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Chapter 2

Computational approaches
to induction

2.1 Introduction

This chapter brings together all of the technical apparatus that we will need
over the chapters that will follow. It focuses on the notion of probability, and
the application of probability to information and algorithmic complexity. From
the perspective of researchers working in this area, the chapter is relatively
informal, and the reader who knows all of the material here is likely to notice
places where we have glossed over technical niceties. On the other hand, the
reader for whom this chapter is written, and who does not know the material
already, may find the chapter quite technical and perhaps challenging. We have
tried to steer a middle course between the expectations of these different sorts
of readers.

The models that we look at here are in some respects much simpler—indeed,
impoverished—with respect to some of the assumptions made in contempor-
ary linguistics. But there is an impoverished side to contemporary linguistic
models as well that is captured more richly in these models, involving princi-
pally the elaboration of distributions that are not uniform. We will explain that
a bit more clearly at the end of the following section.

2.2 Probability
2.2.1 Probability distributions

The most important theme in the development of modern empiricism is the
meaning and use of probability, and its essential role in understanding the na-
ture of knowledge and learning. Probability plays a role in all of the themes
that we deal with in this book, and in this section we give an introduction to
some of the formal conditions and properties of a probabilistic analysis.

Let us begin by asking the reader to put to one side his everyday notion of
probability, or the one based on frequencies and the rolling of dice: it is true
that the probability of rolling a two is one in six each time we roll a fair die,
but we will not get there for a while yet. We begin, rather, with a simpler, more
basic, and more mathematical perspective on what probability is.
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We will say that we have a probabilistic account of some domain when we
can assign a distribution over its members: a distribution is an assignment of
a nonnegative number to each member, subject to the condition that all of
these nonnegative numbers add up to exactly 1.0 (though see the footnote for
some brief remarks about probabilities over continuous domains.!) The set
over which the distribution is defined is called the sample space. We may as
well use some mathematical notation: a distribution is a function that maps
from a particular domain D, which is the sample space, to the real numbers
in the closed interval [0,1]. In the vast majority of cases that interest us, the
domain D is infinite: it might consist, for example, of all possible strings of
English words, and there is no upper limit to the number of such strings. It
is important to be clear on the following fact: it is not difficult to establish a
function that assigns not simply a nonnegative but in fact a positive number to
an infinite set of elements and still have it sum to exactly 1.0. That is, it is easy
to display functions where ), p(x) = 1.0. If we can assign a strict ordering
to the set D (we call that an enumeration of D), then it is very easy to give an
example of such a distribution. One such example—but by no means the only
such example—is the following: to the i element, we assign the probability 27/,
The “amount” of probability assigned to elements gets very small very fast as
i increases, but it always remains positive, and it sums to exactly 1.0 in the
limit.>

We have thus begun with a very abstract characterization of probability. We
began this way in part to counter the intuitions which might otherwise arise:
for instance, that probabilities are just a refined way of talking about the fre-
quency with which events occur in the world, like the frequency with which a

! This is a simplification of the real mathematical situation, but the simplification should
not matter except to the reader who already understands it. In more general cases, where
the domain that we are looking at contains not simply discrete elements but variables tak-
ing on real values (that is, any value in some real interval), then we draw a distinction
between the underlying domain of outcomes and various sets of those outcomes, called
events, and in this case, events roughly consist of open intervals of real numbers, and
no sets of real numbers that cannot be built up out of such intervals. The outcomes are
not assigned probabilities as such, but the events are. In addition, we draw a distinction
between the function that assigns probability to the outcomes—which is a probability
mass function—and the function that assigns probability to events, which is the real
probability.

We caution the reader that there is no need to worry about whether the sum ever gets to
1.0 or not: this worry has been settled by the mathematics that lies behind saying that the
sum is taken in the limit; there is no other meaning that would attach to an infinite sum,
for what that’s worth.
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die comes up two. We do not adopt this frequentist view of probability in this
book. We take instead a Bayesian point of view, in which part of the reason
we compute probability distributions is in order to be able to state explicitly
what the probability is that a parameter we care about falls within a certain
interval, given what evidence we have seen so far. A frequentist approach to
modeling some English text assumes that the grammar generating these texts
has parameters which take on certain values that we are trying to discover: the
parameters are in the reality, so to speak, and a mastery of statistical methods
will allow us to judge what the odds are that the true value is within a close win-
dow to the value that we have inferred from the data. In a Bayesian approach to
modeling, the same text is a succession of refinements of distributions which
express what we can rightfully infer the value of the parameter (or parameters)
to be. This is sometimes referred to as a subjective perspective, and that is fair
enough, especially if that is understood as a reminder that we are by no means
obliged to think that the parameters we compute would correspond to a value
that the Omnipotent has set (or can look at). It is not subjective in the sense of
being a matter of opinion or personal preference, however.

A crucial implication of this view is that it is not meaningful to ask what
the probability of an event e (or an outcome) is in any absolute sense: it only
makes sense to ask that question, given a particular distribution over the do-
main in which the event e occurs. If the distribution is called D, then we may
meaningfully write pp(e).

The fundamental goal of a probabilistic approach to modeling reality is to
construct a model in which probabilities are assigned to interesting phenom-
ena in ways that match up with reality. By recognizing that what we build is
a model, we acknowledge that there is an element of simplification at work;
we hope that the degree of simplification will not be fatal. We recognize that
we need to clarify exactly how the quantitative aspects of our model “match
up” with reality: that phrase is a little too vague to be left as it stands. And fi-
nally, we add this: because we know that the subject of our study is language,
we know that we will be considering many sequences of word choices. Since
we know that the vocabulary of a language is typically on the order of 10° or
more, we know that there are many possible sequences of words of length #:
there are on the order of 10°”, which is a seriously large number. Our goal is
to figure out how we can construct quantitative—here, probabilistic—models
that remain tractable even when we allow them to generate long strings of
words. We must do this by building up the larger model out of smaller parts
that can be more simply described. So we will first develop some simple tools
to describe choices from a finite set and then build up to models that allow
sequences of such choices.
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By way of contrast, non-probabilistic models—generative models in linguis-
tics, for example—steer clear of such straightforward questions as what the
probability is of choosing the word dog as the expansion of a terminal category
noun in English. Ask a syntactician who is offering an analysis of a grammat-
ical English sentence why the word chosen in expanding a given noun node
was dog, say, and you will be told that the choice was just a for instance, that we
could have chosen a different word—it does not matter what word we chose,
the point is still the same. The probabilist wants to reply: yes of course it matters
what assumptions we make about choice of noun (or of any other category),
and if we chose to assign a uniform distribution over all nouns in the lexicon,
we can certainly do that (no one is stopping us from doing so), but we will
provide a less enlightening analysis of English if we use a uniform distribution
rather than one that reflects what people actually say.

2.2.2 Conditional probability and Bayes' rule

We sometimes think of a distribution as assigning a nearly tangible substance
called probability mass over its domain. There is a total amount of probability
mass equal to 1.0 units—we might imagine that the units are kilograms. This
amount is divided up and distributed over the domain of the distribution.

A conditional probability is what we get if we focus our attention on just one
subpart S of the domain of the distribution and ask about the probability of an
event e that is in S on the condition that all we care about is events inside of S. If
we have a probability distribution over all the words of English, then the prob-
ability assigned to the word dog might be 0.000631712 (as it is in the Brown
corpus), while the conditional probability of the word dog, conditioned by the
word being a singular noun, might be 0.001329677. If we know that a word is
a singular noun, what is the probability that it is dog? In its more central form,
the notion of conditional probability is based on the idea that we consider not
the entire universe of possible outcomes but only some subset—and we call
that subset “what is given.” Formally speaking, the conditional probability of
A given B is the probability that both A and B hold, divided by the total prob-
ability mass assigned to the condition B. Stated using more general symbols,
we define conditional probability in this way:

_ p(A&B)

2.1
) @1

p(A[B)

This is just a definition, but it is all we need in order to show what Bayes’ rule
is and where it comes from. The definition of p(A|B) above immediately leads
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to the following statement:

p(A[B)p(B) = p(A&B) (2.2)
and the very same definition tells us that

p(BIA)p(A) = p(B&A) (2.3)

But since p(A&B) is the same as p(B&A)— it is the probability of the event
of both A and B occurring—it follows that

p(B|A)p(A) = p(A|B)p(B) (2.4)
and hence that
_ P(AIB)p(B)
p(BlA) = o) (2.5)

This is Bayes’ rule (sometimes called Bayes’ law or Bayes’ theorem), and as
one can see, it is nothing more than a simple algebraic manipulation of the
definition of conditional probability. Its function is to give an explicit account
of how we reverse the conditioning of two events.

