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Abstract

This paper offers a study of vowel harmony in Finnish as an example of how information

theoretic concepts can be employed in order to better understand the nature of phono-

logical structure. The probability assigned by a phonological model to corpus is used

as a means to evaluate how good such a model is, and information theoretic methods

allow us to determine the extent to which each addition to our grammar results in a

better treatment of the data. We explore a natural implementation of autosegmental

phonology within an information theoretic perspective, and find that it is empirically

inadequate; that is, it performs more poorly than a simple bigram model. We extend

the model by means of a Boltzmann distribution, taking into consideration both local,

segment-to-segment, relations and distal, vowel-to-vowel, relations, and find a signifi-

cant improvement. We conclude with some general observations on how we propose to

revisit other phonological questions from this perspective.

1 Introduction

1.1 Information theoretic phonology

Vowel harmony has been a constant concern of phonologists since Trubetzkoy’s Grundzüge

der Phonologie (1939), because it has something to interest everyone. Vowel harmony is

widespread without being anywhere near universal; it is often phonetically motivated and

yet, just as often, not entirely phonologically regular. Where it is found, vowel harmony

describes the phonotactics of the language, governing the choice of vowels that appear within

a morpheme and the choice of distinctive vowels over morpheme boundaries within words.

In many cases, furthermore, vowel harmony appears to provide prima facie evidence of the

active role played by distinctive features in natural language.

Our goal in this paper is to explore the role vowel harmony plays as a phonotactic

using information theoretic models. Such models provide phonologists with remarkably

powerful quantitative tools for analysis starting from very few empirical assumptions. Such
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1.1 Information theoretic phonology 1 INTRODUCTION

models can, indeed, be understood as empiricist models of phonological material, in the

sense that the generalizations that emerge can be perfectly well understood as inhering in

the data, rather than being the result of inferences that we make after the fact about the

hidden nature of the device (the human brain) that generated the data in question (the

phonological representations of various utterances). The question that we pose in this paper

is whether such information theoretic models can be extended to the treatment of vowel

harmony systems, and if so, whether non-local effects can be discovered and modeled in

phonological data.

The central idea in this approach is that virtually all rational thought about empirical

observations—of any sort—can be recast as a pair of measurable hypotheses: a fully explicit

statement of the hypothetical model responsible for “generating the data,” using the tools of

computer science, and a precise statement of how likely the model predicts the observations

to be.1 The goal is to find a model that is simultaneously (relatively) simple and a good

predictor of the observed data.

In Section 2, we define a class of probabilistic phonological models, and sketch some

reasons for believing that these types of models are the most suitable for describing phono-

tactics. Despite their obvious utility and ubiquity in other fields, these models are not at

present the norm in mainstream linguistics; we believe they should be, and some of the

general reasons for this have been discussed elsewhere by Goldsmith (2007a,b).

In Sections 3 and 4, we explore a powerful aspect of the probabilistic framework, which is

that it allows us to algorithmically compare alternative probabilistic models of a given set of

data, and empirically test which is the superior model by comparing the probability assigned

to the same set of data. To illustrate our proposal, we explore the vowel harmony system of

Finnish, and present a probabilistic model within which it is possible to discover nonlocal

dependencies among Finnish vowels and to represent these dependencies with probabilistic

grammars.

In developing the Finnish model, we first illustrate a well-known limitation of probabilis-

tic models based on pairs of adjacent segments, which is that they cannot capture nonlocal

phenomena. We then propose to overcome this limitation by augmenting the model with

an autosegmental vowel tier on which the harmonizing vowels are adjacent, and hence their

interaction is local. To our surprise, Surprisingly, this move does not improve the analy-

sis of Finnish vowel harmony. The failure arises from the fact that our augmented model

isolates the vowels on the vowel tier and thereby occludes consonant-to-vowel and vowel-to-

consonant patterns in the Finnish data. This leads us to develop a somewhat more sophisti-

cated probabilistic model using a Boltzmann distribution to allow both segment-to-segment

and vowel-to-vowel effects to be simultaneously modeled. This result has implications for

1This tradition of probabilistic analysis comes from encoding theory and works like those of Shannon
and Weaver (1949), Shannon (1951), Solomonoff (1959a,b, 1964, 1997), Rissanen (1989), or Li and Vitányi
(1997), to mention a few of the most important.
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1.2 Probabilistic models 1 INTRODUCTION

how we should account for local and nonlocal patterns simultaneously and how we should

understand autosegmental models of vowel harmony systems.

1.2 Probabilistic models

Probabilistic models are in essence quantitative models of evidence; they are ideally suited

for a domain such as phonology, in which the goal is to determine what aspects of the data

are due to structure (either of a sort already understood, or of a sort that remains to be

determined) and what aspects are not.

Probabilistic models offer the possibility of a style of model evaluation in which success

is quantifiable in terms of the entirety of the available data without the need to for putative

exceptions be ignored. As we will see in the examples analyzed in this paper, there are

two primary characteristics of empirical probabilistic studies. First, the data which they

seek to account for is generally quite large, and, in particular, is not selected or filtered to

suit the specific needs of the analysis being evaluated—ideally, it is a corpus that has been

independently collected. Second, describing the data in probabilistic terms provides a clear

quantitative measure of the degree to which the model predicts the patterns in the data.

A probabilistic model begins with a theoretical statement of what the sample space

is, what the universe of possibilities is, and a measure of how much of the probability of

that sample space is to be attributed to the observed data. If the observed data filled all

of the sample space (so that its probability were 1.0), then the model would be claiming

(absurdly, in most cases) that the observations were an empirical necessity and could never

have been anything other than what they were. In actual cases, the probability assigned

to the observations will be quite small, but the discrepancies of the probabilities assigned

to the data by different models will nonetheless constitute a clear statement about how

“accidental” each model takes the data to be. In general, all other things being equal, we

prefer an analysis in which the patterns in the data are seen to be as minimally accidental

as possible. In this context, what this means is that we want to find the model by virtue of

which we can assign the highest probability to the data.

We wish to underscore the fact that probabilistic linguistic models are thoroughly structure-

dependent; no such model can be developed without a clear understanding of the structure

that it proposes to find in the data. Probabilistic models in linguistics have sometimes been

associated with skepticism about the existence of abstract structure, but this perspective

is not inherent to the logic of a probabilistic model (and we are not skeptical about the

existence of such structure). Nonetheless, there is a reason that lurks behind this percep-

tion: probabilistic models extract considerably more information about a body of data than

non-probabilistic models.

As we will see below, when faced with a model of phonological data in which each repre-

sentation is little more than a sequence of phonemes, a probabilistic model is able to extract

a considerable amount of information without making use of features or hierarchical struc-
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2 BASICS OF PROBABILITY

ture. Probabilistic models are not inimical to structure, far from it—they offer an explicit

and quantitative measure of how much improvement models with additional structure give

us, by comparison with less structured models.

The probabilistic approach to linguistic description consists essentially of noting the way

in which the basic elements of a language (phonemes, features, units of all sorts) depart from

equiprobability: to what extent is the average utterance in language X a departure from a

random compilation of sounds from its inventory of sounds? We are able to measure how

well a given model fits the data from a language in terms of its ability to quantify the degree

to which the average utterance is indeed a departure from randomness.

Along the way, numerical values representing probabilities will be assigned to the basic

elements of the model and to each way of combining them (regardless of whether each

possible combination is actually present in the language). In this way, probabilistic analyses

implement a straightforward model of markedness in terms of deviation from what is typical

in a language.

2 Basics of probability

2.1 Distributions

A discrete probabilistic model such as we will consider here consists of a set, U1, called the

sample space in which each element is associated with a value between 0 and 1, which is

its probability. In this work, our sample space will consist of an infinite number of simple

phonological representations. We will generally refer to the function that associates an

element to its probability as pr() and note that, in order to be well formed, the sum of the

probabilities associated with each of the elements in the sample space of the function must

be 1. A function such as pr() that assigns non-negative numbers to the members of a set so

that the sum of these values is 1.0 is said to be a distribution over that set.

(1) pr : U1 → [0, 1]
∑

x∈U1

pr(x) = 1

Note that one can have different probability models that are based on the same sample space

but assign different probabilities to the individual elements.

Our task will be to consider various distributions over linguistic structures and to figure

out which is the best distribution and how it can be calculated. In reasoning about these

models, it is important to bear in mind the fact that the sum of an infinite series of positive

values can be finite, such as 0.9 + 0.09 + 0.009 + ... = 0.9̄ = 1. Though this seems counter

intuitive to some, 0.9̄ and 1.0 are merely different representations of the same number (see

Courant and Robins (1941:64) or Lewin (2003:ch12) for more discussion of this fact). Even

though the set of possible of linguistic structures in our sample space is infinite, the sum of
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2.2 Strings and their simplest model 2 BASICS OF PROBABILITY

the probabilities associated with these structures will always equal 1, even in cases where

function pr(·) assigns non-zero probability to each one.

2.2 Strings and their simplest model

Let us start by developing a probabilistic model for strings of symbols. In the present work,

the symbols will represent phonemes but they could also correspond to feature bundles,

autosegmental representations, etc. We begin with a finite set of symbols, A, referred to as

the alphabet. The notation A+ denotes all strings (sequences) of one or more symbols drawn

from A. We add a special symbol, # not present in A, to represent the word boundary.2

We then define a word as any finite sequence of one or more symbols that ends with #.

Given this definition, a word-set S is a subset of the set of all possible words: S ⊆ (A+#).

Similarly, a word-list or corpus C is an element of the set of all possible sequences of words,

C ∈ (A+#)∗. In this work we will be presenting analyses based on sets of words, so the

definitions that we give in this section will be for word-sets.

One of the simplest questions that can be asked about a set of words is how often any

given single symbol, or unigram, appears. For a unigram a, we will write Count(a) to

indicate the total number of times that a occurs in all the words in the set. For each symbol

a ∈ A ∪ {#}, the unigram model induced from a word-set S assigns a probability to a that

represents its frequency in the word-set. That is:

(2) pr(a) =
Count(a)

|S|

where |S| equals the total number of symbols in all the words in S.

For a word w ∈ S, we use the notation w[n] to refer to the n-th symbol in the string

(i.e. w[1] is the first symbol, w[2] the second, and so on). Given a word w, the unigram

probability of w, denoted pr(w), is defined as the product of the probabilities of the segments

comprising the word. For a set of words S, the product of the probabilities of the words is

denoted pr(S). These are given in (3a) and (3b):

(3) a. pr(w) =

|w|
∏

i=1

pr(w[i]) b. pr(S) =
∏

w∈S

pr(w)

where |w| denotes the number of symbols in w (i.e., the length of the word). Note that

in (3a), pr1 is a probability distribution over all possible words. When evaluating a set of

words as in (3b), pr1 is a distribution over all sets of size k for any given k > 0, but pr1 is

not a distribution over all sets of all sizes. This is appropriate in cases, such as the one at

2This allows us to assess average word length and to refer to segments at word edges as being adjacent
to # in the same way that they are adjacent to their segmental neighbors. Like the symbols for phonemes in
A, the symbol # is associated with a probability and can condition the probability of its neighbors. Thus,
in what follows, we will refer to # as a phoneme (though it is, in many ways, a different kind of abstract
object than a consonant or a vowel).
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2.2 Strings and their simplest model 2 BASICS OF PROBABILITY

hand, where one is evaluating different models of the same word-set S because k is fixed.

