even if language learning means searching and casting

about on the part of the learner, there still must be an overarching model

which describes what it is that is being sought. It seems to me that only a

highly mathematical model which comes to grips with the complexity (in the

technical sense) of the hypothesis has even a chance of shedding light on the

problem of language learning. And if this conjecture is correct, then it seems

to me almost a certainty that the same learning mechanisms can be used to

induce a syntax as well. While it is not logically impossible that learning

morphology requires a rich and powerful learning theory and learning syntax

does not, such a state of aVairs is highly unlikely at best.

Aword, in closing, is perhaps appropriate regarding the relationship between

the kind of linguistic work we have sketched and the study of child language

acquisition, since it is only natural to ask what connection is being posited

between the two. The two answer diVerent questions: the linguist asks how

language can be learned; the psycholinguist asks how language is learned. Each

has his work cut out for him. If the linguist had several adequate theories of how

language could be learned, the psycholinguist could Wgure out which was the

right one—but the linguist does not. If the psycholinguist could provide an

account of how language is learned, we would have at least one answer to the

question as to how language can be learned—but the psycholinguist does not.

We are making progress, I think, regarding the models on the market for

morphology learning, and some aspects of phonology learning, and there is a

time-honored law according to which once we Wnd one way to accomplish

something, several more will present themselves virtually overnight.

These questions are reXections of an old and traditional debate between

rationalist and empiricist inclinations in the study of mind, but the most

familiar versions of how both schools have treated language acquisition are,

in my view, coarse oversimpliWcations. Rationalists of the principles-and-

parameters sort attempt to account for language learning by denying its

existence, and hoping that the variation across the world’s languages will

simply go away, while empiricists of the old school hope that knowledge can

be reduced to memory. Both of these are losing strategies, in my view, and

I have tried to oVer some speciWcs with regard to one small, but not insigniW-

cant, part of language learning. It is an empiricist account that sets a high bar

for formal grammatical accounts of the relevant data.
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7.9 Appendix

Let us consider how the probability of a corpus changes when we begin our

word discovery process. Originally, the lexicon consists of the observed letters

in the corpus. Our Wrst guess will add the string TH to the lexicon. When we

add the element TH, the log probability of the corpus is changed in three

ways. First, the total number of words in the corpus decreases by the number

of THs found in the corpus (that may not be obvious, but it is true, if you

think about it). Second, the total number of Ts and Hs also decrease (since

a T that is followed by an H is no longer parsed as a T, but rather as part of a

TH), and hence the probability of both Ts and Hs decreases, since those

probabilities are based on observed frequencies. (Note, by the way, that this

illustrates the point that even frequencies are theory-dependent notions!)

Third, the probability of the substring TH has gone up considerably,

because it had previously been calculated as the product of the probabilities

of Tand H independently, but now it is calculated on the basis of the observed

frequency of the sequence TH. The actual change in log frequency

is �NDN þ [t]D[t]þ [h]D[h]þ [th] log
freq2(th)

freq2(t)freq2(h)
, where N is the original

length of the corpus and thus the number of words on the Wrst analysis, DN is

the log ratio of the count of words after versus before, i.e., log
N�number of THs
number of letters

,

[t] and [h] are the number of Ts and Hs in the original corpus, D[t] is the log

ratio of the counts of T after vs before and likewise for D[h], and [th] is the

number of substrings TH found in the corpus; freq2(x) is the frequency of x in

the second model, that in which TH is interpreted as a single lexical item.

Note that DN, D[t], and D[h] are all negative.
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