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1 Introduction

1.1 The goal of this chapter

The view of linguistics which we will consider in this chapter is empiricist in the sense explored in Chapter One of
this book: it is epistemologically empiricist, rather than psychologically empiricist; in fact, it is a view that is rather
agnostic about psychology — ready to cooperate with psychology and psychologists, but from a certain respectful
distance. It is empiricist in the belief that the justification of a scientific theory must drive deep into the quantitative
measure of real-world data, both experimental and observational, and it is empiricist in seeing continuity (rather
than rupture or discontinuity) between the careful treatment of large-scale data and the desire to develop elegant
high-level theories. To put that last point slightly differently, it is not an empiricism that is skeptical of elegant
theories, or worried that the elegance of a theory is a sign of its disconnect from reality. But it is an empiricism that
insists on measuring just how an elegant a theory is, and measuring how well it is (or isn’t) in sync with what we
have observed about the world. It is not an empiricism that is afraid of theories that leave observations unexplained,
but it is an empiricism that insists that discrepancies between theory and observation are a sign that more work
will be needed, and sooner rather than later. And it is an empiricism that knows that scientific progress cannot be
reduced to mechanistic procedures, and even knows exactly why it cannot.

Thus this chapter has four points to make: first, that linguists can and should make an effort to measure explicitly
how good the theoretical generalizations of their theories are; second, that linguists must make an effort to measure
the distance between their theories’s predictions and our observations; third, that there are actually things we working
linguists could do in order to achieve those goals; and fourth, that many of the warnings to the contrary have turned
out to be much less compelling than they seemed to be, once upon a time.

The perspective spelled out is thus non-cognitivist, though by no means anti-cognitivist, and I emphasize to the
reader that our empiricism is not one that in any sense prefers data over theory. And I do not wish to argue that
this is the way, the only way to do linguistics; there are many ways to do linguistics. But in recent decades, and
especially within theoretical linguistics, a view has become so widespread that it passes now for uncontroversial:
that the reality claimed by a linguistic theory is the same reality claimed by a psychological theory, and I wish to
respectfully disagree with that view, and suggest that it is a serious oversimplification, at the very least.

The main focus of this chapter is the notion of Univeral Grammar: henceforth, UG. From a methodological point
of view, UG is the set of assumptions we bring to the design of a grammar for a language. From a psychological point
of view, UG is a model of the initial cognitive state of a language learner before any of the data from a particular
language have been made available to the learner. I will focus on the methodological sense, for reasons that we
will see, and I will offer my reasons for believing that an empirically empty version of UG is available to us, and
may well be just what we need, at least for some parts of linguistics. That sounds a bit mysterious (after all, what
could it mean to speak of an empirically empty UG?), but this will become clearer as we proceed. The two most
important points that I shall argue are, first, that we need a quantitative account of theory-confirmation, and second,
that we should not treat theoretical mechanisms that we put in Universal Grammars as cost-free. I will suggest, on
the one hand, that probability can be understood as the quantitative theory of evidence, and, on the other hand,
that probability theory offers us a more comprehensive and concrete way to understand the fundamental problem of
induction, which is to say, how one passes from knowledge of a finite number of particulars to a generalization, which,
typically, allows us to infer an infinite number of conclusions, almost all of which have not yet been tested. One of
the consequences of this perspective is the perhaps surprising principle that the value of a theoretical innovation is
neither more nor less than the amount of information it would take to (merely) stipulate its intended consequences.



1.2 The problem of induction, and Universal Grammar

Chomsky’s greatest contribution to our understanding of linguistics is the clarity with which he showed the deep
connection between the modern problem of induction and the problem of explanation in linguistics. By the problem
of induction, I mean the problem of justifying the move from knowledge of a finite number of particulars to knowledge
of a generalization, especially a generalization which (like virtually all generalizations that interest us) has an infinite
number of consequences which follow from it. From the philosopher’s point of view, any such inference is tricky
business, since there is a serious danger of making a mistake and drawing the wrong conclusion from the observations,
not because of a logical error, but because any generalization and any prediction will be based on the categories that
we use to encode the particular observations that we began with.

From the psychologist’s point of view, understanding how people (or for that matter, rats and pigeons) draw
inferences is a difficult task, but one which holds the promise of telling us something about otherwise scientifically
inaccessible reaches of the human psyche.

From the linguist’s point of view, the problem of induction is an abstract way to formulate the most central
question of synchronic linguistic analysis: how do we justify the formulation of grammatical statements, valid for a
potentially infinite class of representations, on the basis of a finite set of data? What I daresay is the most widespread
view in linguistics currently, the principles and parameters approach, is based on the hope that only one element
in a restricted class of grammars, those permitted by Universal Grammar, are consistent with the observed data.
The alternative, empiricist account is that a careful study of the formal and statistical properties of observable data
will lead to what we might think of as a rating of grammars which generate the data calculated from a probabilistic
model, and that the most probable model is the best one. This paper is an attempt to spell that out in more detail.

Oddly enough, as we will see, what I will describe here is very much in the tradition of classical generative
grammar—by which I mean, the research program described in detail in The Logical Structure of Linguistic Theory
[4], but this line of thinking does make one quite skeptical about the principles and parameters approach to grammar.
Partisans of principles and parameters should be prepared to jettison some beliefs.

Needless to say, I do not think that the last word in the solution to the problem of induction has been said, and
puzzles and serious questions remain. My purpose is to shed a little bit of light on the connection between what
linguists do and the worries that have arisen from thinking about the problem of induction; I think that the current
emphasis on what Chomsky calls I-language is the result of a misplaced belief that the study of I-language is less
beset by methodological and philosophical problems than the study of E-language is. I will try to show why I do
not agree with that belief, and why I think that a respectable, E-language-oriented way of doing linguistics is fully
justifiable, and leads to perfectly reasonable results: indeed, quite appealing results; see section 8 below.

1.3 Empiricism and linguistics

Linguists in the pre-generative period in American linguistics would happily have referred to themselves as empiricists.
Foremost in their understanding of the term was the sense that empiricists were highly skeptical of what they viewed
as metaphysical claims, and they shared the view that a rigorous method needed to be invoked in order to make
scientific claims.

For that reason, linguists expended considerable time, energy, and attention discussing and developing notions of
linguistic method. To many generative linguists today, this earlier emphasis on method, along with an apparent lack
of concern for something else called “theory,” makes empiricist views seem more mysterious than they really are.
Empiricist methods have at their core two rough-and-ready principles: first, that the data are what they are, not
what the linguist wants them to be, and second, that care must be taken to justify the positing of abstract entities in
one’s theoretical analysis—or to put the matter another way, while it is fine to be proud to have discovered an unseen
object, the burden of proof remains heavy on the scientist who claims to have found one. A direct consequence of
this is that alternative analyses in which abstract elements are not posited have to be thoroughly explored to be sure
that none of them is as capable of accounting for the evidence.

The abstract element that I would like to skeptically rethink in this paper is a rich Universal Grammar—UG,
for short. UG is a central concept in much current thinking about linguistics; it is sometimes conceptualized as
the initial state of the human language acquisition device; it is, in any event, the conceptual substance necessary to
bridge the gap between the linguistic data presented to the child-learner and the grammar that he ends up with as a
fully competent adult native speaker. The question is not whether UG exists; it is rather to what extent UG should
be thought of as conceptually rich. The empiricist assumption regarding human knowledge in the golden days of
empiricism in the 17th and 18th century was that the mind starts off like a tabula rasa: a blank white-board, so
to speak, on which drawings of any kind, and formulas in any language, could be written; UG, on this account, is
relatively impoverished. The opposing picture today is one in which the mind starts off more like the control panel
of a jet airliner, with a panoply of gauges and dials which need to be set, but whose settings only gain sense and
meaning by virtue of the circuitry that lies behind the dashboard.



The main question I will attack in this paper is whether the role played by Universal Grammar can be assigned to
a completely abstract and, we might say, platonic object, one that is based on algorithmic complexity, and unrelated
to any particular biological characteristics of human beings. I will argue that such a project is feasible, given our
present knowledge. In fact, the perspective I am describing here has a stronger claim to being called “universal
grammar” than an information-rich UG does, in the sense that the empiricist position described here would be valid
in any spot in the known universe, and is not a theory of the human genetic endowment.