This very simple model independently scrutinizes each of the segments of the word without

any regard for their order or configuration.

In many cases, the probability computed by a model is the product of a number of

distinct factors; because x×y = log(x)+ log(y) we can interpret the probability assigned to

a form as the sum of the logarithms of these factors. Since log(x) is negative for 0 < x < 1,

the logs of probabilities are often multiplied by −1 to yield what is referred to as inverse log

probability ; we propose a simpler neologism, the positive log probability, or plog, for short.

Thus (3) can be recast with plogs as in (4).

(4) a. plog(w) = −1

|w|
∑

i=1

log pr(w[i]) b. plog(S) = −1
∑

w∈S

log pr(w)

The average plog of a word w or word-set S can be calculated as in (5a) or (5b).

(5) a. −
1

|w|

|w|
∑

i=1

log pr(w[i]) b. −
1

|S|

∑

w∈S

log pr(w)

Insofar as expectedness is the opposite of complexity (a basic premise of coding theory),

the average plog, as calculated in (5a), encodes the average complexity of the phonemes

comprising the word. If we calculate this figure for all the words of our vocabulary and

sort them in light of this figure, the words with the smallest value will be the words largely

composed of high frequency phonemes, and the words with the largest values will be words

composed largely of low frequency phonemes.

In Table 1 we illustrate the range of average plogs from the top ten and the bottom ten

of a sample of 63,204 English words along with the positive logs of the frequencies of the

top and bottom ten of 54 English phonemes. The data combines a modified version of the

CMU English lexicon weighted by word frequencies based on counts from the Brown corpus.

The particular transcriptions that appear may raise some eyebrows, but we have used their

transcription throughout, though we have used here American phonetic symbols rather than

the Darpabet.
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2.3 Linear structure: bigram model 2 BASICS OF PROBABILITY

rank orthography phonemes avg. plog

1 a @ 3.11
2 an @n 3.44
3 to t@ 3.47
4 and @nd 3.80
5 eh É 3.88

63,200 geoid ǰ́iŎyd 7.40
63,201 Cesare čĕzárĕ 7.40
63,202 Thurgood TÄ́g2̆d 7.47
63,203 Chenoweth čÉnŎwĔT 7.49
63,204 Qureshey k@réšĕ 7.54

rank phoneme avg. plog

1 # 2.30
2 @ 3.92
3 n 4.10
4 t 4.17
5 s 4.61

50 Ŏ 11.79
51 ĕ 12.76
52 2̆ 14.30
53 ăw 14.35
54 Ŏy 15.91

Table 1: Top and bottom five words and phonemes by average plog

If one takes the (not completely uncontroversial) position that markedness is correlated with

frequency, then the plogs in this table would be seen as roughly quantitative estimates of

various segments’ markedness.3

2.3 Linear structure: bigram model

Unigram models describe the basic frequency of phonemes. Much of the phonological struc-

ture of languages, however, involves conditions on sequences of phonemes, which goes beyond

the descriptive purview of unigram models. The natural way to encode this information is

to use a bigram model, which is to say, to use as the probability for a given phoneme its

probability in given context.

One of the simplest models along these lines conditions the probability of a phoneme on

its left-hand neighbor in the word. Because the initial segment of a word, w[1], does not have

a left-neighbor, it is conventional to define w[i<1] as the boundary symbol #. Informally

speaking, the conditional probability of phoneme b immediately following a, where a is the

left-neighbor or # if b is word-initial, is calculated as in (6):

(6) pr(b | a) =
Count(ab)

Count(a)

where Count(ab) denotes the number of times that b occurs in context a in the word-set

and Count(a) denotes the number of times that context a occurs.4

3In constraint-based models other than Optimality Theory (Prince & Smolensky 1993/2004) that allow
violability but eschew strict domination such as, e.g., Pater, Potts, and Bhatt (2007), Hayes and Wilson
(2008), or Goldwater & Johnson (2003) one could view the unigram model as setting up a constraint against
each segment, and weighting the violation of constraint *a by the value plog(a).

4More formally, pr(b | a) is the probability that a certain function will take on the value a or ab (see
Cover and Thomas (1991:ch2) for a thorough exposition). A more explicit formulation is:

pr(w[i] =b |w[i−1] =a) =
pr(w[i−1] = a& w[i] = b)

pr(w[i−1] = a)
.
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A considerable advantage comes now from using logarithms: it allows us to easily express

what the advantage is of the bigram model over the unigram model. The change in the log

probability computed under the unigram and the bigram models is precisely equal to another

quantity of particular interest, the mutual information, defined as in (7).

MI(a; b) = log
pr(ab)

pr(a)pr(b)
= log pr(ab) − log pr(a) − log pr(b)

= −plog(ab) + plog(a) + plog(b)

(7)

If pr(ab) = Count(ab)
|S| is the probability of the pair ab and pr(a)pr(b) is the product of the

symbol’s individual probabilities, then the mutual information between a and b is the log of

the ratio of these quantities. The probability of a joint event, such as the sequence ab, is equal

to the product of the individual probabilities just in case the two events are independent of

each other (this being the definition of independence), so the ratio here takes the value 1

just in case the two events are independent.

If the probability sequence of the phonemes is greater than the product of the individual

probabilities, then the structure involved in the model being explored pulls the two events

together, while if the probability of the phonemes together is less than the product, the

structure at hand is responsible for them repelling each other, so to speak. By taking the

logarithm of this ratio, we translate attraction to a positive value, repelling to a negative

value, and independence to a zero value. (When we are calculating this quantity for particu-

lar symbols, the term pointwise mutual information is often used, and then the term mutual

information is used to describe the average pointwise mutual information as we average over

all pairs of elements, each pair weighted by its probability.)

Just as important, the mutual information is exactly the difference between the unigram

and bigram model’s log probability. This is shown in (8).

|w|
∑

i=1

log pr(w[i] |w[i−1]) =

|w|
∑

i=1

log
pr(w[i] w[i−1])

pr(w[i−1])

=

|w|
∑

i=1

log pr(w[i]) +

|w|
∑

i=1

log
pr(w[i] w[i−1])

pr(w[i−1])pr(w[i])

=

|w|
∑

i=1

log pr(w[i]) + MI(w[i−1]; w[i])

(8)

For a concrete illustration we return to our English word list from Table 1. Our English

data set contains 54 phonemes, and thus there are 542 = 2, 916 possible bigrams. Consider,

in Table 2, the way that the bigram model enriches the evaluation of the English data by

8



2.3 Linear structure: bigram model 2 BASICS OF PROBABILITY

taking 2-word slices at six points along the ranking of all 63,000 words according to their

average bigram plog.

rank orthography phonemes avg. plog2

1 the D@ 1.93
2 hand hǽnd 2.15

12,640 plumbing plÚmĬN 3.71

12,642 Friday fráyd̆i 3.71

25,281 tolls tólz 4.01

25,282 recorder r ĭ k ó r d Ä̆ 4.01

37,922 overburdened óvÄ̆bÄ́d@nd 4.32
37,923 Australians Ŏstréyly@nz 4.32

50,563 retire r̆Itáyr 4.75
50,564 poorer púrÄ̆ 4.75

63,200 eh É 9.07
63,201 Oahu óáhŭ 9.21

Table 2: English words ranked by average plog in the bigram model

With the bigram model, we obtain a set of parameters that describe the phonological

well-formedness (in terms of ‘typicality’) to a second order degree of detail. If there are

P phonemes in the language, then the number of parameters for the unigram and bigram

models together is P +P 2. Each setting of values (weights) for the parameters assigns a prob-

ability to a corpus, and the degree of success acheived by a set of parameters with weightings

can be measured by that probability: the higher the probability, the more successful the

characterization.5

The reader should bear in mind the following tension: when presented with probabilistic

analyses of this sort regarding linguistic data, there is often a tendency to interpret it as, in

effect, an implicit argument against the necessity for structure going beyond that which is

used by the model (i.e., purely linear and symbolic structure). The reason for this may be

that one can get quite striking results on the basis of simple quantitative methods that do

not incorporate structure other than the most superficial. It might not be surprising if some

were to interpret these results as a sign that linguistic structure need not be incorporated in

the next generation of phonological analysis, and that what is necessary is more mathematics

instead. Such a conclusion would be hasty, and just as surely wrong. We believe that the

5One striking characteristic of probabilistic phonology of the 1950s (e.g., Cherry, Halle, and Jakobson
(1953); Belevitch (1956); etc.), compared with what we attempt to do here (or Coleman and Pierrehumbert
(1997)), is the focus in that early work on average values over an entire corpus. The clearest example of
this is the emphasis on calculating the entropy of a language under various models. The entropy is the
weighted average of the inverse log frequency, and each word in the lexicon contributes to its computation
in proportion to the word’s frequency in the language. By contrast, we are not only interested in these
“ensemble averages,” we are also interested in how some words (or subgroups of words) differ from other
words.

9



2.4 The problem of sparse data 2 BASICS OF PROBABILITY

right way to think about it is that any account of phonological representations will include

statements about segmental inventory and linear position in the formation of morphemes

and words, and if meaningful generalizations can be extracted with simple modeling of this

data, then we should identify what that information is. But that there is more structure

than linear and quantitative structure is not in any sense challenged by the material we

describe here, as the second part of this paper, on vowel harmony, attempts to show.

2.4 The problem of sparse data

The problem posed by sparse data is how to treat all the structures that occur rarely or not

at all in the training data. Thus far, we have been using what are known as Maximum Like-

lihood Estimates (MLE) in our models. Using MLE, the probability assigned to structure

a, pr(a) = Count(a)/|S| is essentially its frequency. This approach provides the tightest fit

between the parameters (i.e. probability estimates) in a model and the data with which it

is trained. Consequently, any structures (phones, n-grams, whatever) that are not observed

in the training data will be assigned zero probability and thus treated as true grammatical

impossibilities. It can be the case, however, that the missing structures are accidental gaps

in the training data. When a model erroneously treats an accidental gap as a systematic

gap the model is said to have over-fit the training data.

If the goal is the construction of a generative model, MLE probabilities are usually

avoided because they yield models that are ‘brittle’ in the sense that the occurrence of a zero-

probability element in a form nullifies all other distinctions (i.e. any pair of words containing

zero probability elements have the same probability, zero, regardless of any other distinctions

between them). This problem has been extensively studied in statistical Natural Language

Processing, and it has been approached with a wide range of sophisticated solutions that go

by the general name of smoothing techniques.