2.2.3 Sequences of random variables

Because the study of language is the study of large numbers of strings of words,
we need to employ the appropriate mathematical tool for the job at hand. Here,
the right tool to use is a sequence of random variables. The term random vari-
able is a bit misleading, though it fits with the intuition that is often offered
for it: a random variable can typically be given a human meaning as a meas-
urement of something happening. For example, we note the number of letters
in successive words, or the number of births in successive years, or in each of
the countries around the world—or simply the choice made of the word in
successive positions of a sentence.

Nobody denies that are there are dependencies between the words in a sen-
tence, and describing the sequence of words in this way does not commit us
to the idea that these dependencies do not exist. Random does not mean that
there is no order or no relationship between the words, and much of what fol-
lows are ways of fleshing out more or less precisely what sorts of dependencies
there are. Using sequences of random variables allows us to talk about not just
the probability of a word but the probability of a sentence (or sequence of sen-
tences) and thus to talk about grammar, but using a probabilistic vocabulary
rather than the categorical vocabulary of sets.
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2.2.4 Finite-state automata

We will explain first what has come to be known as a Moore machine, a par-
ticular type of finite-state automaton. We imagine that there is a finite set of
different states, each capable of outputing various words: each state knows
about itself the probability with which it will generate any particular word,
and each state knows what the probability is that it will transition to any of the
other states at the following moment of time. In symbols, we say that for each
state 7, there is a probability t;(w) that it will emit word w, and these sum to
1: " 7i(w) = 1; and the transition probabilities from each state must sum to
Las well: for each 4, } ;s = 1.

Graphically, there are two ways to think of the evolution in time of such a
system. The first is as a path through a graph, moving around through the per-
mitted paths indicated by edges between the states. See Figure 2.1. Associated
with each step through the graph is a word that is generated by the system
when it is in (or at, if you prefer) a particular state.

The second way of thinking about this is by imagining that all of the states
are stacked up on top of one another, and there are as many copies of this stack
as there are words emitted by the system. Then a path through the system is
one that moves from left to right, with only one state chosen per moment of
time; as before, a word is emitted by each state that is passed through (see
Figure 2.2).

These models are generally described as systems which evolve only with
knowledge of the previous state that they were in. But the way we have set

John 0.5
Mary 0.5

Fig. 2.1 A graph representing a finite-state automaton. The process starts at the
bottom left state and ends at the top right state. This will generate, for example, the
strings “John said that he left” and “John said that Mary said that she left,” as well as
infinitely many others. In order to compute the probability of each string, we multiply
the probabilities of each transition, and each output. Thus “John said that he left” has
the probability 0.5 x T x 1 x 1 x 1 x 0.5x0.5x 1 x 1, which is 0.125.
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Fig. 2.2 A diagram where
each moment in time is
represented by a separate

vertical stack of states. We
show a single path that

John said that she left  outputs one sentence.

things up graphically, when it is emitting a word, it really only knows the state
it is in at that moment; the state that it is in determines, by definition, what the
probability is that it will emit any particular word. Nonetheless, it is reason-
able to say that the system as a whole knows what the immediately preceding
state was, because the determination of what state the system is in at time ¢ de-
pends solely and entirely on the state that the system was in at the immediately
preceding time ¢ - 1.

Now, with a Moore machine of the sort we have described, it is not unrea-
sonable to think of the system, when it is in a particular state, as thinking of
the words it can generate as being of the same part of speech in some sense or
other. But we should be clear that there is nothing at all wrong with having a
Moore machine which has several states that generate the same words (with
similar or different probabilities). This may be because a word is ambiguous in
its category (content or can), or it may be for any other reason: the probabil-
ity that is assigned to a noun determiner (such as the, his, or a) might well be
very different depending on whether the determiner appears in the sentence
initially or not, to take just one simple example.

The easiest mistake to make at this point is to think that one really knows
what being in state i at a particular moment means. We could imagine an
extreme case where there are exactly as many states as there are words
in the vocabulary and that each state generated one and only word—its

31
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particular word. In that case, generating a certain word is equivalent to actually
being in a particular state, and so it would not be terribly wrong to say of such
a system that it models the production of a word as being conditioned on, and
only on, the immediately preceding word. But that is an entirely artificial ex-
ample. We typically consider models with a far smaller number of states than
there are words in the lexicon.

In some such cases, it is reasonable to think of the states as roughly, but only
roughly, corresponding to parts of speech. A system like that is illustrated in
Figure 2.3.

But that need not be the case. A state of such a model could correspond to
a more abstract point in a derivation (or partially constructed tree, as a lin-
guist would view it). For example, the initial state of a model might transition
to some state which can generate not just a single word, but a phrase, and
the generation process of this phrase might consist of generating a sequence of
words through some states, specialized for this particular task. This mild exten-
sion of the formalism leads to what were called Recursive Transition Networks
[Woods, 1970]; now, they have been assimilated into the theory of probabilis-
tic phrase structure grammars, which is the approach we explore below. We
call this a first-order Markov model, which is to say, a model whose prop-
erties depend only on what state the system was in at the previous moment.
Second-order models are those where the probabilities can depend not just on
the immediately preceding state but also on the previous one as well.

We call such a system deterministic, since knowledge of the output allows us
to infer what states the system passed through. We can also say that the system
is a first-order Markov model, in the sense that it only needs to look back one
state to be fully described. You may object to that statement and say that if the
system has selected state Sy, for example, then it has no further need to know
what state preceded. That is true, but breaking up the options a system has into
states is just a way of talking about how the system is conditioned by its past.

(=) @@
(oo ({7 (D)

Fig. 2.3 A diagram showing states that correspond to parts of speech. We omit the
transition probabilities and the outputs. The state labelled DET outputs determiners,
ADJ adjectives, and so on.



|OUP-FIRST UNCORRECTED PROOF, March 18, 2015] ‘

COMPUTATIONAL APPROACHES TO INDUCTION | 33

These simple finite state models are too weak to capture the sorts of de-
pendencies that we see in natural languages; indeed, these weaknesses were,
historically, one of the primary motivations for generative grammar. In Sec-
tion 2.8 we will look at how these models can be enriched to formalisms which
seem to be sufficiently powerful to describe natural language syntax.

2.3 The probability of the data

Probabilistic grammars open up an entirely new way to think about the con-
nection between the predictions made by a grammar and the data supplied by
reality. This new way is to seek the grammar that maximizes the probability
of the data. In this regard, it is an alternative to the view that the goal of a
model of language is to generate all grammatical sentences and not to gener-
ate the ungrammatical sentences. This point is very much worth emphasizing,
because that understanding of what a grammar is intended to accomplish has
become so well established in the field that it may be hard at first to imagine
that anyone might disagree with it.

In some respects, the idea that a grammar should generate all and only the
sentences of a language is an idea strongly associated with generative gram-
mar, and hence with the work of Noam Chomsky. It certainly is true that this
conception of formal grammar emerged clearly only in the 1950s, but it was
emerging before generative grammar; see, for example, Harwood [1955], for a
clear statement on evaluating a grammar on the basis of what it does and does
not generate. The alternative view—that a grammar should be probabilistic
and that we evaluate a grammar by virtue of its ability to assign a high prob-
ability to the data—has a comparable history. Strongly influenced by Rudolf
Carnap, Marvin Minsky, and Chomsky, Solomonoft developed a probabilistic
framework in which the grammar for a given set of data is selected by a process
that maximizes the probability of the data (taking into account the probabil-
ity of the grammar as well). Solomonoff [1997] provides an overview of the
evolution of Solomonoff’s work on this, going back to the mid to late 1950s.

2.4 Bayesian analysis: priors and likelihood

We turn now to what is called Bayesian reasoning. Though we have discussed
Bayes’ rule, which is essential to Bayesian reasoning, there is more to it than
just a simple algebraic manipulation. It is essentially based on the realiza-
tion that any assignment of probability to an event e is conditioned by the
distribution f being used, and on the principle that it makes sense to speak
of the probability of using a particular distribution. It is this latter step that is
special—and not uncontroversial. Let us look at it more closely.
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Bayesian models usually include parameters, that is, variables that take on a
specific value (even if that value is not explicitly known in some contexts). If
we have a loaded die which can come up on any of its six faces, but we know
ahead of time that the probabilities of each face coming up are not all equal,
then we might well develop a model in which there are five parameters, one
for each of the probabilities that the die will come up 1, 2, 3, 4, or 5; the other
value (the probability that it comes up 6) does not need to be specified, since a
distribution must add up to 1.0.