In the next section, Section 2, we will introduce the idea of a probabilistic grammar, and sketch out how such
a grammar can be thought of within a perspective that incorporates a notion of Universal Grammar, allowing us
a Bayesian conception of linguistics. In Section 3, we will discuss the basic logic of classical generative grammar
in a way that facilitates comparison with a Bayesian approach, and then return to the exposition of the Bayesian
conception in Section 4. ...

2 Probabilistic grammars

2.1 The basic idea

Generative grammar has always been understood as making claims about a language by virtue of predicting what
strings are in a language and what strings are not." This has never been particularly controversial, though in the
early years of generative grammar, there was more concern than there is nowadays about the fuzzy status that should
be associated with semi-grammatical sentence. Still, most linguists felt that we could make a lot of scientific progress
focusing just on the clear cases, the sentences whose grammaticality status was not in doubt (they are good, they
are bad), and the goal of the grammar was to generate or enumerate the grammatical ones (typically an infinite set)
and to fail to generate any of the ungrammatical ones.

As we saw in Chapter Two, probabilistic grammars take a different tack: they say that there is another way
that we can develop formal grammars and ensure that they come in contact with the real world of linguistic facts.
A probabilistic grammar assigns a non-negative probability to every predicted outcome, in such a fashion that the
probabilities sum to 1.0—neither more, nor less. In most cases of interest, the number of predicted outcomes is
infinite, but the same condition holds: the sum of the probabilities of each outcome must be 1.0. For this condition
to hold over an infinite set, it must be the case, first of all, that the probabilities get indefinitely small, and it must
also be true that while we cannot test every outcome (since there are an infinite number of them), we can always find
a finite number of outcomes whose total probability gets arbitrarily close to the probability of the whole set. Thus
a probability measure assigned to an infinite set makes it almost as manageable as a finite set, while still remaining
resolutely infinite.That is the heart of the matter.

Shift to Chapter Two:

We need to be clear right from the start that the use of probabilistic models does not require that we
assume that the data itself is in a linguistic sense “variable,” or in any sense fuzzy or unclear. I will come
back to this point; it is certainly possible within a probabilistic framework to deal with data in which
the judgments are non-categorical and in which a grammar predicts multiple possibilities. But in order
to clarify the fundamental points, I will not assume that the data are anything except categorical and
clear.

Assume most of what you normally assume about formal grammars: they specify an infinite set of lin-
guistic representations, they characterize what is particular about particular languages, and at their most
explicit they specify sequences of sounds as well as sequences of words. It is not altogether unreasonable,
then, to say that a grammar essentially is a specification of sounds (or letters) particular to a language,
plus a function that assigns to every sequence of sounds a real value: a non-negative value, with the
characteristic that the sum of these values is 1.0. To make matters simpler for us, we will assume that
we can adopt a universal set of symbols that can be used to describe all languages, and refer to that set
as .2

A grammar, then, is a function g with the properties in (1).

g: X" —1[0,1)
> gls)=1 (1)
seX*

1Putnam 1960 article.
21 do not really believe this is true, but it is much easier to express the ideas we are interested in here if we make this assumption.
See Robert Ladd, Handbook of Phonological Theory vol. 2 for a recent discussion.



The grammar assigns a probability (necessarily non-negative, but not necessarily positive) to all strings
of segments, and these sum to 1.3

A theory of grammar is much the same, at a higher level of abstraction. It is a specification of the set
G all possible grammars, along with a function that maps each grammar to a positive number (which we
call its probability), and the sum of these values must be 1.0, as in (2). We use the symbol 7 to represent
such functions, and each one is in essence a particular Universal Grammar.

m:G—[0,1]
> wlg) =1 (2)
g€eG

To make thing a bit more concrete, we can look ahead and see that the function 7 is closely related
to grammar complexity: in particular, the complexity of a grammar g is —logm(g); likewise, the func-

tion g is closely related to grammaticality; in particular, —log g(s) + Z log p(w) is a measure of the
weESs
ungrammaticality of s.*

If we put no restrictions on the nature of the function 7, then the class of models that we have described
so far could include a good deal of what already exists in formal linguistics, once we have probabilized
the grammars, so to speak—once we have organizerd our grammars g; in such a way that they not only
generate sentences, they assign probabilities that sum to 1.0 for their sentences. With no constraints on
the function 7, most any theory of formal grammar could be described in such terms. Would this be an
empiricist conception of linguistics? It would be empiricist to the degree that real scientific work was
being done by virtue of testing the model’s fit to reality by means of the computation of the probability of
the data. But with no restrictions on the form of Universal Grammar (i.e., the choice of ), the approach
could be as nativist as a researcher wanted it to be.

But we are suggesting something a good deal more specific than that. Our claim here is that, as far as
we can see at this point in time, algorithmic complexity is all that is needed (or most of what is needed)
in order to specify m. Thus algorithmic complexity plays the same role in the new empiricism that formal
logic played in the old empiricism: it is what we can add to the observed data without becoming nativist,
and if we or anyone else are to argue in favor of a nativist position, the argument must be made that the
learning that is accomplished by the language learner cannot be accounted for by a combination of data
and its analysis using the notions of algorithmic complexity. Or: the task of the grammarian, given a
corpus of data D, is to find the most probable grammar g, and g’s probability, in this context, is directly
proportional to its probability based on its algorithmic complexity, multiplied by the probability that it
assigns to the data D. This is the basic idea, then, which we will try to describe in more detail below.

2.2 Probability evaluates the grammar, not the data

In order to make this new empiricist interpretation work, we need to understand the notion of a proba-
bilistic grammar, developed first by Solomonoff in the 1950s (see Solomonoff 1997 [15]). , as we discussed
in Chapter T'wo of this book. Let us underscore here again that probabilistic grammars here are not being
used because the data that is being modeled is vague, soft, or non-categorical. Curiously, the notion is not
widely known or appreciated in mainstream linguistics, and my impression is that most linguists think
that probabilistic models make vague, soft, or non-categorical predictions. This is false; probabilistic
grammars can be put to those purposes, but we will not do so, and there is nothing about probabilistic
grammars that requires one to make fuzzy predictions. Rather, what makes a model probabilistic is much
more formal and mathematical (see, e.g., Goldsmith 2007 [10]).

Like virtually any other formal device, a probabilistic grammar specifies a universe of possible represen-
tations for the domain it treats; but in addition, a probabilistic model associates with each representation
a non-negative number, its probability, and a strict condition is associated with these probabilities: the
sum of the probabilities of all of the representations must be 1.0—meither more nor less. Informally
speaking, a probabilistic grammar can be thought of as possessing an infinitely dividable substance, re-
ferred to as probability mass, and it doles it out to all of the representations it generates. The goal is to

3If you are concerned about what happened to trees and the rest of linguistic structure, don’t worry. We typically assign a probability
to a structure, and then the probability assigned to the string is the sum of the probabilities assigned to all of the structures that involve
the same string.

4Note about normalizing for sentence length.



find a grammar that assigns as much of that probability mass as possible to the data that was actually
seen. In a sense, this is the crucial difference between the empiricist (and probabilistic) approach and the
generative approach: the empiricist, like the rationalist, wants and needs to generate an infinite class of
representations, but the empiricist measures the adequacy of the grammar on the basis of how well the
grammar treats data that was naturalistically encountered (that is to say, data that was recovered from
Nature in an unbiased fashion).

The condition that the sum of the probabilities of all generated representations be equal to 1.0 is trivial in
the case where there are a finite number of representations, to be sure. But it is typically not a problem
when the representations form an infinite set either. If the reader is uncertain how it can be that an
infinite set of positive numbers sum to 1.0, imagine that all the representations are sorted alphabetically,
in such a way that shorter ones come first (that is, by treating space as the first element of the alphabet),
and then assign probability 2" to the n*"* word. A moment’s thought will convince the reader that these
numbers sum to 1.0 (3 + 1 + 1 + ..)

To repeat, then: the first goal is to find the grammar that maximizes the probability of the observed
data (this will be modified slightly, in due time, to allow the simplicity of the grammar to play a role in
the selection). Any reasonable theory will assign most of the probability mass to unseen events, that is
to say, to sentences that have never been pronounced, and perhaps never will be. That’s not a problem.
The grammar will not be tested on the basis of those sentences, either: it will be tested on the basis of
the probability that it assigns to the sentences that have already been seen.®

It should now be clear that the purpose of our insisting that a grammar be probabilistic has nothing to
do with evaluating the probability of different sets of data. It would indeed be odd if we were to use a
probabilistic grammar to decide what the probability was of various data that had in fact been observed.
No; rather, the point of asking different grammars what probability they assign to a single, fixed set of
data is to evaluate the grammars, not the data. If the data is naturalistic, then we know it exists, but
what we care about is evaluating different candidate grammars to see how well they are able (so to speak)
to decide which set of data actually exists, and we do this by seeing which grammar assigns the highest
probability to the corpus.