One of the most basic smoothing strategies is to use Laplace’s Law in a scheme that

adds one to all counts by initializing each count to one when computing frequencies. This

is is a specific instance of a more general strategy of adding λ, called Lidstone’s Law:

(9) pr(s) =
Count(s) + λ

N + Bλ
,

where N is the total number of instances structures like s, and B is the number of possible

kinds of structures like s. When λ = 0 this formula is simply the maximum likelihood

estimator; this gives the best fit for the training data but reserves no probability for unseen

events. When λ = 1 we are using what is usually referred to as Laplace’s law, which

corresponds conceptually to a uniform Bayesian prior over the possible structures. When

λ = 1/2 we are using what is usually called the Jeffreys-Perks Law (though Perks more

strongly advocated λ = 1/|T | where T is the set of types). The value λ = 1/2 is also

referred to as Expected Likelihood Estimation (ELE) and is the most commonly used fixed

value for λ in language modeling. There are many strategies for calculating optimal values for
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3 FINNISH

λ in given contexts and, more generally, many other strategies for calculating the amount of

probability to reserve for unseen events (see Manning and Schütze (2000:ch6) for an overview

and Good (1980) for a thorough discussion of the development of many of these ideas). In

our general presentation of models in the sections that follow we will use MLE probabilities.

However, whenever we compare alternative models we will use ELE λ = 1/2 in smoothing

the probabilities. Smoothing is useful in comparing alternative models to evaluate not only

their ability to fit the data but also their tendency to over-fit the data. In §4.4 we will

discuss an alternative to smoothing whereby minimization of model complexity is used to

avoid over-fitting.

3 Finnish

In this section, we consider information theoretic approaches to patterns whose scope is larger

than pairs of adjacent segments. For this study, we will use vowel harmony in Finnish. Vowel

harmony presents a type of phonological pattern that simple bigram models miss, but that

any algorithm designed to act like a human phonologist ought to detect. In vowel harmony,

vowels exhibit a high degree of mutual information, but because they can be separated by

varying numbers of consonants, this information is hidden from bigram models.

In the next two sections, we will explore more sophisticated bigram models that capitalize

on the autosegmental idea that segments which are not adjacent in the surface string can be

adjacent at another level of representation (i.e. on another tier). By allowing our model to

try out various partitionings of the segments into groups that interact as if they were adjacent

even when segments from a different group intervene, we are able to algorithmically discover

something like an autosegmental vowel tier. In Finnish, separating the vowels from the

consonants adds an extra level of representation where all vowels are adjacent and thereby

renders their mutual information transparent to a bigram-based analysis over the separate

tiers. Before getting into the specifics and results of the model, we will establish a baseline

with unigram and bigram models for a Finnish corpus.

We remind the reader that Finnish contains eight vowels that are usually grouped into

those that are strictly front {ä, ö, y}, those that are strictly back {a, o, u}, and those that

are neutral {i, e}— this is illustrated in Figure 1.

The strictly front and the neutral vowels together comprise the front vowels of the language,

and the strictly back and the neutral vowels comprise the back vowels of the language. A

majority of words in Finnish are harmonic, which is to say, all the vowels of a given word

come from either the front vowel set or the back vowel set.6

We begin with an analysis of unigrams and bigrams to establish a baseline against which

models of harmony can be evaluated. For this case study, we used a word list containing

44,040 unique inflected Finnish words with initial and final word boundary symbols ‘#’.

6See Kiparsky (1973), Ringen (1988 [1975]), and citations in Ringen and Heinämäki (1997).
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ä

ö

y
i

e

a

o

u

front back

Figure 1: Front, Neutral, and Back Vowels in Finnish

The orthography of Finnish is particularly helpful to our endeavor because it transparently

encodes the relevant properties of the vowels.

3.1 A unigram model of Finnish

In Table 3 we present the counts, frequencies, and plogs for the unigrams in our Finnish

corpus. Analysis of the unigrams gives us a fair amount of information about the corpus.

There are 510,174 unigrams in total, the sum of their positive log probabilities (plogs) is

2,088,530, and the average positive log probability per segment is 4.09. Thus the average

positive log probability (i.e., the entropy under this model) of our corpus is 4.09 and the

total cost (in terms of bits of information) for encoding our Finnish corpus given the unigram

model is 2,088,530 bits.

This base-line entropy of 4.09 for the unigram model and base-line encoding cost of

2,088,530 bits is what we aim to improve upon with more articulated models expressed over

bigrams and other kinds of enriched representations.

Phone Count Frequency plog Phone Count Frequency plog

a 56397 0.11000 3.18 r 13540 0.02650 5.24
i 50053 0.09810 3.35 v 11487 0.02250 5.47
t 47927 0.09390 3.41 p 9970 0.01950 5.68
# 44040 0.08630 3.53 y 9300 0.01820 5.78
s 38567 0.07560 3.73 h 9018 0.01760 5.82
e 37362 0.07320 3.77 j 7048 0.01380 6.18
n 35072 0.06870 3.86 d 3734 0.00732 7.09
l 28060 0.05500 4.18 ö 2989 0.00586 7.42
k 26064 0.05100 4.29 g 828 0.00162 9.27
u 25314 0.05000 4.33 b 580 0.00113 9.78
o 22097 0.04330 4.53 f 326 0.00063 10.6
ä 15102 0.02960 5.08 c 312 0.00061 10.7
m 14815 0.02900 5.11 w 118 0.00023 12.0

Table 3: Counts and frequencies for unigrams in our Finnish corpus
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3.2 A bigram model of Finnish

Though a unigram model of Finnish captures some basic properties of the data, it can be

significantly improved by widening the model’s scope to include information from adjacent

segments (as will be true in all natural languages). Incorporating bigrams into our model of

the Finnish corpus will capture more of the structure that is present in the data and thus

will assign a higher probability to the corpus.

Table 4 gives the mutual information for a small 8×8 fragment of the bigrams of Finnish.

Recall from (7) that the MI for a bigram ab is plog(a) + plog(b) − plog(ab).

# a b c d e f g h

# * -1.04 2.54 2.00 -1.41 -0.97 2.40 0.46 1.62
a 1.33 -0.19 -0.33 -0.30 -0.49 -4.79 -0.92 -0.63 0.03
b -3.06 1.06 4.30 3.08 -2.09 1.08 * * *
c -1.05 0.42 1.50 2.39 * 0.57 2.33 0.98 3.69
d -2.36 -0.55 1.08 * -2.77 2.64 -1.25 -0.60 -6.04
e -0.65 -3.54 -1.41 -0.43 0.58 0.06 -1.99 -0.06 0.50
f -1.64 -0.26 * * -1.25 1.47 5.72 * *
g -0.91 0.24 1.67 * -0.60 1.34 0.92 1.16 -1.55
h -5.36 0.73 -3.36 * 3.39 0.90 -1.53 * *

Table 4: Mutual information among Finnish bigrams (∗ marks gaps)

For the bigram ‘ab’ which has a frequency of 0.0001 whose positive log is 13.29, the mutual

information MI(ab) = −0.33 is obtained by adding 3.18 to 9.78 (the plogs for a and b in

Table 3) and then subtracting 13.29. The natural unit for quantifying mutual information

is the bit. Mutual information tells us the increase or decrease in the cost of describing a

segment in a particular environment, given our model.

In Table 4, the base cost of describing a segment is taken to be plog of its unigram

probability (also expressed in bits), so the MI directly encodes the increase or decrease in

the expectation of a given segment in a particular environment. This is expressed in terms

of how many fewer bits it takes to describe that segment in that environment. Consider

the third row in Table 4. This row gives the MI for bigrams in which the first element is

b. Here we see that the word boundary is less common immediately following a b than it is

overall, so the cost of describing it (3.53 bits in Table 3) goes up by 3.06 bits. Conversely,

b is relatively more common immediately following another b, so the cost of describing it

(9.78 bits in Table 3) goes down by 4.30 bits. The clusters bf , bg, and bh are unattested in

our corpus and thus, since log 0 is undefined, their plogs and MI are also undefined.7

7Because there are zero occurrences of ‘f’ following ‘b’ in the corpus the ML estimate of the probability
of ‘f’ in this position is zero. Leaving no bits/probability aside for ‘f’ makes the description of the attested
elements smaller. However, if the model were applied to future data in which an ‘f’ occurred in this context
the model would not be able to recognize/represent it at all.
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There are 510,174 segments in our Finnish corpus. The average unigram plog is 4.09

bits and concomitantly the sum of the unigram plogs for the whole corpus is 2,088,533

bits. The average MI among adjacent segments is 0.59 bits per bigram. This increase in

the probability of each bigram is directly reflected in the sum of the positive logs of the

conditional probabilities in the corpus, which is 1,780,261 bits.

3.3 Harmony and tiers

But what of vowel harmony? Thus far it has played no role in our description of Finnish.

The challenge, as discussed in Section 1.2, is to formulate a representation for Finnish words

under which potential connections among nonadjacent vowels can be described in the same

way as the connections between adjacent segments. One particularly simple way to do this is

to bifurcate the Finnish corpus so as to extract the vowels onto a separate tier that excludes

the consonants. By selectively ignoring consonants we can obtain a vowel-only sub-corpus

that exposes connections among nonadjacent vowels.

But it is appropriate to stop and ask what the epistemological basis is for using features:

given the nature of what we are trying to do, should we allow ourselves to use them? Can

a foundation be found for them that rests on probabilistic grounds?

The answer is yes. We outline here the proposal of Goldsmith and Xanthos (2006). If we

ask the question, what partitioning of the segments of Finnish into two categories, C1 and

C2, maximizes the probability of the data, given that each category assigns a probability

distribution over the segments, and only two independent variables are allowed for transition

probabilities (the probability of transition from C1 to C2, and the probability of transition

from C2 to C1), the answer turns out to be: one category consists of all the vowels, and

the other consists of all the consonants. This is a reflection of the fact that in any language

where there is a preference for vowel-consonant alternation such a division of segments is very

likely to maximize the probability of a corpus subject to the constraint that the probability

is computed by a 2-state first order Markov model.8

There is a well-known algorithm for hidden Markov models (HMMs) that determines the

optimal parameters for the emission and transition parameters that maximizes the probabil-

ity of the data, and this algorithm quickly learns to assign the task of generating the vowels

to one of the states, and the task of generating the consonants to the other. In addition,

each of the two states assigns a higher probability to the option of shifting to the other state

8There is nonetheless an unexpected substantive point to note here. The gross generalization that
consonants prefer to transition to vowels, and vice versa, could have been modeled in one of two ways, in
view of the fact that there are many consonant-consonant transitions, such as st and a number of geminate
consonants. The system might have allowed both states to generate s and t, and maintained transition
probabilities of State 1 → State 2 and that of State 1 → State 2 as 1.0 (or very close to it). Indeed, the
system, in learning, often stays very close to that system for quite a few learning iterations. However, it
eventually decides to increase the probabilities of staying in the same states (that is, pr(State 1 → State 1)
and pr(State 2 → State 2)), and dividing the segments up very strictly between the two states, so that the
vowels have a zero probability of emission from the consonant state, and vice versa.