We thus have two distinct ways in which we may think of the probability
of an event as being conditioned: the value that one random variable takes
on can be conditioned by the value that another random variable takes on;
it can also be conditioned (in a different sense) by the choice of the values
of the parameters adopted in the model. Notationally, this is often written by
separating the two types of variables with a semicolon: p(X) = f(X;_1; A).

Let’s consider a simple example of this, such as a model for flipping a coin
which we have no reason to believe is fair: we believe that there is a probabil-
ity p that it will come up heads, but we have no prior knowledge at all regarding
what that probability is. If we knew p and we decided to flip the coin 100 times,
we could assert with what probabilities we would expect the coin to come up
40 times as heads, 50 times as heads, 60 times as heads, and so on. More gen-
erally, if we flip a coin n times, then the probability that we will get m heads is
the familiar binomial distribution, which can be written as

n m n-m
pX =m)= <m>p (1-p) (2.6)

But the question of how we approach the inverse problem remains: how do
we estimate p for this coin, if we have flipped it 100 times and it has come up
heads 45 of these 100 times? One reasonable answer is to consider all possible
values for p and then to choose the one which assigns the highest probability to
the observed data. Bear in mind two things: first, the parameter p can take on
an uncountable number of values (we said earlier that we would consider only
sample spaces with a countable number of objects—which is still true here),
and second of all, we may let p varying over all its possible values but that does
not create a distribution: there is no sense in which all of the probability values
sum (or integrate) to a value of 1.0 as we let p vary all the way from 0 to 1.

It for this reason, in essence, that we distinguish between probability and
likelihood: unlike common English usage, technical usage keeps these two no-
tions completely separate. A likelihood function describes the probability that
a model would assign to a particular state of affairs as we consider all the dif-
ferent values that the model’s parameters may take on, while a probability
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function describes the probability that is assigned by the model (with its
parameters fully specified) to all of the events in the sample space.

There is another, closely related aspect of Bayesian analysis that makes it a
good model for thinking about systems that learn. If we are prepared to think
about knowledge as knowledge of distributions, then we are drawn to asking
how this knowledge is updated—in a word, changed—when the systems makes
additional observations. Bayes’ rule can be understood as a very concrete way
to model the update of knowledge in the light of new evidence.

2.4.1 A psychological view of Bayes’ rule

When the cognitive system acquires new information, such as hearing some
particular linguistic input or observing some aspect of the social or physical
environment, it has to update its state of knowledge, in the light of this new
information. How can this process of updating be understood? In general, this
problem is extremely difficult—it is the notorious “frame problem” of artifi-
cial intelligence [McCarthy and Hayes, 1969; Pylyshyn, 1987] —the problem
of tracing the consequences for one’s overall knowledge of the world, in the
light of a specific piece of information. The problem is difficult, because, in
general, one’s overall state of knowledge can typically change in many ways in
order to accommodate new data—and it is not straightforward to decide which
modifications should be preferred.

The problem can, however, be addressed head-on for problems in which
probabilistic methods can be brought to bear: specifically, where the state of
knowledge of the agent, about some particular domain, can be captured by
specifying a probability distribution. Suppose we are considering the problem
of learning a grammar from experience. The probabilistic approach requires
that we begin by specifying an initial probability distribution over these gram-
mars, representing the learner’s initial state of knowledge (or, rather, state of
ignorance). This is known as the prior distribution over grammars. There is
a further step, though, which is require to connect these grammars to actual
linguistic data, d—each grammar g; must itself be associated with a probability
distribution, which specifies the probability distribution of each sentence, if g;
is right. In the jargon of the Bayesian approach, we must specify a “prior dis-
tribution” over grammars G = {g;}, and in this book we will use the symbol 7 ()
to represent a distribution over grammars and a “likelihood function” p(d|g),
which spells out the probability of each piece of linguistic data d in the light of
each grammar g.

Now, suppose some linguistic data d is encountered—that is, a particular
string of words is heard and assumed to be part of the language being learned.
How do we update our beliefs about the various possible grammars? A key
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idea in the Bayesian approach is to follow so-called Bayesian updating: that is,
we replace the prior probabilities p(g) with so called “posterior” probabilities
p(g|d)—that is, the probability of the grammars given that we know that the
data d has been encountered. And it turns out that this posterior distribution
is completely determined by the priors p(g) over the grammar and the likeli-
hoods p(d|g), that is, how likely the data d is, according to each grammar. We'll
come to the specifics of how this works later on, but the intuition is straightfor-
ward: the probability of a grammar after the data has arrived is proportional
to the product of the relevant prior and likelihood terms. Roughly speaking,
our updated probability for a grammar, once the linguistic data has arrived, is
determined by how probable it was beforehand and how well it “predicted” the
observed data.

But where, you may ask, does the prior distribution, from which the poster-
ior is derived, come from (similar questions, with similar potential answers,
may be asked about how we flesh out the likelihood term—how do we, say, get
from all-or-nothing grammatical rules to probabilities over sentences)? It may,
in turn, have been the posterior distribution computed after the observation of
some earlier data, but somewhere along the line, as we go up the logical ladder,
there must be an end—or rather, a beginning. Somewhere there is a probability
distribution that was employed before data was encountered. What do we say
about that?

There are three things that the Bayesian analyst is inclined to say at this
point. The first is that if enough data has been observed, then it sometimes
does not matter very much what the initial hypothesis was, at least if the initial
hypothesis is not wholly “unreasonable”: under many circumstances, Bayes-
ian reasoning will drive a learner towards a hypothesis that had a very low
probability before any data at all was seen. In some practical contexts, particu-
larly where the quantity of the data is large in relation to the complexity of the
pattern being learned, this provides suitable reassurance.

A second thing the Bayesian analyst will say is that we can indeed say some-
thing about the prior probability distribution that we wish to employ before
any data whatsoever has been seen: we can say something, that is, about the
universal prior distribution, or some related construct. This is the second sort
of general Bayesian reasoning: it consists of an attempt to calculate probabil-
ities with as few givens as is humanly (or superhumanly) possible—roughly,
we give high priors to patterns, grammars, or hypotheses which are simple, in
a well-defined sense.

A third thing the Bayesian can say is that inductive inference never starts
from a blank slate. In any system of representation (even one that is universal
and can express any data whatever), some data will be more easily expressed
than other data—every system of representation comes with an implicit prior.
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Sometimes this viewpoint is expressed by saying that every learner has some
kind of inductive bias—that is, there is no such thing as a completely neutral
learner.

In sum: Bayesian reasoning is inherently dynamic, in the sense that it al-
ways involves the relationship between two probability distributions, a first one
which we have access to before a set of observations, and a second which we
have access to after the observations and which constitutes a rational update of
the first. The Bayesian hopes to shed light on the first probability distribution,
before all data, and on how the presentation of succeeding encounters with the
world lead to an update of the relevant distributions, which is to say, a better
understanding of the world and a more accurate model of it.

2.5 Compression and complexity

In this section, we turn to the problem of finding the right balance detail and
generalization in the formulation of human and scientific generalizations: the
idea that this question can be frontally assaulted through quantitative means is
perhaps the single most important idea that lies behind what we have termed
in this book the new empiricism. Until the late 19th century, empiricists were
expected to view generalizations as poor cousins of complete descriptions: gen-
eralizations are what you get when you leave out the details, what it takes to be
fully and completely accurate.

The balance began to tip with the work of Ernst Mach, who emphasized the
power of the role of science in organizing enormous amounts of data: the idea
began to dawn that compressing a large amount of data in a fashion that al-
lowed the details to be fully recoverable was no trivial matter and no mean feat.

With the dawn of the computer age in the mid 20th century, a crucial no-
tion emerged: that of lossless compression. Although not a household word,
and not well-known in either linguistics or psychology, lossless compression is
an important concept, one that is closely related to redundancy. Suppose one
has to describe a digital image that consists of twenty copies of the Mona Lisa,
distributed randomly over a page, each the same. One could retain a bit-by-bit
description of that page—or one could describe just one copy of the image,
and then specify the x and y coordinates of each of the twenty copies of the
image, thereby saving close to 95% of the memory needed for the complete
description of the page. Saving the image in this way is an example of a loss-
less compression, since the shorter description of the image can be used to
completely and accurately reproduce the original image.