We turn now to the subject of Bayesian analysis.

2.3 Bayesian analysis

A Bayesian approach to probabilistic modeling is one that takes into consideration not only the probability
that is assigned to the data by a model (or as we linguists say, by a grammar), but also the probability of
the model (i.e., the grammar). And this latter notion is one that takes us right into the heart of classical
generative grammar, to the notion of an evaluation metric.%

Bayes’s rule, repeated here as (3), involves inverting conditional probabilities, although from a mathe-
matical point of view it is a very simple algebraic manipulation.

p(Y[X)p(X)
p(Y)
Now, this rule is used in a very surprising way within what is known as Bayesian analysis; we will take

“X” to be a hypothesis—or, we will say, a grammar—g, and “Y” to be the set of observed data d. To
make this more perspicuous, we rewrite this and change the names of the variables:

p(X[Y) = 3)

_ p(dlg)p(g)

Now this says something much more remarkable from a scientist’s point of view. Translating it into
English, it says that the probability of a hypothesis, given what we have observed (and what else do we
have other than what we have observed?) is equal to the product of two numbers, divided by a third
number. It is the product of the probability that the hypothesis assigned to the data and the probability
of the hypothesis in the abstract, divided by the probability of the observations themselves.

(4)

Suppose that’s all true, and suppose that we can somehow come up with those values. It would then
follow that we could choose our hypothesis out of a range of different hypotheses g by finding the one

5Much of what I say here does not depend on that particular statement; one could adopt most of what we discuss and still believe
that the heart of science is prediction, but I will not delve into this question.
6This section should be shorter, and the bulk of it will have appeared in Chapter One.



whose probability was greatest, given the observations. That’s the heart of the notion of a Bayesian
analysis.

Of the three values that I described, only one is difficult to obtain, and that is the probability of the
data, the denominator of (4). But we do not worry about that, because it does not really matter. Since
what we care about is choosing which hypothesis is the best, given the data, we are just going to keep
p(d) fixed as we consider various different hypotheses. So the hypothesis h for which the value p(d|g)p(g)
is the greatest is the same as the hypothesis for which the value of W is the greatest, and that is

the hypothesis we want. More mathematically, we say we want to identify the g as follows:

g= argm;txp(dlg)p(g) (5)

This identifies g as being the hypothesis for which the product of the two probabilities defined there is the
greatest. We still need to obtain two values: the probability of the data, given any of the hypotheses we
are considering, and the probability of each of those hypotheses. We obtain the first by demanding that
we only consider probabilistic grammars, which we introduced (following Solomonoff) in the previous
section, and we obtain the second by establishing a prior probability over grammars. That is worth
emphasizing: the g that we seek here is a generative grammar that assigns probabilities to its output. We
will seek a way to distribute the probability mass over all grammars based just on what they look like as
grammars, independent of how they treat any actual data. If we can do that, then the task of choosing a
grammar, given a set of data, will be a matter of jointly considering two equally important things about
the grammar: how good a job does it do of modeling the data, and how good is it as a grammar?

To summarize so far: in section 2.1, we explained that to analyze data from a particular language, we
need to establish two probability distributions, one which is essentially the grammar of that language, and
the other which is a hypothesis regarding Universal Grammar. We saw above how choosing a grammar
can be understood as an optimization process: pick the grammar that maximizes the expression on the
right in equation (5), which includes two parts: the probability assigned to the data by the grammar, and
the probability of the grammar. We need to explore more deeply the question of what it means to assign
a probability to a grammar: this is the role of 7, the universal grammar that we mentioned briefly in
connection with the express in (1), what a Bayesian would refer to as our prior (i.e., prior probability
distribution) over a class of grammars. We turn in the next section to the question of how reasonable
this prior distribution would look to a linguist if it were very, very austere.

2.4 Establishing a prior probability for grammars

I am going to assume henceforth that the class of possible grammars is infinite. I don’t think that there
is a serious alternative to this hypothesis. Occasionally the suggestion is made that the real heart of a
grammar of a human language is the correct selection of values assigned to a finite set of parameters
(where each parameter can in principle only take on a finite number of values). But even if one believes
in such a limitation (and as it happens, I do not), the “real heart” is only the heart: there’s the rest of
the grammar, which includes at the very least a lexicon, and I daresay no linguist would dream of saying
that there is an upper bound on the size of a lexicon. The bigger the lexicon, the less likely it is, and its
probability (to say nothing of its plausibility) shrinks very rapidly as its size increases.

Most theories of grammar are “non-parametric,” in the specific sense now that grammars typically consist
of formal (indeed, algebraic) objects which can be made larger and larger, by adding more to them (even
if the “more” is just another lexical item, or construction, phrase-structure rule, condition on a phrase-
structure rule, etc.) What we do know about them, though, is that they are built up out of a specific set
of formal objects, or symbols. There is no limit to the number of grammars, because there is no limit to
the number of symbols (that is, number of occurrences of symbols) that may appear in a grammar.”

I would like now to be able to talk about the size or length of a grammar. We are accustomed to using
all sorts of different symbols in our formalism, but as we pointed out in Chapter 2, we can make life
a lot easier by agreeing to view each symbol as a shorthand for a string of Os and 1s (which is what
real life computers think, anyway). It then follows that for any given length L, there are exactly 2%
different string of symbols that could in principle be grammars. (Most of the strings will be formally
meaningless in all likelihood, but that’s OK, because we’re trying to get an upper limit on things). For

"The boundary between parametric and non-parametric analyses is getting a bit harder to draw these days. Goldwater’s 2006 [12]
employment of the Chinese Restaurant process blurs the line further, allowing most of lexicon generation to be viewed with a parametric
model.



technical reasons that I will not go into,® we will assume that it is always possible to tell, from a purely
formal point of view, when we have gotten to the end of the grammar (perhaps by setting up a symbol
to specifically mark for that, or in any of a variety of ways).

We know one more thing about grammars that we want to use, and that is that a shorter grammar is
always better than a longer grammar, all other things being equal. The reader may object to that, and
say, “we’ve been there before, and done that, and don’t want to do it again: sometimes the notation is
doctored so that a shorter grammar is not the psychologically real one.” To which I would reply two
things: first, when we say “all other things being equal,” we really and truly mean that we are making
the claim that shorter is better only when we agree to fix and hold constant the theory of grammar;
and second, we are not quite saying that better = psychologically correct. What we're saying is that if
we are to assign a probability mass over an infinite class of grammars, then it must be the case that as
we look at the class of longer and longer grammars (and they are vastly more numerous than shorter
grammars, since for any length L there are S” of them, and that expression grows quickly with L), the
total probability mass assigned to them gets indefinitely small. For any amount of probability mass €
you choose, no matter how small, there is a length L such that the sum of the probabilities of all of the
infinite number of grammars that are of length L (or greater) is less than ¢.?

There is one more crucial step to take, and that is one that permits us to escape from the clause that
says, “given a fixed theory of grammar.” Because we are not “given” a theory of grammar, after all; each
of us is free to develop our own theory of grammar, and how can simplicity in my theory be compared
with simplicity in your theory? What if my theory has (let’s say) grammatical relations as a primitive
notion, and yours doesn’t? My theory allows me to write some grammars very simply that yours either
can’t express, or can only express with great complexity.

The answer I would like to suggest is based on algorithmic complexity (and thus is an application of
ideas by Solomonoff, Chaitin, Kolmogorov, Rissanen, and, a little less directly, Turing, as we saw above.
The basic idea is this: any computation can be specified as a particular Turing machine, and there is,
furthermore, such a thing as a universal Turing machine, and the latter is so important that we will
give that phrase a three-letter abbrevation: UTM. Such a machine (and there are many of them) can
be programmed to function like any other Turing machine, and in particular to accept programs in a
higher level language, such as C, Lisp, or natural-language-grammar-language. If there were only one such
machine, we could use the length of the program in its language as the basis for our notion of complexity,
but the fact is that there are many, different UT Ms, so our problem is how to deal with the nature of
the differences among UT Ms.