14
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than to the option of staying in the same state: in short, vowels and consonants prefer to

alternate, and this is easily learned. This is illustrated in Figure 2.

Start

V

C

0.24

0.27

0.73 0.76

Figure 2: A Vowel/Consonant HMM

Start

front

back

0.90

0.97

0.10 0.03

Figure 3: A vowel-feature HMM/

Normally, one would expect there to be symbols that both states emitted with a non-

zero probability. Interestingly, that is not what we find here. The data of Finnish forces

the conclusion that the highest-probability model assigns, for each phoneme, a positive

probability of emission from one of the states, and a probability that is negligibly far from

zero for the other state: a very unambiguous categorization of the segments into two non-

overlapping sets.

If a second wave of analysis takes the categories induced in the first wave and applies the

same HMM learning algorithm to the stream of vowels alone we obtain the HMM in Figure 3.

Unlike the results of the first HMM learning step, the second stage does not neatly partition

the vowels into two disjoint sets. Instead, the strictly front vowels {ä,ö,y} are definitively

associated with one state, while the strictly back vowels {a,o,u} are associated with the other

(though with o a lot less certain about it than a or u), but the neutral vowels are associated

with almost equal probability to both states in the HMM. This distribution is illustrated in

Table 5. The numbers that are presented there are the (base 2) logarithms, for each symbol,

of the ratios of the probability of emission by the ‘front’ state to the probability of emission

by the ‘back’ state. For example, the probability of the front vowel state emitting ä was 2961

(about 2 × 10289) times more likely than the probability that the back vowel state emitted

it. In the case of the vowel o, it was 27.66, or approximately 200, times more likely that the

back vowel state emitted it than that the front vowel state should emit it. On the other

hand, the ratio of the probabilities of emission for the vowels i, e was not lop-sided, and was

in fact quite close to 1-to-1. The ratio of the probabilities (back to front) for i is 1 : 1.1, and

for e, the ratio is 1 : 1.57. The vowels are neutral, with a very small bias towards the front.

Another striking difference in the generation of the vowel-feature HMM is that the tran-

sition probabilities are quite the opposite of what was found in the prior case: the probability

of staying in one state is much higher than the probability of shifting to the other. That

is the nature of a harmony system. In particular, the transition probabilities are given in

Figure 3 and the log ratios of the emission probabilities for the vowels are given in Table
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Vowel Log ratio Vowel Log ratio Vowel Log ratio

ä 961 i 0.148 a -927
ö 999 e 0.655 u -990
y 309 o -7.66

Table 5: Log ratios of emission probabilities for Finnish vowels

5. A harmony system is (essentially by definition) a two state finite state device in which

the transition probability from each state to itself are greater than 0.5; the closer these

transition probabilities are to 1.0, the closer it is to a perfect harmony system.

Thus the inference of categories like consonants and vowels, as well as the inference of

the categories of front vowel, back vowel, and neutral vowels in Finnish, can be obtained by

means of the methodological principle of maximum likelihood. The 2-state HMM modeling

discussed here based on the proposal in Goldsmith and Xanthos (2006) is merely one of many

possible approaches to inducing these categories. To take the issue of categories to an even

more concrete level, one could start from acoustic signals and create categories of segments

and features using a strategy like the one proposed by Lin (2005). An initial categorization

into segments was obviated in our analysis by the use of written corpora which, obviously,

come preprocessed according to a (tacit) theory that segments Finnish into a set of symbols.

3.4 Building a tier-based bigram model of Finnish

The problem of inferring categories over which to build the structures used in phonological

analysis (probabilistic or otherwise) is a deep and interesting one, but is mostly orthogonal

to our main purpose, which is to show how probabilistic models can encode nonlocal depen-

dencies and how they are to be evaluated. We say mostly orthogonal because the number of

categories over which the models are stated does come into play in two specific ways. First,

if two models A and B differ only in that the latter sub-divides categories of the former,

then the MLE probability that B assigns to the corpus on which it was trained will always

be better (or just as good) as that assigned by A. Second, the number of categories also

plays a role once we begin to evaluate the trade-off between coverage of the data and the

complexity of the model itself. We will return to the issue of model complexity in §4.4.

Given our 8-way distinction on the vowel tier, the traditional front/neutral/back cate-

gorization is represented by the shaded quadrants of Table 6. Vowel harmony is reflected

by the positive MI for the harmonic front-front and back-back pairs in the upper-left and

lower-right quadrants of Table 6. The dispreference for disharmonic back-front and front-

back pairs is reflected by the negative MI for the disharmonic pairs in the lower-left and

upper-right quadrants. Positive and negative MI values respectively encode increase and

decrease in the probability of a segment in a particular environment when compared to that

segment’s unigram probability. For example, a front vowel increases the probability that

the next vowel is front and decreases the probability that the next is back.
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V1

V2 ä ö y e i a o u

ä 2.23 1.54 1.43 -0.35 0.14 -3.00 -2.64 -3.18

ö 1.29 2.54 1.53 -0.16 0.32 -1.23 -0.89 -1.29

y 1.61 3.42 2.35 0.19 0.21 -2.96 -2.71 -3.73

e 0.30 -1.85 -0.30 0.23 0.23 -0.67 -0.54 -0.20

i 0.02 0.51 -0.35 0.62 -0.15 0.11 0.06 -0.55

a -3.54 -5.27 -3.33 -1.03 0.07 0.45 -0.36 0.02

o -3.34 -4.33 -2.30 0.10 0.82 0.18 0.29 0.06

u -2.93 -3.65 -2.22 0.15 -0.11 0.15 0.89 1.12

Table 6: Mutual information on the vowel tier

There are two striking features of Finnish vowel harmony that are made clear by the

values in Table 6. The first is that the influences between categories are not symmetrical

and the second is that the categories are not uniform. Regarding the first point, consider

the MI values in Table 7 for vowel pairs in the three categories.

V1

V2 front neutral back

front 1.99 0.06 -2.40

neutral -0.28 0.23 -0.30

back -3.43 0.00 0.31

Table 7: Average MI among categories

Keeping in mind the fact that the MI values represent deviation from the unigram proba-

bilities, there are four immediate generalizations about V1 C∗ V2 sequences:

(10) i. if V1 is back then the probability that V2 is front is reduced

ii. if V1 is front then the probability that V2 is back is reduced

iii. if V1 is front then the probability that V2 is front is increased

iv. if V1 is back then the probability that V2 is back is increased

The strength of these generalizations decreases from (i) to (iv), with the strength of the

last being on par with that of generalizations about the neutral vowels. On one hand,

these generalizations could be seen as a reflecting the characterization in Goldsmith (1985)

of Finnish vowel harmony as an instance of front harmony. On the other hand, these

generalizations offer a nuanced picture of which vowels are more prevalent than expected, and

which less, in each environment, generalizations that are outside the scope of autosegmental

analyses such as Goldsmith (1985).9

9The conception of autosegmental phonology that we employ is that of Goldsmith (1976) and (1990). One
of the key ideas in this model is that phonological features are strictly partitioned, and this partition involves
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We will say nothing here about why Finnish vowel harmony shows these specific patterns.

Though the question is of indubitable linguistic importance, our current goal is to provide

methods for evaluating the accuracy (and accuracy/complexity trade-off) of models of the

patterns. It would certainly be interesting to generate data like that in Table 7 for a range

of vowel-harmony languages (see, for instance, Baker 2009) or to generate such data for

other kinds of Finnish corpora such as a running text or a morphologically decomposed

lexicon. This line of research would allow one to ask whether the generalizations in (10)

reflect properties of our corpus, properties of Finnish, or properties of vowel harmony more

generally. The pursuit of these questions must, however, follow the development of tools for

generating the data that will be used to answer them.

The second striking feature of the data in Table 6 is the non-uniformity of the MI values

within categories. Collapsing the categories as in Table 7 shows that harmony is more

robust among front vowels than back vowels but it fails to capture several nuances such as

the differences between the strongest and weakest paris in each category, the fact that the

MI of (ao) is actually negative, and the fact that some pairs containing ‘neutral’ are not so

neutral (e.g., contrast MI(eö) vs. MI(öa), MI(öo), and MI(öu)). In light of these facts, we

will adopt the categories C and V in the analysis to come, but we will return to the issue in

§4.4.

3.5 Applying the tier-based bigram model to Finnish

Having a model of the vowels in hand, what remains is to evaluate the rest of the language—

what we shall refer to as the timing tier. The timing tier is essentially identical to the bigram

model of Finnish as described in Section 3.2 save for the fact that all of the vowels have

been collapsed into a single symbol ‘V .’ This symbol will function as a place holder on the

timing tier for the vowel information recorded on the vowel tier. We speak of this collapsing

as if it were “dividing” the original corpus by the set composed of the vowel symbols: finding

the “quotient” amounts to replacing the different vowel symbols with the cover symbol V .

their segregation onto separate tiers (though the partition, and hence the segregation, may be different at
different levels of the grammar; that is left open as a possibility, and was employed both by Goldsmith
and by McCarthy in the late 1970s and 1980s). There were two broad generalizations that supported this
organization: the phenomenon of stability (referring to those cases where a featural specification remains
present despite the deletion of the segment to which it was associated), and the many-to-many association
patterns widely observed in tonal systems. (This conception is the most widely adopted interpretation,
though it is distinct from the projection view of autosegmental representation, suggested by J.-R. Vergnaud
and others.)

As its name suggests, autosegmental phonology develops a model in which the autonomy of separate
aspects of a phonological representation is naturally represented. In general, interaction between phonological
information on a given tier is restricted to operations that actually affect segments on that tier (while addition
or deletion of association lines does not count as “affecting” a tier in the relevant sense). Thus when it was
noted that tones in certain African languages interact with certain voiced consonants (such consonants could
add a tone to the tonal melody, or block spreading of a non-Low tone), this behavior was modeled in the
framework by explicitly inserting a Low tone on the tonal tier, associated with the voiced consonant in
question. Interaction with tone after that would be unproblematic, within the framework. See, for example,
Kisseberth 1984, Laughren 1984, Bradshaw 1999, or more recent discussion in Downing 2008.
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Collapsing vowels down to a single symbol (using the “quotient”) yields a higher prob-

ability for every bigram containing V on the timing tier, by comparison with the original

bigram model. For a given word w, if we replace all of the individual vowels in it by the

symbol V , we write the result as w ÷ V . For instance, in the basic bigram model the posi-

tive log probability of a and e immediately after b are 2.11 and 2.69, respectively. Once the

vowels have been collapsed on the timing tier, however, the positive log probability that V

follows b is 0.319—quite a significant decrease. The unigram counts and the plogs for the

timing tier are given in Table 8.