What if there were a few differences here and there in each of the cop-
ies of the Mona Lisa? If the differences were minor, it would still lead to a
considerable savings to describe the whole image as twenty copies of the same
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basic image and then describe, for each image, how the basic image was slightly
distorted in each case. The basic image serves as the basis of the generalization,
but room is still provided in the description to allow details to come in, to in-
dicate precisely where the simple generalization is not quite good enough to
reproduce the original data.

The goal of lossless compression is to find a way to use regularities that exist
in the data in such a way that the data can be reconstructed from a simpler de-
scription, where by the word “simpler” we mean “shorter” in some measurable
sense, not simpler conceptually. After all, the description of a large image in
terms of a very large number of pixels is conceptually very simple, but if there
is structure—which amounts to redundancy—in the image, then a shorter
overall description can be achieved by using, or extracting, that structure.

There is such a thing as lossy compression; this term is used to describe
methods of digital analysis that allow a much more compact description of
some data (such as a music recording) which can be used to reconstruct the
original recording (or image) in a way that is good enough for practical pur-
poses; mp3 recordings are familiar examples of such compressed formats, and
needless to say, lossy compression creates compressed descriptions that are
typically much smaller than lossless compression does. But bear in mind that
we are only interested in lossless compression.

Is there a right way and a wrong way to compress data? This turns out to
be a delicate question. At first blush, the answer would seem to be “no”. There
are varjous ways of compressing sound files, video files, and textual files of
all sorts. The technology behind WinZip (the family of compression methods
called Lempel-Ziv-Welch) identifies substrings of data that occur frequently in
a computer file, and some methods may actually work better on certain kinds
of data than others; some types of data may be reasonably well compressed by
several different methods. So what would “right” and “wrong” mean here? If
the goal is to reconstruct the original data that comprised the image, and each
method can be guaranteed to completely reconstruct the original, who is to say
what is better and what is worse?

But the question, correctly posed, is more nuanced than such an answer
would suggest. Let us take a look at the way in which this notion of lossless
compression has been used to shed light on the theoretical notion of a random
sequence of numbers. We may all think that we know what is meant by a finite
sequence of randomly chosen integers, but how can we make that notion clear
and firm? The answer turns out to be that we can define what is meant by a
sequence that is not random: it is one for which one can supply a lossless de-
scription in fewer symbols than it takes to enumerate the numbers separately.
A simple example: consider
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39,44, 49, 54,59, 64,69,74,79, 84, 89,94 (2.7)

It is easy to see that this can be described as 39 + 5k, k = 0...11, that is, as k
goes from 0 to 11. If we allow ourselves to use the basic properties of arithmetic,
then we agree that the formula “39+5k, k = 0...11” is indeed shorter than the
original sequence, and it is the existence of that shorter formula that is what
we mean when we say that the sequence is not random.

But the reader may quite rightly object that part of the reason that this se-
quence of numbers can be compressed to the shorter formula is that there is a
good deal of knowledge and structure lurking behind the fact that we allowed
ourselves to use the basic properties of arithmetic. Isn’t something wrong when
you don’t seem to have to pay anything (so to speak) for multiplication of
numbers, and all that goes into it, when we use the simple formulate “5k”?

That is a fair objection, when all is said and done. And so the right definition
of what makes a number not random is based on finding a formula that is
expressed not in the language of everyday arithmetic but in the language of a
universal computer—a Universal Turing Machine, for example. This condition
keeps us honest: it forces us to bring our formula down to the very most basic
bits that define an arithmetic expression.

So we have summarized the sequence in (2.7) as a formula, but what exactly
is that formula? There are at least three obvious candidates (and certainly
many, many more):

a. Function f(k), where k> 0: the sequence of numbers starting at 39, and

consisting of k more numbers, each one 5 more than the preceding
number; f(11).

b. Function g(j, k), where j > 0, k > 0: the sequence of numbers starting
at j and consisting of k more numbers, each one 5 more than the preceding
number; g(39, 11).

c. Function h(i, j, k), where i > 0, j > 0, k > 0; the sequence of numbers
starting at j and consisting of k more letters, each one i more than the
preceding number; h(5, 39, 11).

There are two ways of deciding what we want to call the right answer: either
we get down and do the hard work of calculating exactly how long each of
these programs is and select the shortest one (this is called taking algorithmic
complexity seriously); or we look to see what other sequences of numbers we
are going to need to compress, if whoever gave us (2.7) has more work for us
to do. If the next sequence is (2.8), then we can be pretty sure that (c) is better
than (a) or (b)

21,24,27,30,33,36,39 = h(3,21,6) (2.8)
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So what is the right generalization, then? Sometimes we learn about the na-
ture of the generalization by seeing more data—(2.8) is helpful after seeing
(2.7), but we don’ t always have that opportunity; sometimes the data is limited.
Sometimes what we need to figure out is what the parameters are that will not
be explained but will rather be taken to be arbitrary, that is, as part of the spe-
cification sent to the function. In the case of (2.8), it is apparently arbitrary that
the interval between the numbers is 3—in (2.7), it was 5; we do not have a way
to guess what it might be the next time.

But just because we can’t explain why the interval is 5 in one case and 3 in
another does not mean we have not explained anything: far from it. We simply
are not in a position to predict it.

Let’s consider a different sort of variant on these number sequences. Suppose
we consider the sequence in (2.9).

39,44, 49, 54,59, 63,69,74,79, 84, 89, 94 (2.9)

The sequence in (2.9) differs from that in (2.7) in just one respect: it has a 63
instead of a 64. So what should we do? What is the best way to compress the
data? There are three things we could do. We could throw up our hands and
say that there is no way to compress it. Or we could compress (4) just like we
compressed (1) and decide that just being off by 1 on one of the digits was not
enough to worry about and that if we get in trouble, we'll say that we suspected
that there was an error in the data and we tried to clean it up. Or—and this is
the right answer—we define a new function m(k) in terms of the function f(k):
we say if k = 5, then m(k) = f(k) - 1; in all other cases, m(k) = f(k).

This formulation makes the empiricist happy. It is a lossless compression of
the sequence, it recovers the odd number in the sequence (63 instead of 64),
and it wears on its sleeve the fact that the description would be simpler if the
correct value were 64—but it isn’t.

But the most important aspect of the example is the way in which it illus-
trates how data and generalization cooperate in a quantitative sense. The more
data there is, the more work there is that a good generalization can accomplish:
the work it can accomplish is to reduce—which is to say, to compress—the data
by extracting the generalizations and leaving only what is unpredictable.

2.6 The problem of induction

The idea that there is a deep connection between data compression and the
fundamental problem of scientific induction evolved over the eighty years that
spanned the period from Ernst Mach’s work on the philosophy of science up
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to the work by Ray Solomonoff on induction and probability. The problem of
induction is the fundamental philosophical problem of science: what justifies
us in passing from a finite set of observations about the world to a general-
ization that covers an infinite number of cases? That is what science is about,
after all: finding generalizations that are suggested by, but which go way be-
yond, the data that serves as the foundation of the proposal. A critical aspect
of this passing-beyond-the-finite-to-the-scientific-generalization is the real-
ization that the generalization is always simpler than the conjunction of the
original observations. To count as a real case of induction—empirical induc-
tion, not mathematical induction!—it must be the case that the generalization
is simpler. That is not a sufficient condition; any observation, or set of obser-
vations, can be made simpler and serve as a set of predictions going beyond
the observed data, and most of those generalizations will be wrong; but it is a
necessary condition.

2.7 Algorithmic complexity

One of the great ideas developed during the 20th century is that of algorithmic
complexity, a notion that grew out of the work of many people, and for which
Ray Solomonoft, Andrey Kolmogorov, and Gregory Chaitin are generally rec-
ognized as the most important contributors, involving work accomplished
largely during the 1950s and 1960s. Some of the central ideas of algorithmic
complexity have already emerged in the discussion so far in this book. Part of
our goal in this book is to encourage cognitive scientists to take the oppor-
tunity to learn more about algorithmic complexity, because we think that this
is an area of work—mathematical, and not just mathematical—that can have,
and will have, an enormous impact on how we understand the nature of learn-
ing and of knowledge. One widely cited book in this area, and one that we
recommend to our reader, is An Introduction to Kolmogorov Complexity and
its Applications [Li and Vitanyi, 1997], and we will make quite a few references
to it over the course of this book.