The reader has undoubtedly encountered the notion of a Turing machine: it is a finite-state device which
is connected to an infinite tape, a tape which in turn is broken up into boxes in which only x’s and blanks
appear. The input to the machine is written by us in the first instance, and the machine can rewrite what
it sees on the tape according to its internal program. Anyone who has actually looked at instructions to
a Turing machine will be struck by how elementary the statements look: e.g., “If there is an x in the box
you see now, erase the x and move one box to the right.”

But that’s just typical of what instructions look like, even in real-world computers, at the level of machine
language code. With real machines and also with Turing machines, one can enter a program written in
a higher order language (like C' or natural language grammar). In the case of a Turing machine, one
does this by writing down two long things on the tape before beginning: the first is a compiler for the
higher language (it is, so to speak, a program written in the UT'M’s native language which will input
what follows it on the tape, view it as a program and translate it into the UTM’s native language),
and the second is the program in the higher order language. If the Turing machine is truly a universal
Turing machine, then it can be made to imitate any other Turing machine: that is, it’s always possible
to write a program which, if it is used to precede any chunk of data on the tape, will cause the universal
Turing machine to treat that data like the Turing machine you wish it to imitate. (To put the same point
slightly differently, there is a rough and ready equivalence between Turing machines and higher-level
programming languages).

At the risk of becoming too repetitive, I will underscore the point that we insist on bringing the description
down to the level of a Turing machine, not because we plan to do any serious linguistic work writing our
grammars in machine level code—because we will not—Dbut as a way of ensuring that we all play on a
level playing field, to the degree that we possibly can.

8This relates to the notion that our notation has the prefix condition, which relates in turn to satisfying the Kraft inequality.
9This is still not clear enough.



Given a particular universal Turing machine UT M7, our job is to write a compiler which allows us to
write natural language grammars. A compiler in the real world is the name we give to a computer
program that takes a relatively compact program (usually one that has been written by a human being)
and automatically converts it into the language of 0Os and 1s, the machine language used by a particular
computer. In some ways, a compiler is a decompresser: it takes as its input a relatively short string of
symbols, and creates a longer string that contains all of the detailed instructions the computer needs to
carry out the intent of the original program.

Linguists write grammars, which are compact descriptions of operative generalizations in natural lan-
guages, and these descriptions allow one, in principle, to analyze sentences of a given language. And to
analyze sentences of a given language means to give an analysis of the a particular sentence, or a long
sequence of sentences. So here’s where we are: the linguist who is using UT'M; (which is a machine)
feeds it first a grammar-compiler, and then a grammar of a particular language, and then one or more
sentences to be analyzed. Out from UT M; comes an analysis of the sentences.

Let’s look more closely at this grammar-compiler, which we will refer to as UG(UTM;): it is a Universal
Grammar for UT' M7, and for any particular UTM, there can be many such. Each grammar-compiler
constitutes a set of recommendations for best practices for writing grammars of natural languages: in
short, a linguistic theory. In particular, we define a given UG by an interface, in the following sense—we
need to do this in order to be able to speak naturally about one and the same UG being run on different
UTMs (a point we will need to talk about in the next section). A UG specifies how grammars should
be written, and it specifies exactly what it costs to write out any particular thing a grammarian might
want to put into a grammar. Naturally, for a given UT M, there may be a large number of ways of
implementing this, but we care only about the simplest one, and we will henceforth take it for granted
that we can hire someone and outsource the problem of finding the implementation of a particular UG
on any particular UT M.

Once we have such a grammar, we can make a long tape, consisting first of UG(UT M), followed by a
Grammar for English (or whatever language we’re analyzing), as we have already noted—plus a com-
pressed form of the data, which is a sequence of 0s and 1s which allows the grammar to perfectly
reconstruct the original data. It is a basic fact about information theory that if one has a probabilistic
grammar, then the number of bits (0s and 1s) that it takes to perfectly reproduce the original data is
exactly logs p(data). We use that fact here: and we set things up so that the third section of the infor-
mation passed to the UTM is a sequence of Os and 1s that perfectly describes the original data, given the
Universal Grammar and the grammar of the language in question.

Turing
Machine

-

Grammar ||[Data

Figure 1: Input to Turing machine

As we have already mentioned, there will be many different ways of accomplishing this. Each UT'M is
consistent with an indefinitely large number of such universal grammars, so notationally we’ll have to
index them; we’ll refer to different Universal Grammars for a given UT'M (let’s say it is still UT'M;) as
UG1(UTM;) and UG2(UT M), etc. This is no different from the situation we live in currently: there are
different theories of grammar, and each one can be thought of as a compiler for compiling a grammar into
a machine-language program that can run on a UT'M. A UG is intended to be used to write grammars
for all languages of the world. At any given time (which is to say, at any given state of our collective
knowledge of languages of the world), for any given UTM, there will be a best UG; it is the one for
which the sum of the length of UG, plus the sum of the lengths of each grammar written in UG, plus the
compressed length of the data for each language in its corresponding grammar is the shortest.

We are almost finished with the hard part. We now can assign a probability to a grammar that has
been proposed. Given a universal Turing machine UT M7, a univeral grammar UG, written for it, and a
grammar g written for universal grammar UG, the probability assigned to it is

1
p(g|UG1) = 9length(UG1)9Length(g) (6)
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Figure 2: Chomsky’s three conceptions of linguistic theory

In effect, this is the simplest way to divide the probability mass up over the entire universe of possible
universal grammars and language-particular grammars, and it extracts the probability that goes to just
this one (=this universal grammar and this grammar).'® There is a lot of serious work that has gone
into this equation, and I have only skimmed over the surface here—but bear in mind that this is di-
rectly responding to the needs of equation (5) above. We now have a prior probability distribution over
grammars, which is what we needed by the end of the previous section in order to develop a Bayesian
approach to linguistics and grammar justification. What we have not addressed yet is the question of
uniqueness. Since there are many universal Turing machines, we could expect that the distribution over
(UTM; + grammar;) will vary with the choice of universal Turing machine.

This is an interesting question, to which I will give a sketch of an answer shortly; but before I do, let’s
look at a bit of recent linguistic history from the Bayesian perspective that we have just sketched.

3 Classical generative grammar

Classical generative grammar is the model proposed by Noam Chomsky in his Logical Structure of Linguis-
tic Theory, and sketched in Syntactic Structures [2], and assumed in Aspects of the Theory of Syntaz|6].
In a famous passage, Chomsky suggested comparing three models of what linguistic theory might be
which are successively weaker, in the sense that each successive model does less than the preceding one.
In the first model, linguists would develop a formal device that would produce a grammar, given a natural
language corpus. In the second model, the formal device would not generate the grammar, but it would
check to insure that in some fashion or other the grammar was (or could be) properly and appropriately
deduced or induced from the data. In the third model, linguists would develop a formal model that nei-
ther produced nor verified grammars, given data, but rather, the device would take a set of observations,
and a set of two (or more) grammars, and determine which one was the more (or most) appropriate for
the corpus. Chomsky suggests that the third, the weakest, is good enough, and he expresses doubt that
either of the first two are feasible in practice.

Chomsky believed that we could and should account for grammar selection on the basis of the formal
simplicity of the grammar, and that the specifics of how that simplicity should be defined was a matter
to be decided by studying actual languages in detail. In the last stage of classical generative grammar,
Chomsky went so far as to propose that the specifics of how grammar complexity should be defined is
part of our genetic endowment.

His argument against Views #1 and #2 was weak, so weak as to perhaps not merit being called an
argument: what he wrote was that he thought that neither could be successfully accomplished, based
in part on the fact that he had tried for several years, and in addition he felt hemmed in by the kind
of grammatical theory that appeared to be necessary to give such perspectives a try. But regardless of
whether it was a strong argument, it was convincing.'!

10 Again, for simplicity’s sake, I am assuming that our UT'M’s can be extended to allow input strings which contain all the symbols of
an alphabet such as A.
1 Chomsky’s view of scientific knowledge was deeply influenced by Nelson Goodman’s view, a view that was rooted in a long braid of



Chomsky proposed the following methodology, in three steps.

First, linguists should develop formal grammars for individual languages, and treat them as scientific
theories, whose predictions could be tested against native speaker intuitions among other things. Even-
tually, in a fashion parallel to the way in which a theory of physics or chemistry is tested and improved,
a consensus will develop as to the form and shape of the right grammar, for a certain number of human
languages.?