Phone Count Frequency plog Phone Count Frequency plog

V 218614 0.42851 1.22 h 9018 0.01768 5.82
t 47927 0.09394 3.41 j 7048 0.01381 6.18
# 44040 0.08632 3.53 d 3734 0.00732 7.09
s 38567 0.07560 3.73 g 828 0.00162 9.27
n 35072 0.06875 3.86 b 580 0.00114 9.78
l 28060 0.05500 4.18 f 326 0.00064 10.61
k 26064 0.05109 4.29 c 312 0.00061 10.68
m 14815 0.02904 5.11 w 118 0.00023 12.08
r 13540 0.02654 5.24 x 36 0.00007 13.79
v 11487 0.02252 5.47 q 18 0.00004 14.79
p 9970 0.01954 5.68

Table 8: Counts and frequencies for the unigrams on the timing tier

What remains, then, is to combine the two tiers to create a single model. Figure 4

illustrates the way that the tiers come together to form a probabilistic model of Finnish.

The probability of a word, in this autosegmental model, is the product of the probability of

the quotient string (that in which vowels have been collapsed to V ) times the probability of

the sequence of vowels. For a given word w, we indicate the string of vowels that it contains

as w ≈ V . For instance, (katab# ≈ V ) = aa. We compute the probability of a sequence of

vowels as in (11) by taking the product of the unigram probability of the first vowel (because

it is not preceded by a vowel) and the conditional probabilities of each subsequent vowel.

(11) prauto−V (w) = prbigram,tier1(w ÷ V ) × prbigram,tier2(w ≈ V )

In Figure 4 we illustrate the probabilities and concomitant plogs that the autosegmental

model assigns to the word ötököiden. Using plogs is especially helpful in this case because

the probabilities are so small; the product of the probabilities on the timing tier is 7.62×10−8,

the product of the probabilities on the vowel tier is 5.79 × 10−6, and the product of both

tiers is 4.42 × 10−13.

Representing Figure 4 with plogs on the arcs is straightforward because the positive log of

conditional probability is the joint log probability minus the log of the unigram probability,

which is computable by subtracting the unigram plogs from the bigram plogs. Thus the bit
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Figure 4: A probabilistic autosegmental model of ötököiden

cost of the first arc on the timing tier is plog(#V ) − plog(#) = 5.99 − 3.53 = 2.46 which

is precisely the value obtained by taking the positive log of the conditional probability:

−1× log 0.182 = 2.46. The sum of the costs on the timing tier is 23.64 bits, and the sum of

the costs on the vowel tier is 17.40 bits. Taken together the cost of representing the word

ötököiden is 41.04 bits (which is another way of saying −1 × log 4.42 × 10−13).

After collapsing the vowels, the average plog per segment on the timing tier is 2.95, and

with 510,174 segments (the same number as in the bigram model), the total cost of the

word-set on the timing tier (i.e. the sum of the plogs) is 1,273,648 bits. Compared with cost

of the bigram model of 1,780,278 bits, we see that collapsing the vowels makes the cost of

the timing tier about 28% less than that of the bigram model. We must, however, add the

cost of the vowel tier because the timing tier alone omits the vowel qualities. The average

MI among bigrams on the vowel tier is 0.23 bits. This means that, among vowels, knowing

the quality of the preceding vowel reduces uncertainty about the next by about 8%. Overall,

the cost of the corpus on the vowel tier is 540,822 bits. This yields a total cost of 1,814,470

bits for the corpus in the autosegmental model. Unfortunately, this is actually higher than

the cost under the bigram model.

3.6 Local C-to-V MI exceeds distal V-to-V MI

The idea behind our first tier-based model is simple—collapsing all of the vowels on the

timing tier makes all of the strings on that tier more probable while exposing the nonlocal

cases of V-to-V MI on the vowel tier makes all of the strings on that tier more probable

as well.10 If there were no neutral vowels in Finnish, and if vowels were distributed so

as to respect vowel harmony but otherwise uniformly (i.e without regard for surrounding

consonants), then we would expect knowledge of vowel harmony to decrease the information

present in a word with n vowels by about n − 1 bits because the choice of each vowel after

the first would be made from a set that was of only half the size of the full vowel system.

10 This first model also provides a particularly simple way to ensure the wellformedness of the probability
distributions in that the sum of the probabilities of the set of strings that map to any given template such
as #kVtVb# will be the same in the bigram model and the two-tier model.
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3.6 Local C-to-V MI exceeds distal V-to-V MI 3 FINNISH

There are many words in our Finnish corpus where the results go in this direction. For

instance, ötököiden has a cost (plog sum) of 43.64 bits in the bigram model but a cost of 41.04

in the autosegmental model–an information improvement of about 6%. However, it turns

out that about 64% of the words in the corpus are actually assigned a lower probability under

the basic autosegmental model than the bigram model. In the aggregate, these overwhelm

the increase in probability for harmonic forms. In (12) we give the overall results of the

three models.

Unigram model: 2, 088, 528 bits

Bigram model: 1, 780, 267 bits

Autosegmental: 1, 814, 470 bits = 1, 273, 648 (timing) + 540, 822 (vowels)

(12)

The failure of the basic autosegmental model is due mostly to the fact that it has col-

lapsed too many distinctions on the timing tier. Many of the words that are assigned lower

probability in the autosegmental model (even some that are highly harmonic) contain highly

probable VC and CV pairs whose mutual information is occluded when the vowels are col-

lapsed down to a single symbol on the timing tier. Another deficiency of the model (much

less significant in its overall effect) is that the vowel tier lumps diphthongs together with

vowel pairs in adjacent nuclei. In the former case, seven of the vowel pairs in the harmonic

category actually have negative MI if we consider only strictly adjacent vowels and thus

conflating these two cases yields a poorer account of each.

Bigram Count MI wMI Bigram Count MI wMI

n# 14422 2.25 32479.13 in 7521 1.13 8484.72
a# 12275 1.33 16377.40 #v 3622 1.87 6769.37
en 9019 1.81 16343.02 ko 3521 1.64 5778.19
is 10551 1.48 15609.93 ma 4204 1.36 5717.76
st 9743 1.43 13904.72 el 4651 1.18 5480.94
ll 5476 1.83 10005.10 an 6760 0.80 5422.02
ta 10345 0.97 9987.00 tu 4994 1.07 5345.63
#p 4207 2.29 9631.09 mi 3705 1.35 5001.56
#k 6234 1.47 9165.69 se 5360 0.92 4954.16
va 4632 1.87 8647.96 ää 2172 2.28 4953.32

Table 9: Top 20 Finnish bigrams by weighted MI (wMI = count × MI)

The crux of the problem with totally segregating the tiers is revealed if we rank the

bigrams of the basic bigram model in term of the MI that they contribute. Table 9 lists the

top twenty Finnish bigrams ranked by weighted mutual information, where wMI = MI ×

count. Using wMI provides a rough metric of the utility of each bigram in the model because

it counts as most useful a bigram that has high MI and is prevalent in the data. Table 9

reveals that 13 out of the top 20 bigrams are either VC or CV. Thus, even though collapsing
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the vowels increases the probability of the timing tier, the separation of the vowels from the

consonants hides the influence that the consonants have on the vowels and vice versa.

3.7 Evaluating the differences

Though the models clearly differ in the probability that they assign to the corpus, one wants

to be confident that the differences are robust and not simply an artifact of one model over-

fitting the data. To make this determination we randomly divide the corpus into two halves,

the training data and the testing data and then further divide the testing data into a dozen

test-sets. We then train the models on the training data and do ELE smoothing by adding

half of a count for each structure type. Smoothing is necessary in this case because some of

the structures encountered in the test data may be absent in training.

Dividing the test data into a dozen test-sets allows us to compare not only the overall

performance of the models but also to use the variance in the costs that the models assign

to the test sets to be confident that the differences are real and not an accidental property of

the randomly chosen test data (i.e., if one of the models was assigning wildly different scores

to the test sets we would be less confident in the apparent differences between the models).

The differences between each pair of models are all highly significant. The most relevant

comparison is that of the Autosegmental vs. Bigram models, where we find the differences

to be significant with a p-value of 0.0037 in a Wilcoxon signed-rank test. The bit-costs of

the data in the test-sets under the Unigram, Bigram, and Autosegmental models are given

in Table 10.

test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8

Unigram 79,441 79,407 80,018 80,025 80,492 79,530 80,521 81,109
Bigram 69,111 69,129 69,548 69,468 69,853 69,174 69,764 70,490
Autoseg. 70,174 70,250 70,591 70,785 71,114 70,474 71,108 71,847

test 9 test 10 test 11 test 12 sum mean variance

Unigram 80,731 79,718 79,097 78,197 958,286 79,857 642,241
Bigram 70,288 69,342 68,881 67,970 833,018 69,418 442,053
Autoseg. 71,487 70,533 70,003 69,179 847,545 70,628 508,038

Table 10: Performance of the three models on the 12 sets of test data

We test the differences in means with a Wilcoxon signed-rank test (a non-parametric test).

Comparing the Unigram and Bigram models yields a Wilcox rank sum test statistic W of

0 with a p-value of 0.0000007. Comparing the Unigram and Autosegmental models yields

exactly the same result (this is because the Unigram cost is higher on every test-set). Finally,

comparing the Bigram and Autosegmental yields W=14 and a p-value of 0.0003713.

Overall, the fact that this first-pass autosegmental model does a significantly worse job

predicting the data than the basic bigram model shows that, while it may be useful to
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incorporate mutual information between vowels across consonants, doing so by occluding

the mutual information between consonants and vowels yields a net loss. In the next section

we consider a more nuanced model that can utilize both sources of information.

4 Boltzmann model

4.1 An introduction to Boltzmann models

In the Section 3, we described our probabilistic autosegmental model of Finnish phonotac-

tics, and how the results showed that the statistical effects of vowel harmony on segment

sequencing were overall slightly weaker than the aggregate of the effects of surrounding

consonants on vowel quality. This result went counter to our expectations, but once we

take note of the fact that our expectations were not met, it is instructive to see where our

expectations came from, and it is critical to deal with a more complex linguistic reality.

Our expectations were based on the incorrect assumption that consonants do not sig-

nificantly “choose”—that is, condition—the vowel that immediately follows (or at the very

least that any such effect should be weaker than the influence of vowels on one another in

a vowel harmony language like Finnish). However, the fact of the matter is that linguistic

structures, like most structures in the natural world, show complex partial dependencies,

and we need a probabilistic model that is capable of dealing with such cases.

One widely used model of this sort employs an approach which goes by a number of

names, including the Boltzmann distribution. The heart of the Boltzmann model is the idea

that a probability is assigned to a representation on the basis of a score, and the difference

between the scores of two representations R and S is equal to the ratio of the probabilities

assigned to the R and S—or to put it another way, the difference in the scores of R and S is

equal to the difference of the log probability of R and S.11 This way of putting it makes it

clear that if the score that is assigned has some linguistic meaning, the probabilistic model

that the Boltzmann model creates is one in which probability is tightly linked to the score.