Solomonoff [1964a, p. 3] writes

The “solutions” that are proposed involve Bayes’ Theorem. A priori probabilities are
assigned to strings of symbols by examining the manner in which these strings might
be produced by a universal Turing machine. Strings with short and/or numerous “de-
scriptions” ... are assigned high a priori probabilities. Strings with long, and/or few
descriptions are assigned small a priori probabilities. ... Turing machines are ...used
to explicate the concepts of “simplicity” or “economy”—the most “simple” hypothesis
being that with the shortest “description.”
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2.8 Grammars as algorithms, and grammatical
complexity as algorithmic complexity

From generative grammar, we adopt the notion that a grammar is an algo-
rithm, and from the study of algorithmic complexity, we adopt the notion that
there is a well-defined notion of algorithmic complexity: it follows that we have
access to a well-defined notion of grammatical complexity. The devil remains
in making that explicit and precise, and then in working out whether the no-
tion of grammatical complexity that flows from that source is one that will
serve us in some way in the study of grammar, of language use, and of lan-
guage learning. This book is written, as the reader can see, in the hope and
belief that this can be accomplished. The relevant notion of grammatical com-
plexity is sometimes called generative capacity—often subdivided into weak
and strong generative capacity, where weak refers to the set of strings that can
be generated by the grammar, and strong refers to the sets of structures that
can be generated.

Languages, uncontroversially, are pairings of sounds (typically in the form of
sequences of words) together with meanings. The relation between the two is
clearly complex; far from being a simple one-to-one mapping, some sentences
can have multiple meanings, whether this is caused by simple lexical ambigu-
ity or by syntactic ambiguity, and the same meaning can be expressed through
different sequences of words. A standard, and reasonable, assumption is that
behind this mapping lies some latent hierarchical structure—a structural de-
scription [Chomsky, 1957]. In this book however we shall have little to say
about the notion of meaning, nor about the hierarchical structures that under-
lie the sound/meaning relation. This is not because we think that these factors
are not important or interesting, but rather that they are unobservable. We
know, exactly, what the sequence of words in a sentence is but what the mean-
ing of a sentence is precisely is still a matter of dispute after centuries indeed
millennia of philosophical argument [Quine, 1960, Lewis, 1970, Partee, 2010].
While we do have some knowledge about the possible sets of meanings, their
truth conditions and their entailment relations, the nature of the structural
descriptions is still less clear.

From a mathematical point of view, therefore, we tend to view grammars as
devices that generate merely the strings: sequences of words or phonemes. The
trace of the derivational process that the grammar follows in the course of gen-
eration can be taken as a structural description.> The same sequence of words
can be generated by two distinct processes—this gives a natural treatment of

3 The distinction between derivation tree and derived tree can be important in this context.
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ambiguity: we attach the meanings to the derivation trees rather than to the
sequences of words.

One direction from which one can study this notion of complexity is the
classic Chomsky hierarchy of phrase structure grammars (PSGs): the regu-
lar, context-free and context-sensitive languages. From a modern perspective,
however, the original characterization of phrase structure grammars as string-
rewriting systems and in particular the resulting class of context-sensitive
languages seem to be not the best solution. Chomsky early on recognized the
limitations of the class of context-free grammars but his proposed extension,
context-sensitive grammars, turned out to be far too powerful, and as a re-
sult has not been used extensively. Using rewriting systems it is indeed hard
to find a natural class that is more powerful than the context-free grammars
without going all the way to the context-sensitive grammars. Accordingly,
attention shifted towards context-free grammars augmented with transform-
ations, which again unfortunately turned out to be too powerful [Peters and
Ritchie, 1973].

While the original PSGs had a number of flaws which made them unsuit-
able as models for natural language syntax (while still important in other areas
of computer science), more modern varieties of PSGs such as Generalized
Phrase Structure Grammar (GPSG), Head-Driven Phrase Structure Grammar
(HPSG), and the like no longer had those flaws [Borsley, 1996]. The rehabilita-
tion of PSGs became complete with the discovery that Minimalist Grammars
[Stabler, 1997], an attempt by Ed Stabler to formalize the ideas of the Min-
imalist Program, were weakly and strongly equivalent to a PSG formalism, the
class of Multiple Context-Free Grammars (MCFGs) [Michaelis, 2001]. This re-
vealed that one of the great divides in syntactic theory—between models that
use movement and those that did not—turned out to be, from one perspective,
merely a notational difference.

There is now a fairly broad consensus that from a technical point of
view, some subclass of the class of MCFGs is adequate for the structural
description of natural languages. There are, however, some phenomena which
indicate that it might be necessary to augment this formalism with some
additional operations, such as copying [Kobele, 2006], and there is in add-
ition some debate about which precise subclass is necessary: one view is
that the class of well-nested 2-MCFGs, which defines the same set of lan-
guages as the Tree-Adjoining Grammars and various other equivalent for-
malisms, is adequate—another is that a somewhat larger set of grammars is
required.

This is, then, one notion of the complexity of grammar; for each language,
we can try to place the set of strings generated by the language at some position
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in this hierarchy, in some class of grammars that have sufficient computational
resources to generate the set of strings. Of course, if a language is in some class,
then it is also in any superclass of that class, and so the most one can hope here
is to have some sort of lower bound on the appropriate complexity class.

This is harder than it seems—to show that a language is for example a
context-free language would require one to show that there is a context-
free grammar that generates all and only the grammatical strings of a lan-
guage. This is a formidable task for at least two reasons: first, to draw a
sharp distinction between the grammatical and ungrammatical seems impos-
sible in the light of the pervasive gradience in natural language. Second, in
spite of the best efforts of linguists over several decades, it turns out to be
extremely hard to pin down a precise grammar that will draw the gram-
matical/ungrammatical boundary in a reasonable place. Indeed, the failure
of this methodology of manual construction of grammars motivates a shift
towards a focus on computational procedures for learning these grammars
automatically.

Another notion of complexity is more primitive: how big the grammar is.
We can have various more precise measures of the size of the grammar that
depend on how exactly we count the length [Chomsky and Halle, 1968], but
broadly speaking, the number of symbols we use to write down the grammar,
assuming that we have some fixed finite set of symbols that we use in the gram-
mar, will be a sufficiently precise measure, perhaps scaled by the logarithm of
the number of symbols that are used.

It is important then to distinguish these two different notions of
complexity—one related to the type of the grammar, in the sense of its position
in the hierarchy, and one related to its size. One can have small context-
sensitive grammars and large regular grammars, and indeed there is often a
trade-off between these two ideas. Given a language which is regular, we know
that there will be a finite regular grammar which describes it, but there might
also be a much smaller context-free grammar that generates exactly the same
set of strings. Indeed, given any nontrivial regularity in a language, one could
in principle add a component to the grammar which would represent that
regularity and thus reduce by some small amount the size of the grammar.
However, as Zwicky and Pullum [1987] point out,

Not every regularity in the use of language is a matter of grammar.
We should bear in mind that while we might want to prefer, all else being equal,

the smaller grammar, on occasion there might be regularities which we do not
need to extract in order to have an adequate grammar.
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2.8.1 Grammars as probabilistic generative models

Grammars, then, in our parlance are generative devices that generate lan-
guages as sets of strings together with their associated sets of structures. Such
a grammar can generate more than one string and so must have choice points
at which it will choose to generate one string rather than another. This un-
certainty in the generative process lends itself naturally to a probabilistic
treatment; at each point where the process could generate one syntactic ob-
ject rather than another, we can attach some parameters to our model which
determine the probability that it will choose one over the other. A context-
free grammar can thus be converted into a probabilistic context-free grammar
(PCFG) by adding a set of suitable parameters to the grammar. The most
straightforward way of doing this is to attach, for each nonterminal in the
grammar a collection of parameters, one for each production, with that nonter-
minal on the left-hand side; that parameter gives the probability that the
nonterminal will be expanded by that production. So if we have a nonter-
minal that corresponds to a lexical category such as noun, and in the grammar
we have 5000 words that can be nouns, then we will have a vector of 5000
parameters, one that specifies the relative probability of each noun.

We illustrate this with a toy PCFG which only has a few productions, as
shown in Table 2.1.

Just as in the finite-state models earlier, we make some independence as-
sumptions: instead of a state, we have a nonterminal, but the probability of
expanding the nonterminal does not depend on what has happened higher
in the tree but on the context in which the nonterminal appears. In this way,

Table 2.1 A very simple PCFG. The sum of
the probabilities of all rules with the same
left-hand side is 1.

Rule Probability
S — NP VP 1

NP — Det N 1

N — cat 0.6

N — truck 0.4

Det — the 0.9

Det — a 0.1

VP — left 0.7

VP — died 0.3
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PCFGs are just like their nonprobabilistic ancestor—they are “context-free”
rather than context-sensitive. But again, these limitations are not intrinsic to
the approach but represent a weakness merely of this particular naive model.
More sophisticated models such as tree-substitution grammars make weaker
independence assumptions, though this comes at the cost of some additional
computational complexity.