But at the same time, linguists will be formulating their grammars with an eye to what aspects of their
fully specified grammars are universal and what aspects are language-particular. And here is where the
special insight of generative grammar came in: Chomsky proposed that it should be possible to specify
a higher-level language in which grammars are written which would have the special property that the
right grammar was also the shortest grammar that was compatible with any reasonable sized sample of
data from any natural language. If we could do that, Chomsky would say that we had achieved our final
goal, explanatory adequacy.

There are two crucial aspects of this picture that we must underscore: the first involves the limited
role that data plays in the enterprise, and the second involves the open-endedness of the search for the
correct method for computing grammar length. In this view, the search for universal grammar consists
of a first chapter, in which data is used in the usual scientific way (whatever that means!) to select
between proposed grammars for individual languages, and when we have enough such grammars, we use
our knowledge of correct grammars to develop a formalism which allows for a simple formulation of those
grammars. Now, with this formalism in hand, we can (we hope) make sense of the notion that linguistic
theory picks the simplest grammar that is consistent with the data, because “simple” will now have
meaning in terms of the formalism that was discovered in a scientific, empirical fashion. In this second
chapter of linguistic theory, we compute the complexity of a grammar by computing its length, and we
compute the complexity of a set of grammars for several different languages by summing up the lengths
of each of the languages.

There are two assumptions in this picture that are wrong, I will suggest. The first is that it is possible to
have a second phase of linguistic theory in which we care only about the complexity of the grammar, and
not the grammar’s tight mesh with the data, and the second is that we can ignore the complexity of the
system that that does the actual computation of the complexity of each grammar (i.e., the grammar’s
length). The first assumption concerns the small role of data fallacy, and the second is the Universal
Grammar is free grammar fallacy.

In Figure 3, we see a schematic of the problem that the classical generativist thought he was providing
a solution to. You and I have different views about grammar and how individual grammars should be
expressed. For purposes of exposition and discussion, we agree to formalize our theoretical intuitions in
a fashion that permits us to evaluate grammar complexity in purely quantitative terms, but as long as
we don’t agree on a common way to do that up-front, we will typically get stuck in the sticky situation
illustrated in that figure: I think my set of grammars is better (because shorter) than yours, and you

thought about the nature of science that has deep roots; without going back too far, we can trace the roots back to Ernst Mach, who
emphasized the role of simplicity of data description in the role played by science, and to the Vienna Circle, which began as a group
of scholars interested in developing Mach’s perspectives on knowledge and science. And all of these scholars viewed themselves, quite
correctly, as trying to cope with the problem of induction as it was identified by David Hume in the late 18th century: how can anyone
be sure of a generalization (especially one with infinite consequences), given only a finite number of observations?

While it’s not our business here today to go through the work of this tradition in any detail, it is nonetheless useful to understand that
the problem can be sliced into two parts, the pre-symbolic and the symbolic. The pre-symbolic problem is: how do we know the
right way to go from observations that we make to statements which represent or encode the observations? Who determines what that
process is, and how can we even try to make explicit what the right connections are? Fortunately for us, I have nothing to say about this
extremely difficult problem, and will leave it utterly in peace.

The second, symbolic problem matters to us, though. The second problem is based on the notion that even if it’s possible to make
fully explicit the ways in which we must translate statements from one system of symbolic representation to another, the two systems
may disagree with respect to what is an appropriate generalization to draw from the same set of observations.

This was the problem that Chomsky proposed to solve, and he proposed to solve it by removing it from philosophy or epistemology,
and moving it into science (also referred to as naturalizing it): the choice of the language in which generalizations are expressed cannot
be decided on apriori principles, he suggested, and the methods of normal science should be enough to settle any question that might
arise.

121 am not going to criticize this suggestion in this paper, but I think that while this methodological principle sounds very good, it
has proven itself to be unfeasible in the real world. That is, this principle amounts to the belief that there are methods of proving
that grammar I" does, or does not, represent the psychologically real grammar of English, or some other language, based no more on
considerations of simplicity than any other laboratory science would use, and based on the same kinds of laboratory-based methods
that any other science would use. This method has to be very reliable, because it serves as the epistemological bedrock on which the
over-arching Universal Grammar will be based. This method, however, does not exist at the current time. I am not saying it could
not exist; anyone is free to believe that, or not. But in 50 years of syntactic research, we have not developed a general set of tools
for establishing whether a grammar has that property or not. Without a functioning version of this test, however, classical generative
grammar cannot get off the ground.
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Figure 3: The pre-classical generative problem

think your set of grammars is better (because shorter) than mine. We do not have a common and joint
language by which to settle our disagreement. We calculate the width of the green rectangles for you and
for me; whoever has the smaller total length wins. The data lurking on the right hand side do not enter
into the calculation except in some implicit way: in some fashion, our grammars must each generate the
data for English and Swabhili, and not generate too much that isn’t grammatical as well.

The classical model of generative grammar made clear that this general perspective only makes sense if
we explicitly agree on using the same Universal Grammar. If you and I use different universal grammars,
then it is perfectly possible that we will arrive at a situation as in Figure 3, where you and I have different
opinions as to who won: I think I won, because the total length of my grammars for English and Swahili
is shorter than the lengths of yours, but unfortunately you think you won, because as you calculate the
lengths of the grammar, the sum total of the lengths of your grammars is shorter than that of mine.
There is no guarantee that we will agree on computing the complexity or length of a grammar: that is
the problem. And the generative solution was to say that we must—somehow—come to an understanding
of the right UG, and then this problem will never turn up, since everyone will use the same measuring
tools.

3.1 The flaws

There are two fatal flaws to this program, though, I regret to say: I regret it because it sounds marvelous,
and I would have been happy to devote many years to its development and execution. But there are
two fatal flaws nonetheless, as we have noted. The first is the Small role of data fallacy, and there were
people, like Ray Solomonoff, who were working to demonstrate this at exactly the same moment in the
1950s.

11



The second fatal flaw is a bit more complex, but it can be summarized as this: Chomsky’s actual method of
theory development put a strong emphasis on developing the grammar-writing linguistic theory (which he
eventually called Universal Grammar) right from the start, and this led to a situation in which it seemed
like the linguist needed to pay a certain “cost” for adding complexity to the grammars of individual
languages, but there was no cost for adding complexity to the Univeral Grammar. This is a subtle point,
but it is absolutely vital. I will call this second flaw the Universal Grammar is Free Grammar fallacy.
We will discuss these two points in the next section.

But the good side of this is that both flaws can be described by saying that we have left terms out of the
expression that we need to minimize: there needs to be one term involving the Universal Grammar, and
one involving the data—all of the data from all of the languages; and once we have done that, we will
have made a good deal of progress.

4 More Bayesian discussion

In this section, we will solve the two problems of classical generative grammar with the two expressions
that we discussed in section 2, which were the probability of the data and the length of the grammar. The
probability of the data is the key to the solution of the problem of confirmation. A probability is always
an arithmetic value between 0 and 1, but rather than work with that number (which tends to be a very,
very small positive number), we use -1 times the logarithm of the probability, which will be a reasonably
large positive number, and we will refer to that as the positive log (or plog) of the probability.

4.1 The logic of confirmation

Ray Solomonoff was in Cambridge, Massachusetts, working on the problem of induction of generalizations
on the basis of finite data, at the same time that Chomsky was working on the problem of justifying
grammars—that is, during the mid 1950s. Solomonoff had been an undergraduate at the University of
Chicago, where he had studied with Rudolf Carnap, the most influential of the members of the Vienna
Circle who had come to the United States. During this period (1930s through 1950s), there was a lot
of discussion of the nature of the logic of confirmation. There were many puzzles in this area, of which
perhaps the most famous was the why it was or wasn’t the case that the observation of a white iPod
confirmed the statement that all ravens are black. Since “All ravens are black” certainly appears to be
equivalent to “anything which is not black is not a raven,” and my white iPod seems to confirm that,
why doesn’t observation of my white iPod confirm an enormous number of irrelevant generalizations?

Without pretending to have shed any light on the question, it would not be unfair to say that this
example brings home the idea that there is a difference between “real” confirmation of a generalization by a
particular observation, on the one hand, and “simple” consistency of an observation with a generalization.
I recently noticed a comment made by Chomsky in Language and Mind, [3] that made it clear that he
was well aware of this issue, or so it seems to me. On pp. 76-77, he observes:

A third task is that of determining just what it means for a hypothesis about the generative
grammar of a language to be “consistent” with the data of sense. Notice that it is a great
oversimplification to suppose thata child must discover a generative grammar that accounts
for all the linguistic data that has been presented to him and that “projects” such data to
an infinite range of potential sound-meaning relations....The third subtask, then, is to study
what we might think of as the problem of “confirmation” —in this context, the problem of what
relation must hold between a potential grammar and a set of data for this grammar to be
confirmed as the actual theory of the language in question.