It is traditional to define the score in such a way that the larger the score of a represen-

tation is, the smaller is its probability. This convention is encoded in the presence of the

negative sign in the exponent of 2 in equation (13). Thus the score in a Boltzmann model

should be thought of as a measure of phonological ill-formedness.12 For a model m and a

11See Geman and Johnson (2001), for example, which is an excellent introduction for the relevance of
this notion to linguistics. The notion arose in the context of statistical physics, where it is natural to define
a notion of energy ǫi for each state that an object may be in, and then assign a probability to being in that
state which is proportional to 2−ǫi . In order to make these values a distribution, they must be normalized,

and so one generally indicates the probability in an expression of the form 2−ǫi

Z
, where Z is the sum, for all

i, of 2−ǫi . In interesting cases, the model may be modified so that the influence of the differences of energy
may be attenuated by introducing a notion of temperature t in a modified formula for probability of being

in state i: 1
Z

2−
ǫi

t .
In work on computational learning, the notion of a conditional random field has been explored by Lafferty

et al. (2001), of which the present model is a special case; we return to this in §5.2.
12The intent of the notion of well-formedness described in Goldsmith (1990, 1991, 1993) was to be -

1 times this quantity, and the aim of that analysis was to show that level-internal phonological processes
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4.1 An introduction to Boltzmann models 4 BOLTZMANN MODEL

sample space U1 of possible phonological representations, each element r ∈ U1 in the sample

space is assigned a score h(r) by m. This, in turn, yields an exponentiated score of 2−h(r)

that can be turned into to a probability in a well formed probability distribution. To do

this normalization, each 2−h(r) is divided by, Z the sum of the exponentiated scores of all

elements of the sample space.

(13) prB(r) =
1

Z
2−h(r) =

2−h(r)

∑

s ∈ U1

2−h(s)

The main substance of any model thus consists of how the score function h is defined. A wide

range of possibilities is available. For example, if we define the score of a representation to be

the sum of the scores of the individual segments, and define the score of an individual segment

as the plog (positive log probability) of its unigram frequency, then the probability assigned

to a representation is just its familiar unigram probability. This can be seen in (14) where

the calculations show that when the score is directly based on log probabilities, it is natural

that exponentiating that value should give us back probabilities, and the denominator, Z,

sums to 1, as it actually sums all the probabilities of the unigram sample space.

prB(r) =
1

Z
2−h(r) =

2−h(r)

∑

s∈U1
2−h(s)

=
2−

P|r|
i=1 plog(pr(r[i]))

∑

s∈U1
2−

P|s|
i=1 plog(pr(s[i]))

=

∏|r|
i=1 2log pr(r[i])

∑

s∈U1

∏|s|
i=1 2log pr(s[i])

=

∏|r|
i=1 pr(r[i])

∑

s∈U1

∏|s|
i=1 pr(s[i])

=
pr(r)

∑

s∈U1
pr(s)

=
pr(r)

1
= pr(r)

(14)

But the beauty of a probabilistic model such as this is that it allows a wider range of freedom

than simply to use the log probability of an element as its score. We could, for example, set

up a list of regular expressions ci, each associated with a weight, and then assign a score to a

representation which was equal to the sum of the weights associated with each expression ci.

If each ci modeled some characteristic that the system tries to avoid, so to speak, then such

always correspond to a decrease in ill-formedness. Those references failed to offer an explicit way to calculate
the “phonotactics”; the present paper offers the expressions that calculate the plog of a representation as the
correct method for calculating such phonotactics.
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4.2 A Boltzmann model for two tiers 4 BOLTZMANN MODEL

a Boltzmann model assigns a probability based on these terms, weighted by the “strength”

of each particular expression.13

Returning to the general point, the score assigned to any given representation is the

exponential of (-1 times) the weighted sum of the values associated with each phonological

“feature” associated with (or simply found in) a given representation. By “feature,” again,

we do not mean simply phonological features in the usual sense (although these could be

features in the present sense), but a set of features selected from any property at all that

can be measured.

4.2 A Boltzmann model for two tiers

For the case of Finnish, we propose to use three sources for features in the Boltzmann

scoring: the unigram positive log probabilities of the segments (a quantity often referred

to as self-information), the mutual information between pairs of consecutive segments, and

the mutual information between nonadjacent vowels. (We return below to the question of

whether this decision is made on a language-particular basis or more generally.)

U(w) =

|w|
∑

i=1

log pi(w[i])

M1(w) =

|w|
∑

i=1

MI(wtier1
[i−1]; wtier1

[i] )

M2(w) =

|w|
∑

i=1

MI(wtier2
[i−1]; wtier2

[i] )

Score(w) = U(w) − M1(w) − M2(w).

(15)

The reader will recall that the first term in (15), alone, expresses the unigram model prob-

abilities, and that the first two terms together express the bigram model. It is thus the

presence of the third term that incorporates the analysis of vowel harmony into the model.

What we propose to do is sketched in Figure 5.
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Figure 5: Plogs of conditional probabilities + V...V Mutual Information

13Proposals along these lines have been made by Goldwater & Johnson (2003) and Hayes & Wilson (2008)
where expectation maximization is used to find optimal weights over each ci, and by Wilson (2006) who puts
the various ci together in a conditional random field to create a model whose structure is, in many ways,
similar to what we propose in §4.2.
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The solid arrows in Figure 5 give the plogs of the conditional probabilities in the basic

bigram model, which are equal to the plog of the unigram probabilities minus the mutual

information of the bigrams. Given this base value, we then subtract a second line of mutual

information for nonadjacent vowels to create our Boltzmann model. We use the second

source of MI only for nonadjacent vowels because interactions among adjacent vowels are

already captured by the bigram model.

In both models, we compute the statistical connections between items and their neigh-

bors by means of computing mutual information. Consonants thus have only one neighbor

(to their left or right), but some vowels have two neighbors (on each side): a “local” neigh-

bor and a more distant neighbor, a notion that is in effect modeled by the autosegmental

representation.

4.3 Computing Z

In light of the discussion in the previous section, we calculated a set of scores for the words

in the Finnish corpus described above. Each word w’s score, h(w), is equal to the sum

of the plogs of its phones, less the mutual information between successive phones and the

mutual information between successive nonadjacent vowels. Each word was assigned an

exponentiated score 2−h(wi), which is transformed into a probability by division by Z, the

partition function.

Computation of Z is often the hardest part of developing a Boltzmann model. Happily,

the models that we are working with obey a simple structural restriction that makes it

possible to compute Z relatively easily. Even though the harmony component of our model

is recursive (i.e., can operate over arbitrary distances), it can nonetheless be encoded as a

simple weighted finite state automaton (wFSA).

We represent the harmony component of the model as a wFSA, H, whose arcs are labeled

with mutual information scores for vowel pairs. We represent the bigram component of our

model as a wFSA, B, whose arcs are weighted with positive logs of conditional probabilities.

Using these representations, it is possible to construct a new wFSA, B ×H, by intersecting

the structures of B and H (cf. Hopcroft and Ullman 1979) and assigning new weights to

the arcs by subtracting the V-V MI from the plog of the conditional probability for any

vowel that has a vowel antecedent. This new machine represents both segment-to-segment

interactions, and distal vowel-to-vowel interactions within a single weighting function. The

only wrinkle is that, after the intersection, the weights on the arcs of the new wFSA no longer

represent a well formed probability distribution. To recover a probability distribution from

the new model we must sum the weight assigned to every possible representation r ∈ U1;

that is, we must compute Z.

It is not possible to compute Z by incrementally summing weights because there are

infinitely many possible phonological representations in U1. This is where the use of a finite-

state representation for our linguistic forces is most useful. Because the combined wFSA
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B × H is a finite encoding of the weighting of the infinite range of representations, we can

‘solve’ the weight that the dynamic system assigns to U1 by a recursive computation on

B × H in the manner described by Eisner (2002). Following this procedure, we find that

Z ≈ 1.0177 for the MLE model with probabilities generated from the whole corpus.14 The

fact that Z is quite close to 1.0 means that the exponentiated scores need only be reduced

slightly to yield a well formed probability distribution, and hence the probability of the

corpus (which is what we are most interested in calculating) is enhanced by this model.

At a more abstract level, what this means is that the exponentiated score that we have

calculated, if summed over the entire space of representations, would be slightly more than

1—alternatively put, by and large, and on the average, adding mutual information between

vowels to our scoring function does not help to improve words generated randomly (Finnish

words are not random). Hence, the fact that including mutual information in the scoring of

the real Finnish data did improve the exponentiated score is highly non-trivial. Put more

simply, the relationship between the vowels in the Finnish corpus increases the probability

of the data, and thus should be captured in a statement of Finnish phonology. In 16 we give

the bit-costs for the models.

Unigram model: 2, 088, 528 bits

Bigram model: 1, 780, 267 bits

Boltzmann: 1, 760, 523 bits

(16)

The improvement offered by the Boltzmann model is relatively small when compared to the

difference between the Unigram model and the Bigram model. Nonetheless, the differences

between the models are significant. In a Wilcoxon signed-rank test the differences yield

W = 30 with a p-value of 0.01149. The bit-costs of the data in the test-sets under the

Bigram and Boltzmann models are given in Table 11.

test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8

Bigram 69,111 69,129 69,548 69,468 69,853 69,174 69,764 70,490
Autoseg. 68,380 68,429 68,850 68,800 69,155 68,491 69,060 69,821

test 9 test 10 test 11 test 12 sum mean variance

Bigram 70,288 69,342 68,881 67,970 833,018 69,418 442,053
Autoseg. 69,575 68,653 68,207 67,283 847,545 70,628 508,038

Table 11: Performance of the Bigram and Boltzmann models on the 12 sets of test data

In evaluating what appears to be a relatively small improvement over the bigram model, one

needs to keep in mind the fact that the bigram model encompasses all segment-to-segment

14For the ELE model, if probabilities generated from the whole corpus Z ≈ 1.0175 and if probabilities
generated from the training data used in our comparisons then Z ≈ 1.0177.
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effects (including those among vowels) while the harmony tier encodes only the nonlocal

interactions among vowels. To put this in perspective, the harmony tier has 8 × 8 = 64

free parameters to track nonlocal V...V pairs while the bigram tier has 28 × 28 = 784 free

parameters to track all pairs. The bigram model replaces the 28 free parameters of the

unigram model with 784 free parameters and in so doing decreases the cost of the corpus

by about 14.8%. By contrast, the Boltzmann model adds 64 free parameters on top of the

bigram model and in so doing decreases the cost of the corpus by about 2.2%. In the former

case the number of parameters differ by a factor of 28 and in the latter by a factor of ∼1.08.

4.4 Model complexity

One of the most relevant properties of the model that we have proposed is that it is a

synthesis of second order models rather than a third (or higher) order model. One could

conceivably try to capture Finnish vowel harmony by casting an ever wider net using 3-grams,

4-grams, 5-grams, and so on with exponentially larger numbers of probabilistic parameters.

However, the alternative that we advocate here is simply the addition of another relatively

compact model alongside the bigram model that allows vowels to act on each other at

arbitrary distances. By that same token, instead of trying to capture harmony with a

trigram-like model in which each consonant is split into eight categories according to its

preceding vowel, we obtain a smaller model by treating the harmony tier and bigram tier as

independent.