Given a probabilistic grammar of this type, we can use it to generate trees and
thus sequences of words. Figure 2.4 shows one step in this generation process.
It is best not to think of these models as being string-rewriting systems, as they
were originally defined, but instead as systems that generate a tree: a derivation
tree that records the sequences of steps used in the construction of the string
that is its yield. We can also use it as a probabilistic model; and in this case
the probability of each tree can be calculated as the product of the probabilities
used at each step in its generation. The probability of a string is then the sum
of all of the probabilities of the trees that could have given rise to it. If there are
none, then the probability of the string is 0; if the string is unambiguous, then
there will be only one such probability to be calculated, but in general, for a
given string, there may be many possible trees that may each reflect a different
interpretation of the string. These probabilities can then be used to calculate
the goodness of fit of a corpus to the model; the likelihood of the grammar.
We will see in Chapter 6 an example of how such a likelihood is calculated for
specific grammars, given a specific corpus.

S
AN
0.6:N > cat NP VP
Det N
|
5 the cat
/N
NP VP

/N\

Fig. 2.4 Generating froma Det N
PCFG. Here we have a

partial tree, on the left, the 04:N ~ truck >
which is expanded /\
probabilistically in two NP vP
different ways by /\

Det N

expanding the N node
using two different | |
productions. the truck
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2.9 Learning and search

The reader must be prepared to deal with statements like “Consider the space
of all possible grammars.” For most linguists and psychologists, this sounds a
bit odd at first. But for the person interested in the abstract task of learning, it
is a necessary first step. In any particular discussion, we need to begin with a
common understanding as to what the class, or space, of all grammars is that
we wish to consider. Learning is a process by which we can accept a certain
amount of data and then select one (or perhaps more than one) grammar from
this class of all possible grammars.

Learning can thus be thought of as a process of search; a process where we
search through candidate hypotheses about the grammar in order to find one
that has the best chance of being correct. Searching requires two ingredients—
a goal, that is, a property that will pick out the object you are looking for,
and a search strategy that enables you to find it without exhaustively searching
through every possible option. The property we look for is normally specified
in terms of an objective function, a mathematical formula that specifies how
good a candidate is. We then look for the grammar that is best according to
this property—the grammar that maximizes the objective function.

The typical objective function in Bayesian inference is the posterior probabil-
ity, the probability of the grammar (h for hypothesis) given the data p(h|d). It
can make sense to talk about the probability of a hypothesis regarding some
set of data only if we can speak sensibly about the class of all possible hypoth-
eses that deal with that data. The reason for this is that a probability can only
be defined if we can be certain that as we sum over all possible elements, the
sum of the probabilities is 1.0 in the limit. This requires that we have a prior
distribution p(h) that defines what the initial probability of a grammar is before
we have seen any data.*

The second ingredient is a computational strategy for finding the best
hypothesis—and defining such a strategy depends crucially on the proper-
ties of the search space itself, which depend in turn on properties of the
grammars. The metaphor of the space of grammars makes this clear: it re-
lies on the intuition that some grammars are close to each other with respect
to some measure of similarity. In the case of probabilistic grammars, we
might have two grammars which have the same set of rules and very similar
parameters.

The smaller the search space, the easier the search problem. This much seems
to be a truism, but even the smallest plausible grammar spaces are so large that

4 Ttis possible to have what are called improper priors, which do not sum to one.
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an exhaustive search is computationally impossible or implausible; this means
that even if we have an objective function that picks out a suitable grammar, it
may be very hard indeed to find it in the space of all possible grammars.

We have heard from colleagues the complaint that searching for hypoth-
eses in a well-defined space hardly feels like learning—after all, the solution
is “built in” via the specification of the hypothesis space. Searching through a
defined hypothesis space to find hypotheses and calculate their relative prob-
ability does not encompass the sort of spirit of discovery that learning it feels
like from the inside, or that discovering the hypothesis space itself would con-
stitute. This is an understandable intuition to have; it does feel like a key part
of the solution has been built in by the specification of the problem and that
discovering that specification is “the hard part.” However, it’s important to
note that a model that discovered that specification would still not feel like
learning, according to this very same intuition. This is because such a specifi-
cation can itself be seen as a specific hypothesis in a more abstract hypothesis
space—a hypothesis space of possible specifications; and finding that specific
hypothesis could only be accomplished in one of two ways. Either the hy-
pothesis would have appeared there completely randomly and arbitrarily, or
there would have been some understandable process or set of rules by which
it was added. As we have seen, however, that process is what implicitly de-
fines a space of its own (in this case, the space of possible specifications). And
because that space is specified (implicitly, by that process or set of rules) in
the exact same way the original hypothesis space was specified (implicitly, by
the original generative process), the hypotheses within it are “built in” in the
same way that the original hypotheses were. In general, the only way for some-
thing to be learned that doesn’t amount to finding it out of a defined hypothesis
space is for it to be able to spring into the hypothesis space in such a way that
is essentially random (i.e., unexplainable via some process or rule). If this is
truly what learning is, it seems to preclude the possibility of studying it sci-
entifically; but luckily, this is not what most of us generally mean by learning
[Perfors, 2012].

No one will disagree strongly if we acknowledge from the outset that it is
convenient to break down the ways in which grammars can vary into relatively
distinct subparts. For example, it is often convenient to think of a language as
consisting of a lexicon (finite, or even infinite) of words, and a set of gram-
matical principles determining how words can be strung together to make
grammatical and meaningful sentences. And again there would be little dis-
agreement if we were to say that each language assembles its lexicon from a set
of concatenative processes involving an inventory of phonemes, or something
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like phonemes, that is particular to the language.” Computational thinkers
often use the symbol X to represent the set of phonemes, and the set of all
finite strings formed from X is written ¥*; hence, we can say that a language
chooses its lexicon as a subset of X* if ¥ is its inventory of phonemes. If there
is an upper bound to the length of a possible word, and an upper bound to the
size of a language’s lexicon, then there ig only a finite number of lexicons that
can be selected from a given inventory of phonemes X.

Reasoning along these lines, one might try to claim that there are as a result
only a finite number of possible languages; again taking the assumption that
there are a finite number of lexical and syntactic categories, and placing some
bounds on the size of the rules in the grammar, perhaps limiting them to be
binary branching, we can arrive at the conclusion that there are only a finite
number of possible languages. While this reasoning is arbitrary and defective
in a number of ways, as has been noted before [Pullum, 1983], let us assume
for the moment that we accept the conclusion. Surely, in this case, the fact
that the space of possible grammars is now finite means that the learnability
problem is trivially easy? For a while it seemed that this might be the case, but
it rapidly became clear that this view was too optimistic and that even in this
somewhat implausible situation, the search problem remains hard. We discuss
the computational problems involved later on, in Chapter 4.

2.10 Generalization, reasoning, and learning

A fundamental question in understanding how people learn and reason about
the world is why we generalize beyond the input we receive at all—why don’t
we simply memorize everything we encounter? The decision to generalize (so
to speak) runs into a logical problem when there are an infinite number of
possible features along which that generalization could be formed. Neverthe-
less, we must generalize because the ability to make inferences and predict data
we have not previously observed relies on our ability to extract structure from
our observations of the world. If we do not generalize, we cannot learn, even
though any act of generalization is, by definition, a simplification of the data
in the world, and even though it can result in error. What is critical is to sim-
plify the data in such a way as to find the optimal balance between the gain in
generalization and the cost due to error.

5 We need a fairly broad definition of concatenation to allow, for example, for the
intercalation necessary for Semitic morphology.
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Achieving this balance is one of the fundamental goals of any learner, and
indeed of any scientific theory, or of any computational or statistical frame-
work. Too much emphasis on simplicity means the learner is unable to learn
from data, producing a high degree of error; too much emphasis on pre-
cisely memorizing the data means that the learner overfits, unable to capture
the correct underlying generalizations. Bayesian models capture the trade-off
between simplicity and goodness-of-fit in an optimal way—any learner per-
forming the trade-oft in this way would be guaranteed to predict future events
more accurately than a learner calculating the trade-off differently. Because
human learners—including children—care primarily about predicting future
events, they too must adopt some version of this trade-off. But how are sim-
plicity (prior probability) and goodness-of-fit (likelihood) actually calculated
and used?