If a grammar generates too many sentences—if it is too permissive about what it allows, so to speak—and
we do not add enough negative grammaticality judgments as part of our data that we must account for,
then we will be wrongly biased by our method to select an overly simple grammar—that is the issue that
Chomsky was referring to.

The bottom line regarding probabilistic models is that they provide an answer to the question of how
different grammars that generate the same language may be confirmed to different extents by the same
set of observations. Each grammar assigns a finite amount of probability mass (in fact, it assigns exactly
1.0 total units of probability mass) over the infinite set of predicted sentences, and each grammar will do
that in a different way. We test the grammars by seeing what probability they assign to actual observed
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data, data that has been assembled in some fashion which is not biased with respect to intentionally
producing data that pushes in favor of one person’s theory or another. We use the differing probabilities
assigned by the different grammars to rank the grammars: all other things being equal, we prefer the
grammar that assigns the most probability mass to data that had already independently been observed.

This is a radical shift from the Chomsky-Putnam assumption that the only reasonable way to link a
grammar to the empirical ground is by seeing how well the boundary between grammatical and ungram-
matical maps to the boundary between acceptable and unaccpetable. It says: If you have some good data
from a language, then compute the probability assigned to that data by each of the candidate grammars,
and as a first approximation, you should choose the grammar that assigns the highest probability to the
data. Choosing the one that assigns the largest probability is mathematically the same as selecting the
one with the smallest plog probability (i.e., the one for which logm is a minimum), and that is how
we shall state this criterion: all other things being equal, choose the grammar which assigns the smallest
plog probability to the data.

This gives us an initial hold on the solution to the first problem, that of the small role of data, or
equivalently, the problem of establishing an explicit measure of degree of confirmation of grammar by
data. Given a corpus of data d, For each grammar g, we must calculate both the length of the grammar,
and the plog of the data that g assigns to the data, and we select the grammar for which the sum of those
two quantities is a minimum.

The reader may quite reasonably be wondering by what rights we simply add together two quantities,
one of which is the length of a grammar and the other of which is the logarithm of the reciprocal of a
probability. What do these two have in common that would make it a meaningful act to add them? We
will see that they are both measured in the same units, the Shannon bit, but we are not there yet.

On this account, Figure 4.1 illustrates how we select our grammar for English and Arabic: for each, we
have a corpus of data, and we consider various grammars for the data; we select the grammar which
jointly minimizes the sum of the grammar length and the “data length,” where the “data length” is the
plog of the data assigned by that particular grammar. In that figure, analysis 2 will be the right one for
both languages.

We have now developed in greater detail a point that emerged in Chapter Two, based on the work of
Solomnoff, Kolmogorov, Chaitin, and Rissanen: we can naturally assign a probability distribution over
grammars, based on their code length in some appropriate universal algorithmic language, such as that
of a Universal Turing machine; if such grammars are expressed in a binary encoding, and if they are
“self-terminating” (i.e., have the prefix property: there is no grammar g in the set of grammars which is
a prefix to some longer grammar ¢’), then we assign each grammar g the probability 2~ ldl,

We can draw this conclusion, then:

If we accept the following assumptions:

e Our grammars are probablistic (they assign a distribution to the representations they generate);
e The goal, or one major goal, of linguistics is to produce gramamrs;

e There is a natural prior distribution over algorithms (though we will have to speak to some concerns
about choice of universal Turing machine or its equivalent;

then we can conclude:

e there is a natural formulation of the question, what is the best grammar, given the data d? The
answer is:

arg mgxp(g)p(dlg)

where
plg) =27

We can now describe the work of the linguist in an abstract and idealized fashion as follows. She has a
sample of data from a set of languages, £. She has a computer and a computer language in which she
develops the best grammar of each language individually. If she has only one language (English, say) in
her corpus, then she will look for the grammar which maximizes the probability of the data by minimizing
the description length of the data, which is to say, minimizing the sum of the length of the grammar plus
the inverse log probability of the data, given the grammar. She will have no motivation for conceptually
dividing her grammar of English into a part that is universal and a part that is English-particular.
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But suppose she (the linguist) is studying two languages, English and Arabic; English and Arabic have
different structures, and probability must be assigned according to different models. Some parts of the
model will be specifically set aside for treating sentences from English, some for treating sentences from
Arabic, and other parts will be relevant for both.

In order to write a compact grammar, even for a single grammar, it is always a winning strategy to build
a compact notational system for the various complexities of the language: those that involve phonology,
morphology, syntax, and so on. To put it another way, the programming language that is handed to the
linguist for writing grammars may not be at all to her liking: it may be highly redundant and difficult to
use, so she has a strong interest in developing a simple-to-use grammar-writing language, which can be
compiled into the language of the machine in question. This process is essentially that of developing a
formal linguistic theory. To put it another way: it is a reasonable goal for linguists to develop a Linguistic
Theory which is a specific explicit way of writing grammars of any and all natural, human languages. This
Linguistic Theory is in effect a higher-level computer language which, when given a complete grammar,
can perform tasks that require knowledge of language, and only knowledge of language (like parsing,
perhaps).

4.2 TANSTAAFUG: There ain’t no such thing as a free UG

We noted above that there are two fatal flaws to the classical generative picture: the first (which we
discussed in the preceding section) was its failure to deal with the relationship between grammar and
data (the “small role of data” flaw), while the second is the assumption that the complexity of Universal
Grammar is cost-free for the scientist, the Universal Grammar is Free Grammar fallacy. Classical gener-
ative grammar operated as if there were a valid principle in effect that the less information the linguist
included in his language-particular grammar, the better things were. This could be accomplished with or
without increasing the complexity of UG, both in theory and in reality. When a grammatical proposal
does not increase the complexity of UG but does simplify the grammatical description of a language,
then everyone agrees that the change constitutes an improvement. But quite often, a proposal is made
to simplify the description of a particular language (or two or five) by removing something that all these
grammars shared, and placing them not in the particular grammars, but in the Universal Grammar
common to all the grammars.

The Universal Grammar is Free Grammar fallacy is the following assumption: while the complexity of
a particular grammar counts against it as a scientific hypothesis, and is an indirect claim about the
information that must be abstracted from the “training data” by the language learner, the complexity of
Universal Grammar has no cost associated with it from a scientific point of view. Its complexity may be
the result of millions of years of evolutionary pressure—or not; the linguist neither knows nor cares.

I call this a fallacy, because it inevitably leads to a bad and wrong result. There is one very good
reason for insisting that the researcher must take into consideration the informational cost of whatever he
postulates in his Universal Grammar. If he does not do so, then there is a strong motivation for moving a
lot of the specific detail of individual grammars into Universal Grammar, going so far as to even include
perfectly ridiculous kinds of information, like the dictionary of English. UG could contain a principle like,
“if the definite article in a language L is the, then £ is SVO and adjectives precede their head nouns.”
That would simplify the grammar of English, and if there is no cost to putting it in UG—if that does
not decrease the prior probability of the entire analysis—then the rational linguist will indeed put that
principle in UG.1!3

13Now, there is a natural way to understand this which is valid and convincing, in my opinion at least. We can consider the goal
and responsibility of the linguist to account for all observed languages, and if we really can find some elements in all our grammars of
languages and then place them in a common subroutine, so to speak, changing nothing else. then we will save on the overall length of
our grammatical model of the universe: if we shift N bits from individual grammars to universal grammar, and the cost of a pointer to
this code is ¢ bits, and if there are L languages in the current state of linguistic research that have been studied, then over-all we will
save (L — 1)N — Lq bits. We save LN bits by removing N bits from each grammar, but this costs us Lg bits where we leave a pointer,
a placeholder for the function. Then we pay N bits for the increase in size of Univeral Grammar.— Hence the prior probability of our
account of the world’s data will have just been multiplied by 2(£=DN=La which is no mean feat.

Let’s push this a bit. What if out of our L different languages, half of them need to refer to this function we have just shifted to
Universal Grammar? Then each language must be specified for whether it “contains” that material, and that will cost 1 bit (more or
less) for each language. Then moving this out of individual grammars and into UG will save us only (L/2 — 1)N — L — % bits.