In developing an approach of the sort described here, it is critical to be able to express

quantitatively the complexity of the formal model used, and there needs to be some explicit

price “paid” for increasing the complexity of a model. The reason for this is somewhat

complicated, but, for our current purposes it suffices to note that the notion of complexity

measure in Chomsky (1955) is closely related to this trade-off between model complexity

and fidelity of description, as is the notion of algorithmic complexity.15

A crucial insight of the theory of algorithmic complexity (see Li and Vitányi (1997))

is that the units that are used to measure a grammar’s length are the same units used to

measure the logarithm of the probability of an object (or rather, the plog): in both cases, we

use bits as our units. In light of this, we recognize that the choice for the language-learning

system is not necessarily, “should I include a bigram model of my phones in the phonological

account?” but rather, “for how many, and for which, pairs of segments, or categories of

segments, should I keep track of the relevant mutual information statistics?”

The way to answer these questions that we believe is the most linguistically illuminating

is embodied by the Minimum Description Length Principle. Using MDL we select the h ∈ H

15Various approaches have been suggested to the task of assigning a prior probability over models. One
approach, incorporated into Minimum Description Length models (Rissanen (1989)), assigns a probability
of 2−|m|, where |m| is the length of the grammar in some appropriately compact formulation.
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that minimizes:

(17) hMDL = arg min
h∈H

LC1(h) + LC2(D|h)

where LC(x) is the description length of x under encoding C. Because it is possible to

encode the data D using n bits where n is the positive log of the probability assigned to D

by h, this is an expression of Bayes rule arg maxh∈H
P (D|h)P (h)

P (D) under the assumption that

the prior probability of hypothesis h is the number of bits that it takes to encode h. In

an idealized sense, this approach embodies a Kolmogorov-prior wherein we assume that the

prior probability of a hypothesis is the reciprocal of 2 raised to its complexity (length) in

bits. Unfortunately, Kolmogorov complexity is not generally computable, so we are left to

propose encoding schemes for classes of hypotheses and then work within those.

One of the most basic properties of models is their number of free parameters. We can get

a base-line cost for representing the models under consideration here by calculating the cost

of representing the parameters. (These are really families of models with the same structure

but different parameter values.) Assuming that 16 bits will allow sufficient precision in

representing the probabilities in the models, we will need 16 bits for each parameter in the

model.16 This gives us a rough estimate of the cost of each model. In (12) we add the costs

of various models to the (MLE) cost that each model assigns to the corpus. For comparison

we also include a trigram model and a model, VC-combo in which the bigram and harmony

tier are not treated as independent.

Model # param. model cost cost(data|model) total cost

unigram 28 448 2,088,528 2,088,976
bigram 784 12,544 1,780,267 1,792,811

Boltzmann 848 13,568 1,760,523 1,774,091
VC-combo 5,040 80,640 1,710,499 1,791,139

trigram 21,952 351,232 1,553,644 1,904,876

Table 12: Total costs of models and data

What Table 12 shows is that even though moving to a trigram model would do a better job

compressing the corpus, this improvement would be overshadowed by the cost of encoding

the model itself. Because the Boltzmann model is a linear combination of the bigram model

and the harmony tier, which has 64 free parameters, we need only add 64× 16 = 1, 024 bits

to the cost of the bigram model to reduce the bit-cost of the corpus by about 20,000 bits.

4.5 Model complexity revisited

Baker (2009) applies the approach discussed in this paper to several languages including

Finnish, and he proposes a range of modifications and innovations to the proposals here,

16This assumption is very generous to large models because most of the probabilities we observe require
more than the 4-decimal-place fidelity that can be recorded with 16 bits.
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including a strategy for evaluating each parameter of a model in terms of the degree to

which it compresses the corpus. Baker found that the neutral vowels on the harmony tier

were not particularly useful in this regard, and suggested that they be effectively removed.

This revision to the Boltzmann model actually improves the compression of the corpus to

1,755,148 bits—a 1.1% savings—and does so with 28 fewer parameters (i.e. the harmony

tier tracks only 6 × 6 = 36 pairs). Because the neutral vowels of Finnish are transparent to

harmony (see Ringen 1975), removing them allows the model to capture interactions among

non-neutral vowels at greater distances. This provides a perfect example of the fact that

probabilistic models and traditional linguistic structures are not at all antithetical.

Given the fact that removing the category of neutral vowels from our harmony tier

reduces the number of parameters in the model without reducing the probability assigned

to the corpus, it is natural to ask whether collapsing the front or back vowels down to a single

category would offer similar benefit. Considering only the strictly-front and strictly-back

vowels, {ä, ö, y, a, o, u}, our Finnish data contains 69,336 pairs of vowels, (V1, V2), separated

by at least one consonant. In 17% of the instances V2 is front and in the other 83% of the

instances V2 is back. When the cases are separated into groups based on the color of V1,

however, quite a reversal is revealed; though back vowels are about five times more common

in general, they are actually four times less common than front vowels when V1 is front and

and about 25 times more common than front vowels when V1 is back.

V1

V2 front back total

front 9,753 2,575 12,328

back 2,045 54,963 57,008

total 11,798 57,538 69,336

V1

V2 front back

front 2.22 -1.99

back -2.25 0.22

wMI 1.46 0.12

Table 13: Front/back counts and front/back mutual information

Table 13 offers insight into why the effects of adding vowel harmony to the model are rather

small despite the fact that the generalizations are fairly robust. Most of the vowels that

could be subject to harmony are back and the vast majority of these occur, as expected,

following back vowels. In the environment
〈

V1 C+ V2

〉

, the probability that V2 is back is

0.83, and when V1 is back, this jumps to 0.96, but the difference between plog(0.83) and

plog(0.96) is only about 0.22 bits. Overall, saving 0.22 bits in describing the 55 thousand

back vowels that occur after back vowels while spending an extra 2 bits to describe the front

vowels that occur after back vowels yields an average savings of 0.12 bits per vowel in this

environment. The average savings are much greater in describing vowels that follow front

vowels but there are far fewer of these.17

17It is also important to keep in mind that these numbers are for the harmony tier all by itself. Once the
harmony tier is included with the bigram tier in the Boltzmann model these values will be normalized to
produce a well formed probability distribution.
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A similar set of generalizations can be made about the interactions of the eight vowels

on the harmony tier introduced in section 3.4, but they are much easier to see once the

vowels are collapsed into just two groups. The critical question from the perspective that we

advocate here is whether using 4 rather than 64 parameters to describe the vowel interactions

is superior in terms of the cost of the model plus the cost of the data given the model. We

contrast a Boltzmann model with only 2 classes of vowels, Boltz-2, with our original model,

Boltz-8, in Table 14.

Model # param. model cost cost(data|model) total cost

bigram 784 12,544 1,780,267 1,792,811
Boltz-2 788 12,608 1,765,451 1,778,059
Boltz-8 848 13,568 1,760,523 1,774,091

Table 14: Evaluating a Boltzmann model with fewer parameters

Assuming, as we did above, that each free parameter costs 16 bits, we find that, for this

data and this metric of model cost, the the reduction in the cost of the model is outweighed

by the loss in predictive power.

One might ask how things would have to be different in order for the Boltz-2 model to

be the best. This would be especially germane in a case where we had some independent

evidence that the smaller model was somehow the ‘right’ one. This could happen if, for

instance, one were attempting to model experimental data for phonological generalizations

made by humans in which there was evidence that the front vowels were treated as a unit for

the purposes of harmony. Though we are expressly not trying to model humans’s phonolog-

ical generalizations here (for that we would need very different kind of data), the evaluation

metric that we have proposed can be straightforwardly applied to such a task.

One natural way to tip the balance in favor of the Boltz-2 model would be to increase the

cost for encoding each parameter by an order of magnitude; our assumption of 16 bits was

quite low to begin with. This would work for the data at hand but would likely break down

for larger sets of data because the importance of the model’s cost diminishes as the data

grows.18 A more interesting approach would be to assume an upper bound on the amount

of data that can be taken into consideration when choosing between the models. If, for

instance, the decision was made based on a window of the 20,000 most common (or recent)

words, then the relative importance of minimizing the size of the model would increase.

This example illustrates but one of hugely many possible groupings of Finnish segments

into categories; there is an extensive literature on strategies for doing this kind of grouping

(for an introduction, see Kaufman and Rousseeuw 2005). In this work we adopted the

categories C and V following Goldsmith & Xanthos (2006) in order to implement our tier-

based harmony model and to show that such a model is ‘simple’ in the right way (i.e. tiers

18This is exactly as it should be; even small deviations from the (unigram) expectations are significant
and worth encoding if they hold over large enough sets of observations.
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can capture nonlocal interactions while adding relatively little complexity). The problem of

searching the space of models is highly relevant but is beyond the scope of this current paper.

All that we will say about it here is that a basic strategy for searching the model-space can

be obtained by combining the evaluation metric in (17) with any clustering algorithm and

the premise that things in the same category can interact non-locally on a tier.19

5 Discussion

In this section, we will comment on some general issues that are raised by the kind of

approach that we have envisioned in this paper. The first is the relationship of probabilistic

models to generative models and the second involves where this line of research may be

taking us.

5.1 Information theory and generative phonology

Our goal in the work described here is to develop a framework of phonological analysis which

is explicit enough to algorithmically determine which of a finite set of candidate analyses is

the best, given a set of data from a language. In a sense, our approach is entirely within

the original framework of generative grammar, though to our knowledge, relatively little

work along these lines has actually been carried out since Chomsky (1955) and Chomsky

(1957:52f). Our goal is not to discover that Finnish has vowel harmony—that was known well

before there was such a thing as generative phonology—but rather to develop a device that

quantitatively and algorithmically substantiates that kind of analysis of a Finnish corpus.

It may seem odd to hear probabilistic models being touted as exemplars of generative

grammar, but we have tried to emphasize that probabilistic models are always as formal

as any other type of grammar: a probabilistic model is subject to the constraints that

each element in U1 be assigned a probability and the summation of these values (which is

typically infinite) must yield the value 1.0. We suspect that the reason some linguists find

this odd is that early work on probabilistic models typically used very simple unigram and

bigram models, even to handle syntactic phenomena, and probabilistic models were, quite

erroneously, identified with the simplest of finite-state models. However, there is no reason

to limit the application of probabilistic tools to models that are linguistically simple or naive.

It is fair to say that probabilistic models are not widely employed at the center of phono-

logical work in the United States today. Bod et al. (2003) write: “One of the foundations of

modern linguistics is the maxim of categoricity: language is categorical. Numbers play no

role, or, where they do, they are artifacts of nonlinguistic performance factors.” As a remark

about the foundations of modern linguistics, we disagree; Trubetzkoy (1939), surely one of

19This premise can be seen as an implementation of the idea that harmony (and respectively disharmony)
operates over elements that are sufficiently similar (see, for instance, Cole (1987, 2009), Walker (2000, 2005),
Hansson (2001), Rose and Walker (2004)). The approach in Cole (2009), though couched in an exemplar-
based model, is conceptually quite close to what we advocate here.
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the founders of modern phonology, wrote, “[a]ll the particular properties that give a lan-

guage its unique phonological character can be expressed in numbers.” Along a similar line,

Henry Kučera (1982:167) wrote, “[the] correlation between structure and language statistics

is important since it supports the basic notion that the markedness relation, in reflecting an

informational economy in language coding, has the expected statistical effects.”