The definition of simplicity and the corresponding calculation of p(h) are
not the result of externally imposed ad hoc mechanisms; rather, they emerge
naturally from the assumption that hypotheses (which can be grammars or any
other type of linguistic representation) themselves are generated from a space
of candidate hypotheses. To illustrate this schematically, we can imagine that
the hypotheses in Figure 2.5 correspond to different sets of ellipses within a
two-dimensional space.® Simpler hypotheses require fewer choice points dur-
ing the generation process. Hypothesis A can be fully captured by making only
four choices: two for the coordinates of the center of the ellipse (x and y), one
for its major axis (a), and one for its minor axis (b). By contrast, Hypothesis C
contains thirty distinct ellipses and therefore requires 120 separate choices to

Fig. 2.5 Hypothesis A is too simple, C is too complex, and B is “just right.” Hypothesis
Ais quite simple but fits the observed data poorly; C fits closely but is highly
complicated. The best description of the data should optimize a trade-off between
complexity and fit, as in B.

6 This example is explored more fully in Perfors et al. [2011a], which presents a tutorial
introduction to Bayesian modeling in cognitive science.
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specify, four for each one. This notion of calculating complexity as a function
of the number of choice points is a reflection of the idea that the more compli-
cated something is, the more alternatives to it there are that might have been
generated instead of it during a generation process. The more choices a hy-
pothesis resulted from, the more likely it is that those choices could have been
made in a different way, resulting in a different hypothesis.

The precise prior probability of a hypothesis is therefore not arbitrarily
assigned but rather falls out in a principled way from how the hypotheses
are generated. The generative model for the hypotheses in Figure 2.5 is one
that can result in any possible combination of ellipses within the space. A
different generative model would result in a different—but no less principled—
assignment of prior probabilities. For instance, if we assumed that the regions
could be squares rather than ellipses, then each region would require three
choice points rather than four: the x and y coordinates of the center of the
square, plus its width. The logic favoring simple hypotheses would be the
same: multiple regions will still be a priori less likely than a few. The precise
generative model therefore matters for determining exactly what the relative
probability of a hypothesis would be, but most reasonable models would give
qualitatively similar relative probabilities to qualitatively similar hypotheses.

How well data is predicted by the hypothesis is captured by the likelihood,
given by p(d|h). Although the likelihood can sometimes be difficult to calcu-
late in practice, it is straightforward to understand intuitively. For instance,
Hypothesis C in Figure 2.5 clearly has a high likelihood: if the hypothesis is
true—that is, if the data is truly generated by thirty distinct underlying pro-
cesses corresponding to the thirty ellipses of C—then the data points could
hardly be anywhere else. Hypothesis C therefore fits the data extremely well.
By contrast, Hypothesis A has a relatively low likelihood: it does not explain
why the data points are found where they are. After all, according to A, the
thirty data points would be just as likely if they were each randomly located
in other places within the blue ellipse. The ratio of the observed data points to
the area for predicted data is low for A, since the data could easily have been
elsewhere, but high for C, since it couldn’t. Likelihood is, essentially, this ratio;
thus, hypotheses that make specific predictions—those with more explanatory
power—are favored in the likelihood.

The Bayesian framework, then, offers a natural way to both calculate the
simplicity of different hypotheses or theories and then evaluate those theories
on the basis of how well they account for the observed data. Bayes’ rule offers a
principled way to evaluate the trade-off between simplicity (prior probability)
and goodness-of-fit (likelihood). Thus, as in Figure 2.5, it will naturally tend
to prefer hypotheses (like Hypothesis B) that—like Goldilocks in the famous
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story—are neither too weak nor too strong but are “just right.” Hypothesis C,
for instance, clearly has a high degree of goodness-of-fit (likelihood), while
Hypothesis A has a relatively low likelihood. However, Hypothesis A is simple,
while C is quite complex. The best description of the data would be a hypoth-
esis that optimizes the trade-off between complexity and fit, as in Hypothesis B.

Bayes’ rule and the mathematics of probability theory thus provide a prin-
cipled way to combine these two factors in such a way to guarantee optimal
inductive reasoning ability. As we will see, an ideal learner incorporating a
simplicity metric will be able to predict the sentences of the language with an
error that approaches 0 as the size of the corpus goes to infinity [Solomonoff,
1978; Chater and Vitanyi, 2007]. It is therefore reasonable to think that the
Bayesian approach may be well suited to providing an objective way to com-
pare different grammatical theories and formalisms within linguistics—and is
thus another method for addressing many of the questions that have occu-
pied linguists for years. As a result of performing this trade-off, the amount
and type of data can have a profound effect on the inferred theory. Especially
when the representations involved are richly structured, what look like discrete
qualitative shifts emerge simply because the trade-off favors different theories
as the data changes. In Chapter 6 we will see how shifts in behavior that quali-
tatively parallel human learning are a natural by-product of Bayesian learning
of realistic data.

One striking example of this, which we will explore more fully in subsequent
chapters, is that Bayesian models can naturally handle situations in which
there is no negative evidence. As in Figure 2.5, Bayesian inference recognizes
that a hypothesis that is too complex for the observed data will overfit, missing
important generalizations, while one that is insufficiently complex will not
be explanatory enough. Because of this, a distinctive pattern of reasoning
naturally emerges as the amount of data changes. When there are few data
points, the simpler theories are favored, resulting in a tendency towards
overgeneralization. As the number of data points increases, the likelihood
increasingly favors the theory that most closely matches the observed data,
and overgeneralization decreases. This captures the notion of a suspicious
coincidence, since hypotheses that predict the observation of data points that
in fact never occur tend to be increasingly disfavored. It also provides a natural
solution to the problem of deciding among hypotheses given positive-only
examples. As the size of the dataset approaches infinity, a Bayesian learner re-
jects larger or more overgeneral hypotheses in favor of more precise ones. But
with limited amounts of data, the Bayesian approach can make more subtle
predictions, as the graded size-based likelihood trades oft against the prefer-
ence for simplicity in the prior. The likelihood in Bayesian learning can thus
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be seen as a principled quantitative measure of the weight of implicit negative
evidence—one that explains how and when overgeneralization should occur.

2.11 Gold's work

The oldest and perhaps most influential formal model of learnability in the
context of language learning is Gold’s paradigm of identification in the limit
introduced in his seminal paper [Gold, 1967]. Indeed, for many linguists,
learnability begins and ends with the models presented in that paper. Gold
considers several different models, but the most relevant for our purposes is
the model where the learner receives only positive examples. We will briefly
outline the model here; for more detailed discussion see Johnson [2004] and
Clark and Lappin [2011]. One of the important properties of this learning
model is that it is not probabilistic, though probabilistic variants of it have
been proposed.

We assume that some language L has been chosen in some way; we call this
the target language. The learning model proceeds sequentially: the learner is
provided with an infinite sequence of examples drawn from the target lan-
guage. This sequence is guaranteed to contain all the elements of the language
at some point and not to contain any elements that are not in the language;
but other than these necessary constraints, the sequence does not need to sat-
isfy any other limitations. A sequence of this type is called a presentation of the
language L. We can write the sequence as wy, w, . . ..

After receiving each example, the learner will produce a hypothesis; thus, the
learner will produce an infinite sequence of hypotheses H;, H,, and so on. The
learning criterion is quite simple: the learner must converge to a single correct
hypothesis. Formally, there are several different ways of expressing this. The
most explicit is this: there must be some point at which the learner has con-
verged on a particular hypothesis, and this hypothesis is correct. There must
be some N such that L(Hy) = Ly and for all # > N, Hy = H,,. The learner need
not be able to tell when it has converged.

We say that a learner learns the language L if for every presentation of L,
the learner will converge in the sense just defined to a representation for L.
It is worth pausing here to note how this differs from a probabilistic learning
model.

Gold’s paper is notable for the very strong negative results that he obtained
in this model. He defined the idea of a superfinite language class, which is
any class that contains all finite languages and at least one infinite one, and
showed that no superfinite class could be identified in the limit from positive
data alone. Since the classes of regular languages, and a fortiori context-free
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and context-sensitive languages are clearly superfinite, they cannot therefore
be learned. This result has been extremely influential in the development of
learnability theory as it is applied to language acquisition; it motivates many
foundational assumptions such as the Subset Principle.