Generalizing this a bit, and assuming that Ly.s languages contained this material in their grammar, and L, did not (so that
L = Lyes + Lno), then shifting material from individual grammars to UG will save us (Lyes — 1) N — Lyeslog% — Lnolog% —qLyes

yes no
bits.

It may not appear it at first blush, but there is some real news here for someone defending this rationalist view of Universal Grammar.
Such a person must find the least costly way to formulate any addition to Universal Grammar (that value is N), and in addition he must
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4.3 The bigger picture

The picture of linguistics that we have arrived at is this: we are all seeking a Universal Grammar, UG1,
which will run on an all-purpose computer, and which will accept grammars and corpora, and the output
of this large contraption is grammatical analyses of the corpora. With this UG, we can do a good job
(though not a perfect job) of finding the best grammar for each language for which we have data; we do
this by selecting grammars for each language, such that the overall sum, over all the languages, of the
length of the grammar plus the compressed length of the data is maximally compact (i.e., minimized).

What could possibly go wrong in this beautiful picture? It would seem that this is the garden of paradise:
if someone finds a way to improve the grammar of one language, while not making the grammar of the
other languages worse, then we will be sure just by running the numbers, so to speak, on the computer.
Different linguists may have different hunches, but we will be able to easily distinguish a hunch from an
advance or breakthrough.

There is one thing wrong, however. We must worry about the possibility that there are two groups of
linguists, using different underlying computers (different Universal Turing Machines, that is) who arrive
at different conclusions. It is not enough to require that the linguist pay for the algorithmic cost of his
Universal Grammar. That cost can always be shifted to the choice of universal Turing machine that
is employed. And every linguist will be motivated to find or design the Universal Turing Machine that
incorporates as much as possible of the linguist’s Universal Grammar, making a mockery out of the
requirement we have already discussed. What do we do now?

Readers who are familiar with foundational work in Minimum Description Length are likely to say now
that there is no way out. We must (they will say) make an arbitrary choice regarding the UTM of choice,
and then work from there. Yes, different choices of UTM will give somewhat different results, but in the
end, there isn’t a whole lot of difference between them.

This is not good enough an answer for us. We need a better answer, and an escape from this conventionalist
dilemma.'* We need to find a way—a good way, though it need not be a perfect way, since what in life
is perfect?—Dby which to settle the question as to which UTM to use for our linguistic purposes.

5 The limits of conventionalism for UTMs

5.1 Join the club

We propose that the solution to the problem is to divide our effort up into four pieces: the selection
of the best UTM, the selection of a universal grammar UG* among the candidate universal grammars
proposed by linguists, the selection of the best grammar g for each corpus, and the compressed length
(the plog) of that corpus, given that grammar g: see Figure 5.

We assume that the linguists who are engaged in the task of discovering the best UG will make progress
on that challenge by competing to find the best UG and by cooperating to find the best common UTM.
In this section, we will describe a method by which they can cooperate to find a best common UTM,
which will allow one of them (at any given moment) to unequivocally have the best UG, and hence the
best grammar for each of the data sets from the different languages.

The concern now, however, is this: we cannot use even an approximation of Kolmogorov complexity in
order to help us choose the best UTM. We have to have already chosen a UTM in order to talk about
Kolmogorov complexity. We need to find a different rational solution to the problem of selecting a UTM
that we can all agree on.

We will now imagine an almost perfect scientific linguistic world in which there is a competition among
a certain number of groups of researchers, each particular group defined by sharing a general formal
linguistic theory. The purpose of the community is to play a game by which the best general formal
linguistic theory can be encouraged and identified. Who the winner is will probably change over time as
theories change and develop.

The annual winner of the competition will be the one whose total model length (given this year’s UTM
choice) is the smallest: the total model length is the size of the team’s UG when coded for the year’s

pay a price for every language in the world that does not need to refer to this aspect of Universal Grammar. Is that true? Or can the
particular languages’ grammar just pass over it in silence?

14The term refers to a difficult situation where we want to, but cannot, escape from a situation where each person involved ends up
saying You do things your way, and I’ll do my things my way, and there is no way to move past that.
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UTM, plus the length of all of the grammars, plus the compressed length of all of the data, given those
grammars. Of these terms, only the size of the UG will vary as we consider different UTMs. The winning
overall team will have an influence, but only a minor influence, on the selection the year’s winning UTM.
We will return in just a moment to a method for selecting the year’s winning UTM; first, we will spell
out a bit more of the details of the competition.

Let us say that there are N members (that is, N member groups). To be a member of this club, you must
subscribe to the following (and let’s suppose you're in the group 4):

1. You adopt an approved Universal Turing machine (UTM®). I will explain later how a person can
propose a new Turing machine and get it approved. But at the beginning, let’s just assume that there is
a set of approved UTMs, and each group must adopt one. I will index different UTM’s with superscript
lower-case Greek letters, like UTM“: that is a particular approved universal Turing machine; the set
of such machines that have already been approved is U. You will probably not be allowed to keep your
UTM for the final competition, but you might. You have a weak preference for your own UTM, but you
recognize that your preference is likely not going to be adopted by the group. The group will jointly try
to find the UTM which shows the least bias with respect to the submissions of all of the groups in a given
year.

2. All the teams adopt a set of corpora which constitutes the data for various languages; everyone in the
group must adopt all approved corpora. Any member can propose new corpora for new or old languages,
and any members can challenge already proposed corpora. At any given moment, there is an approved
and accepted set of data. The set of languages we consider is £, and [ is a variable indexing over that set
L; the corpora form a set C, and the corpus for language [ is C;.

3. The activities involved in this competition are the following. You will have access to the data C; you
will select a Universal Turing Machine of your choice; you will come up with a Universal Grammar UG,
and a set of grammars {I';} for each language. You will calculate two quantities: (a) the length of the
Universal Grammar UG1, on your chosen UTM® and (b) the length of the linguistic analyses, which we
may call the empirical term, which is the lengths of all of the individual language grammars plus the
compressed lengths of the corpora for all the languages. Symbolically, we can express the length of the
linguistic analyses with an empirical term Emp for a given triple, consisting of: UG1; a set of grammars
{T'1}; and the length of the unexplained information in each corpus, as in (7):

Emp(UG;,{T1},€) =Y Tilug, — log prr, (C1) (7)
lel

This group is trying to minimize the quantity:

|UG|UTM°‘ +Emp(Usz{Fl}ac) (8)

which is essentially the minimal description length of the data, given UTM®. Sometimes we will want
to speak of different sets of grammars for our set of languages, because typically competing frameworks
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will compete, among other things, for the right grammatical description; when we do so, we will speak
of two such sets of grammars for the same set of languages as {I';}! and {I';}2.

Another way to put this is that we are doing standard MDL analysis, but restricting our consideration to
the class of models where we know explicitly how to divide the models for each language into a universal
part and a language-particular part. This is the essential ingredient for playing the intellectual game that
we call theoretical linguistics.

We might then imagine you win the competition if you can demonstrate that the final sum that you
calculate in (3) is the smallest of all the groups. But this won’t work correctly, because it is perfectly
possible (indeed, I think it is unavoidable!®) that two competitors will each find that their own systems
are better than their competitors’ systems, because of the UTM that they use to find the minimum. That
is, suppose we are talking about two groups, Group 1 and Group 2, which utilize UT M and UTM?.

It is perfectly possible (indeed, it is natural) to find that (see Figure 7)
UGiluraa + Emp(UG; {T1}',C) < [UG;|urara + Emp(UG), {T'1}?,C) (9)
and yet, for a value of 8 different from a:

\UGi|yrms + Emp(UGH, {r;}',c) > \UGj|lurme + Emp(UGy, {r.},0) (10)

151f a group wants to win the competition as I have defined it so far, they can modify their UTM to make the Universal Grammar
arbitrarily small.
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This is because each group has a vested interest in developing a UTM which makes their Universal
Grammar extremely small. This is just a twist, just a variant, on the problem described in the UNIVERSAL
GRAMMAR IS FREE fallacy that I discussed above. Comparison of UGs, grammars, and compressed data
is made, relatively easily, across different groups of researchers, because for these three things, there is a
common unit of measurement, the bit. This is not the case, however, for UTMs: we have no common
currency with which to measure the length, in any meaningful sense, of a UTM. We need, therefore, a
qualitatively different way to reach consensus on UTM across a group of competitors, our research groups.