Still, probabilistic models do have a strong presence in fields closely related to phonology:

in all work today on speech recognition (see Huang and Acero 2001 for a recent overview);

in much of the work in computational linguistics (see, e.g., Manning and Schütze (2000) for

a recent overview);20 in some European traditions, notably the work of Gabriel Altmann

(1980, e.g.) and others publishing in the Journal of Quantitative Linguistics; and a wide

range of phonological work by authors writing in the 1950s and 1960s, including Morris

Halle, Roman Jakobson (see, e.g., Cherry et al. (1953)), Henry Kučera (1982), G. Herdan

(1956, 1960, 1964; see also Halle 1958 for a review of the first), and many others.

Since the 1990s, another wave of scholarship on probabilistic phonological models has

emerged that, from a historical point of view, forms an organic whole with the earlier work

cited above. Indeed, one could argue that, if a historical fact is in need of explanation, it is

the temporary absence of work in this area in the period from the late 1960s until the early

1990s. A partial list of this more recent wave of probabilistic work includes Pierrehumbert

(1994, 2001, 2003), Coleman & Pierrehumbert (1997), Seidenberg (1997), Frisch, Large, and

Pisoni (2000), Albro (2000), Bailey and Hahn (2001), Dainora (2001), Goldsmith (2002),

Billerey-Mosier (2003), Jäger (2004), Goldwater and Johnson (2004), Hayes and Wilson

(2008), and Cole (2009) to name just a few. The latter three of these, especially Hayes and

Wilson (2008), have many similarities to our proposal here.

We find it very encouraging that our work is among several lines of research that are

independently converging on, what seems to be, a common information-theoretic framework

for modeling phonological phenomena. There are, however, a few significant differences in

our approach that bear mentioning.

First, we believe the distributional properties of the data are sufficient for discovering the

categories that are relevant for local and non-local interactions in a given language. Thus,

unlike Hayes and Wilson (2008), we do not assume that natural classes or specific tiers for

non-local interaction are antecedently given. Hayes and Wilson make this assumption, in

part, to restrict the model search-space, which is a more central focus of their work. Thus,

we acknowledge that our assumptions may turn out to be problematic when we move on

to the next stage of this work, which will involve more model building. Nonetheless, we

are encouraged by the fact that the evaluation metric we propose can be used to adjudicate

among the clusterings of segments (i.e., classes) produced by any clustering algorithm.

20Also, Pereira (2000) makes an argument regarding probabilistic models of syntax much in the spirit
of what we argue here. He points out that there are many widely held misconceptions about weaknesses
of probabilistic models that stem from overgeneralizing the weaknesses of straw-man models in well-known
papers. Like Pereira, we aim correct the misconception that probabilistic models are antithetical to linguistic
structure.
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A second central difference, is way that our evaluation metric incorporates both the

complexity of a model and its fit of the data. Hayes and Wilson employ heuristics in

evaluating models that also favor low complexity but this complexity is assessed in terms of

the natural classes they take as a starting assumption. Though our model-complexity metric

of 16 bits per parameter is admittedly crude, we think that it is ultimately more illuminating

to demonstrate that ‘classical’ linguistic structures like natural classes can emerge from

distributional patterns in the data. Cole (2009) makes much the same point and goes

further to assess theories about why the patterns are there in the data.

5.2 Further directions: Towards a phonological field theory

It is natural to ask what the origin is of the surprising aspect of the model in (15) and

illustrated in Figure 5, which is to say: why should there be vowel harmony in a language?

We have focused thus far on the use of mathematical tools, particularly those associated

with information theory, and we have thought of the generation of a word in Finnish (or

any other language) as a stochastic process in which the probability of a given phoneme is

conditioned by preceding phones. In this final section, we will briefly describe a somewhat

different view that we think is lurking behind the structure of vowel harmony, and one which

attempts to exploit mathematical methods used in statistical mechanics. In this view, the

probability of a given string is related to its “potential,” and this potential is related in turn

to the degree to which the segment at a particular position in an utterance is in agreement

with the statistical expectation established by the segments surrounding it.

According to this picture, assimilatory and dissimilatory effects, both local and distant,

are the effects of a field of “forces” present in varying degrees at every point in a representa-

tion; each segment contributes to the field in its neighborhood, and each segment is in turn

influenced by the orientation of the force-field at its location. The image we have in mind

is much like that of a magnetic field: each atom contributes to the magnetic field in which

it exists, and each atom in turn is affected by the potential which increases as the magnetic

orientation of the atom fails to match up with the preferred direction of the field at that

point.

We imagine that a phonological representation can be viewed as a sequence of units

each of which can assume different “states,” much like a die can be flipped so as to show

different faces pointing upward. Let us call this sequence of positions {si}i. Each unit si

is a skeletal position, and the “state” that it is in defines which segment (selected from the

inventory of the language) it represents. To clarify the metaphor a bit, we may say that

there are P different phonemes in the inventory of the language, and that each position si

is in one of these different states.21 If one is willing to go beyond the dice-metaphor, we can

say that each skeletal position si is associated with a vector in a space of dimensionality

21For a segment to shift from one phoneme to another (a d might become a t, for example), the unit takes
on a different state, which metaphorically could be viewed as a die whose d-labelled face is up flipping to a
state where the face labelled t is up.
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RP which we call its characteristic vector. The direction of that vector at each position

is what we think of as the surface realization of that position. In the terms of conditional

random fields, mentioned above (see footnote 11), the underlying representation specifieds

the “input” random variables, and the surface form is specified by the “output” values.

In many applications of conditional random fields, the output values are interpreted as

(otherwise hidden) labels of observed data; this is not the case here, however.22

The direction of the characteristic vector is determined by three things: the underlying

specification of the position, the influences of the phonological force field at the position in

which the position occurs, and the “stiffness” associated with a twisting of the direction of

the vector from one direction to another—in effect, the cost associated with shifting from

one segment-type to another (here, twisting it from its underlying “direction” to its surface

direction). The direction of the characteristic vector directly determines what the surface

form of the position is.

As we have tried to show in this paper, the critical factor describing quantitatively the

effect of a segment in one position on another position is the mutual information; we assume

here that for any two segments, there are two such parameters, local mutual information

MIL(p, q) and distal mutual information MID(p, q), just as we did in the previous two

sections.

We indicate the force field at position i as F(i); this is a vector in RP . For a given string

S, the strength of F(i) in a given direction p is determined by the unigram plog of segment

p, minus the local and distal mutual informations; this is approximated in (18):

Fp(i) = plog(p) − MID(S[i − 2], p) − MIL(S[i − 1], p)(18)

− MIL(p, S[i + 1]) − MID(p, S[i + 2])

A natural definition for the potential of string S at position i in the presence of field F is

given in equation (19) where 〈., .〉 represents the vector inner product.

(19) H(S,F , i) = 〈
−−→
S[i],F(i)〉,

A natural way to deal with alternations in this framework is to include a set of P2

parameters τj,k describing the potential associated with twisting an underlying phoneme-

state j to a surface phoneme-state k. For the first time, we need to distinguish the underlying

specification of a segment from its surface form, and so we extend our notation slightly: when

there is a discrepancy between the two, we take S/i/ to represent the ith position of the

22There is a growing body of literature on the automatic learning of the features used in conditional
random fields; see Mccallum (2003) and more recent papers. These methods could be used for the automatic
learning of the present model.
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underlying string, and S[i] to represent the ith position of the surface string. The potential

described in (19) would then include a term expressing the phonological probabilistic cost of

mismatch between deep and surface form. (This is similar to models that compare strings in

bioinformatics; see, for example, Durbin et. al. 1999 chapter 2.) Let us assume that we have

established an alignment between underlying and surface forms; this alignment need not be

one-to-one, and it will certainly be probabilistic, and we use it to establish a probability

distribution over pairs of segments prd(/x/, [y]) as in (20).

(20)
∑

x,y∈Σ

prd(/x/, [y]) = 1.

In this model, it would be natural to interpret the potential function as a linear combination

of the expression in equation (19) and sum of the plogs of the deep-surface segment pairings

{S/i/, S[i]}i. We are pursuing these developments in work in progress as natural extensions

of the models described here.

6 Conclusion

This paper has been an exploration of the usefulness of information theoretic tools for un-

derstanding phonological phenomena. It began, from our point of view, with the conjecture

presented in section 3.6: the effects of vowel harmony in a language like Finnish should

result in a decrease in entropy if we condition the probability of a vowel on the vowel that

precedes, at whatever distance, rather than by the immediately preceding segment. To our

surprise, this hypothesis was soundly defeated by the data. As we continued to explore why

the hypothesis was wrong, we came to be more and more impressed by the usefulness of a

methodology that allows structure in the phonological data to speak so forthrightly to the

researcher. We were never in a situation where our preference as to styles of phonological

analysis (autosegmental, rule-based, constraint-based, innate features, etc.) played a signif-

icant role in the testing of any hypothesis; at best, or at worst, such preferences may have

limited the range of hypotheses our creativity was limited to.

We are only too aware of additional steps that should be taken even in the analysis

of Finnish vowel harmony, not to mention similar problems in every other language in the

world. Perhaps the most important next step is to compare the model developed in this

paper based on whole words to a model based on words divided into morphemes, so that

vowel harmony strictly inside of morphemes can be studied separately and compared to

cross-morpheme vowel harmony.

In the final analysis, we believe that information theory is a critical tool for analyzing

and understanding linguistic data—and linguistic data is what linguists build their theories

on. Adoption of these mathematical tools is in no sense a repudiation of the essential and

integral role of formal modeling or abstract structure in linguistic theories. Indeed, the main
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goal of this paper has been to understand how a a particular kind of abstract structure—the

vowel tier—can arise as a necessary consequence of the use of probabilistic models in which

we seek to maximize coverage while simultaneously minimizing model complexity. As E. T.

Jaynes (2003) aptly puts it, we view probability distributions as carriers of information.

The most important next step is to better explore the relationship between increasing the

size of our model and increasing the probability of the data. We need to better understand

and to explicitly model the trade-off between expanding the information contained in a

grammatical description of a language, on the one hand, and the improvement in the log

probability of the data that follows from that expansion of the grammar. In addition, we

plan to look to see whether the economy that information theory provides will help us

better understand the trade-off between phonology and morphology. There is already a

fair literature on the information theoretic complexity of morphological analysis Goldsmith

(2001), and it should be possible to explicitly compare the relative complexity of analyzing

various phenomena in morphological terms with that of analyzing them phonologically. If

we can achieve that goal, we will have arrived at a significantly deeper explanation of the

relationship of two significant components of linguistic grammar, and a new understanding

of how the phonological analysis of a natural language is justified.
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