This very strong negative result arises out of a peculiarity of the Gold
model—the learner must succeed for every possible presentation of the data,
and thus for presentations even when they are constructed adversarially. Sup-
pose we have some intelligent adversary whose goal is to stop the learner from
converging in the Gold sense—this adversary will try to construct a presen-
tation that will trick the learner into making an infinite number of errors.
Gold shows that there is a strategy that the adversary can use that will work
for any superfinite language; indeed, the negative results have been made even
stronger by subsequent researchers. All that is needed for an adversary to suc-
ceed in making the learner fail is for there to be an infinite increasing sequence
of languages in the class—that is, a sequence L; C L; . . ., and another language
that contains all of these, Lo = [, L;. If the learner does in fact learn all of the
L;, then the adversary can construct a presentation for Ly, where the learner
will make an infinite number of errors. The adversary in this case can trick the
learner into hypothesizing first L, then L, and so on, using a presentation for
L. Thus, the learner will always hypothesize successively larger sets from L;
and will never make the leap to the more general hypothesis L.

The reason for this result is, broadly, that the presentation can indefin-
itely defer key examples from the language. As a result, it is hard for the
learner to know what is not in the language, and the presence or absence of
negative data becomes a crucial point in deciding learnability. This is mis-
leading. One of the properties of natural language is that almost all sequences
of words are ungrammatical: the set of grammatical strings is a very “small”
subset of the set of all possible finite strings of English words. As a result,
knowing that a particular sequence of words is grammatical tells you a lot,
while learning that some sequence is not grammatical is in general of little use
[Navarro and Perfors, 2011].

From one point of view, we are restating a problem mentioned earlier—why
does the learner generalize beyond the input? How could a learner know, hav-
ing seen, say, a few thousand sentences, that the correct grammar is an infinite
set that contains those sentences rather than just the finite set of sentences
itself? The Gold model casts this problem into particularly sharp relief because
under this model the decision is impossible to make reliably; that is to say, the
learner cannot always decide correctly when it is appropriate to generalize or
not. Making this decision crucially depends on the frequency with which the
individual items, sentences, appear. We can consider two extreme cases: one
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where all of the sentences observed have occurred many times, and another
where nearly all of them have occurred only once. In the first case one might be
hesitant to conclude that there are any other examples; if we have seen every-
thing several times, then the chance that there are unseen sentences is low. On
the other hand, if many of the sentences have occurred only once, then it is
highly likely that there are many other unseen sentences. If you press a button
ten times and get ten different results, then one would expect the next time
to get a different result; if you get the same result ten times, then the eleventh
you expect to be the same. This much seems intuitively obvious and has sound
statistical reasoning behind it [Good, 1953]. But it is less easy to reconcile this
rather optimistic conclusion with the pessimistic results of Gold. The problem
lies in the Gold model: the frequency information on which this decision re-
lies is unreliable in this paradigm. The sequence of examples is not generated
randomly, and therefore the number of times each example occurs does not
contain useful information. Accordingly, learners in the Gold paradigm can’t
decide whether to generalize or not.

In reality, the frequency of examples does contain a great deal of informa-
tion, and the fact that the majority of sentences that we hear are ones that we
hear for the first time is one of the defining characteristics of natural language;
its unbounded productivity constantly reminds us that the set of sentences we
have already heard is not exhaustive. From the point of view of Bayesian learn-
ing, this frequency information is vital: the computation of the fit of the corpus
to the grammar depends on the number of times each item occurs. If some-
thing occurs many times, then the optimal model will in general memorize
that particular idiosyncratic example, whereas if it occurs only once, the lack
of fit of the grammar is not highly penalized.

2.12 Biological plausibility, and the extent
to which we care about it

We know that talk about learning as performing a search through the space
of all grammars—or, indeed, simply the prospect of formalizing language and
language learning—may leave some readers with the sense that we're headed
in the wrong direction. We have colleagues who say that, after all, human cog-
nition and human language capacity is ultimately realized in the brain, and a
critical concern, then, ought to be whether the brain is capable of reasoning
as our models and mathematical analyses do. And if we must model things,
they add, why not an approach that is more neurally inspired? Some cognitive
scientists prefer to look to a connectionist sort of model—like the Parallel Dis-
tributed Processing approach developed as a neurally inspired model of the
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cognitive process [Rumelhart and McClelland, 1986a]. Like the brain, con-
nectionist networks contain many highly interconnected, active processing
units that communicate with each other by sending activation or inhibition
through their connections. As in the brain, learning appears to involve modify-
ing connections, and knowledge is represented in a distributed fashion over the
connections. The result is that representations degrade gracefully with neural
damage, and reasoning can be probabilistic and fuzzy rather than all-or-none.

By comparison with connectionist networks, our models and mathematical
analyses may appear implausible neurologically. How could structured sym-
bolic representations like grammars or logics be instantiated in our neural
hardware? How could our cortex encode hypotheses and compare them based
on a trade-off between their simplicity and goodness-of-fit? Perhaps most
problematically, how could the brain approximate anything like optimal in-
ference in a biologically realistic timeframe, when conventional algorithms for
Bayesian inference running on conventional computing hardware take days or
weeks to tackle problems that are vastly smaller than those the brain solves?

One important point is to realize that the sort of explanations and analyses
we use almost all take place on what David Marr called the “computational
level” [Marr, 1982]. Explanations on this level seek to understand cognition
based on what its goal is, why that goal would be appropriate, and the con-
straints on achieving that goal, rather than precisely how it is implemented
algorithmically. This is an important thing to do, because the nature of the
reasoning may often depend more on the learner’s goals and constraints than
it does on the particular implementation. If one wants to understand a hand-
held calculator, it is more important to be aware of its function and intended
purpose than it is to be able to follow the details of its wiring.

Being able to precisely specify and understand optimal reasoning is also use-
ful for performing ideal learnability analysis of the sort that Gold did, and
which we do in some of the chapters here. This is especially important if one
wants to understand development: what must be built into the newborn mind
in order to explain how infants eventually grow to be adult reasoners, with
adult knowledge? Optimal learnability analyses, taking into account the goals
and constraints of the organism, establish the bounds of the possible: if some
knowledge could not possibly be learned by an optimal learner presented with
the type of data children receive, it is probably safe to conclude either that
actual children could not learn it either or that some of the assumptions about
what the learner knows or can do are inaccurate.

More importantly, however, we are not currently too troubled by concerns
about biological plausibility for two main reasons. First, we really know so little
about the brain that it is hard to tell at this point what is biologically plausible
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and what is not. It may seem to those used to working with serial computers
that searching these enormous hypothesis spaces quickly enough is impossible;
but the brain is a parallel computing machine made up of billions of highly
interconnected neurons. The sorts of calculations that take a long time on a
serial computer, like a sequential search of a hypothesis space, might be much
more easily performed (or approximated) in parallel. They also might not; but
whatever the future holds, the indications so far serve as a reminder of the
danger of advancing from the “argument from incredulity” to any conclusions
about biological plausibility.

Second, it is also important to note that more biologically inspired models
like neural networks are themselves still unrealistic in important ways (see,
e.g., Crick and Asanuna [1986] for a more thorough discussion). Single units
in neural networks are assumed to have both excitatory and inhibitory connec-
tions, which is not neurally plausible. This is a problem because the primary
learning mechanism, back-propagation, relies on the existence of such con-
nections [Rumelhart and McClelland, 1986a]. A related problem is that errors
do not propagate backwards in the brain, as assumed by the back-propagation
algorithm. These issues are being overcome as the state of the art advances
(see Rao et al. [2002] for some examples), but for the models most commonly
used in cognitive science and linguistics—perceptrons, multilayered recurrent
networks, and Boltzmann machines—they remain a relevant concern. Differ-
ent techniques are therefore biologically plausible in some ways and perhaps
less so in others. Knowing so little about the neurological mechanisms within
the brain, it is difficult to characterize how plausible either approach is or how
much the ways they fall short impact their utility.

Moreover, there are some indications that Bayesian-like reasoning may ac-
tually occur even on the neural level. Probability distributions can in fact be
represented by neurons, and they can be combined according to a close ap-
proximation of Bayes’ rule; posterior probability distributions may be encoded
in populations of neurons in such a way that Bayesian inference is achieved
simply by summing up firing rates [Ma et al., 2006]. Spiking neurons can be
modeled as Bayesian integrators accumulating evidence over time [Deneve,
2004]. Recurrent neural circuits are capable of performing both hierarchical
and sequential Bayesian inference [Deneve, 2004; Rao, 2004]. Even specific
brain areas have been studied: for instance, there is evidence that the recurrent
loops in the visual cortex integrate top—down priors and bottom-up data in
such a way as to implement hierarchical Bayesian inference [Lee and Mum-
ford, 2003]. This work, though still in its infancy, suggests that concerns
about biological plausibility may not, in the end, prove to be particularly
problematic.