5.2 Which Turing machine? The least biased one.

With all of this bad news about the difficulty of choosing a univerally accepted Universal Turing ma-
chine, how can we play this game fairly? Here is my suggestion. It is tentative rather than definitive,
because while it should work among a group of researchers, it is possible to game the system, that is, to
intentionally collude in such a way as to act unfairly.

The general problem is this: we have a set of N approved UTMs. A UTM is, by definition, a machine
which can be programmed to emulate any Turing machine. Let’s denote an emulator that makes machine;
into a simulator of machine; as {i = j}, and the length of that emulator as [i = j]. We set a requirement
that for each UTM; (ileN) in the group, there is a set of smallest emulators {i = j} (in a weak sense of
the word smallest: these are merely the shortest ones found so far).

When a group wants to introduce a new UTM, UT My41, to the group, they must produce emulators
{i= N+1} (foralli < N) and {N+1 =4} (for all i < N). But anyone who can find a shorter emulator
can present it to the group’s archives at any point, to replace the older, longer emulator (that is, you do
not have to be the original proposer of either ¢ or j in order to submit a better (i.e., shorter) emulater
i = j for the community).

All of the infrastructure is set up now. What do we need to do to pick the best UTM? Bear in mind that
what we want to avoid is the case of a tricky linguist who develops a UTM (let’s call it UTM™*) which
makes his or her UG unreasonably short by putting information that is particular to certain languages
into their UTM. It should be possible to discover that, though, by the way in which all the emulators for
UTM?* are unreasonably long—longer than the others. That is, the rational choice is to pick the UT M
which satisfies the condition:

argmain Z[z = ] (11)

Such a UT' M will be the one which is selected by all of the members of the community as the one which is
easiest, overall, for all the other UT' Ms to emulate. A UT' M which is unfair is one which cannot be easily
reproduced by other UTMs, which is the point of the choice function proposed here. We want to choose
the UTM which overall is the easiest for all the other UTMs to emulate. The less this UTM has inside
it, so to speak, the easier it is for all of the other UTMs to emulate it; conversely, a UTM into which a
lot of specific computations have been loaded will require those specific computations to be added to the
emulator of any other UTM which did not build in that specific computation.

6 Your Universal Turing Machine or mine?

The case that would concern us is the case where the choice of two different universal Turing machines
would lead us to select two different Universal Grammars (UGs). What should we do if we find that at
some particular point in our knowledge of languages, there is a UG, UG, which runs on UT M7, and it
outperforms every other UG on all the languages of the world. But on UT M5, UG5 outperforms every
other UG, including UGy, on all the languages of the world. We can assume that there is at least one
language for which the two UGs select different grammars for the same data; we will restrict our attention
to the data from that language, and the grammars for that language.'® What should we do?

16There is a slight irregularity in my doing this, which the careful reader will note. The differences between the ways that the two UGs
work on all the other languages are being ignored, and that is not quite right. Again, we’re trying to get to the heart of the matter.

If you are following carefully, you will notice that it’s not always obvious that we can talk about the one and the same grammar being
run on two different UTMs each with their different UGs (that is, UG(UTM1) and UG(UTM>)). What if one of the UGs allows us to
refer to “subjecthood”, for example, and the other UG has no way to talk about subjecthood at all? These concerns can make the whole
problem very messy. Let’s try to keep things simple, and for present purposes assume that any UG can in some obvious sense encode any
grammar that another UG can, but the length (i.e., complexity) may vary greatly from one to the other. We will also assume that we
can make sense out of the idea that one and the same Universal Grammar can appear in two different implementations for two different

UTMs. That does not seem problematic, but I am assuming our ability to resolve a number of technical problems.
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Back to the problem of whose UTM we are going to use as our reference. Our problem case will arise as
follows. Suppose we have data from one language, and two grammars, G; and Gs. If we choose UT M,
then G is preferred over Go, while if we choose UT M,, then Gy is preferred over G. This would happen
if

\UGH|urm, + Emp(UGy, {Ti},C}) < |[UGs|ura, + Emp(UGs, {T1}',0) (12)

but

\UGH|ura, + Emp(UG T}, C}) > |UGs|uras, + Emp(UGs, {T'}', C) (13)

Here, changing from UTM; to UT Ms has reversed the order of the inequality. Imagine, if you'd like,
that UT'M; permits some important and complex operation to be expressed simply and this operation
is used by G1, but UT M> does not. However, except for that difference G5 is a better grammar, i.e.,
shorter. Now, because these UTMs are in fact universal, this means that there is a translation program
from one to the other, and in fact for each pair of UTMs, there is a shortest translation device used to
allow us to simulate UTM; by using UT'M;; that is, we could say that it turns a UT'M; into a UT'M;.
We indicate the length of the shortest such emulator as [j = i], which is necessarily greater than 0; think
of it as “the size of a program that turns a UT'M; into a UTM;”. Then it follows that on UTM;, UG1’s
analysis of grammar G5, using the best universal grammar it has access to, can never be longer than
UT My’s analysis of the data using grammar G plus the cost of emulating UT My on UT M, which is
[1 = 2]. Informally speaking, a UTM will emulate another machine if the emulation does better than its
own native performance, taking the cost of the emulator into account.

If we translate this into inequalities, then we have the following. First, starting from (12) and adding the
constant [2 = 1] to both sides, we get the following, which says that Group 2 agrees with Group 1 that
if you accept Group 1’s assumptions, then UG is indeed better (I leave C' out of the arguments of Emp
for simplicity’s sake):

[2 = 1] + |UG2|UTJV[1 + Emp(UGQ, GQ) > [2 = 1] + |UGl|UTM1 + Emp(UGl, Gl) (14)
But from Group 2’s point of view, things are the reversed:

\UG1|luram, + Emp(UGh,Gr) > |UGs|luram, + Emp(UG», G2) (15)

UT My’s evaluation of UG1’s complexity (i.e., length) will not be greater than UT M;’s evaluation of UG,
plus the length of the emulator that makes UT M, behave like a UT My:

[2 = 1] + |UG1‘UTM1 + Emp(UGhGl) > |UG1|UTM2 + Emp(UGl,Gl) (16)

Putting these together, we get
[2 = 1] + |UG2|UTM1 + Emp(UGQ, GQ) > |UC712|UTM2 + Emp(UGQ, Gg) (17)

or
\UG2lurm, — UG2lurm, < [2=1]. (18)

By symmetric reasoning, we obtain:
UGalurm, — [UG2|lurm, < [2=1], (19)

and
‘UG2|UTM1 — |UG2|UTM2 < [1 = 2]. (20)

What this says effectively is this: if you and I use different Universal Turing Machines to analyze a set of
data, and my UTM is able to implement my grammar more easily than it can your grammar; and if your
UTM is able to implement your grammar more easily than it can my grammar; then the discrepancy in
the complexity of the theories of grammars used by my UTM and your UTM is bounded from above by
the size of the emulators required by each of our machines to emulate the other.

More specifically, the difference between the complexity of the theory of grammar on my machine UT M;
for my grammar (that’s UG1) and the complexity of the theory of grammar that your UT M assigns to
my grammar must be less than the cost of emulating my machine on yours. If you put it that way, it’s
obvious.
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Figure 9: Competing to be the UTM of the year
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But the consequence of this are concrete. What we have just seen is that each group can be sure that
the extra burden placed on its entry in the competition will be no greater than the size of the emulater
of the winning UTM on its own machine. And the winning UTM has been chosen so that the sum of
the lengths of the emulators of all of the candidate UTMs to it are a minimum, as in eq (15). [check
numbering]

Here is where this discussion has taken us. There is a very reasonable way to define success in linguistic
analysis based on Minimum Description Length analysis, and a common corpora that needs an explanation
based on a linguistic theory and set of grammars. Where MDL may be thought to break down, which
is its inability to choose one UTM and leave the others behind, we can establish a rational program for
selecting a UTM out of a set of UTMs competing to be the least biased UTM of all the candidates. While
no single linguist is obliged to play this game, so to speak, any linguists who believe that their theories
and grammars are the best has a good, and hard, method of proving the point—an opportunity that will
appeal to many, it seems to me.!”

We are very near to a comfortable resting point. We could in fact set up a community of universal grammar
writers, and invite each to submit their UTMs along with the best emulators they could construct, and
we could determine which was the least biased UTM along the lines we have just sketched. This practice
has the advantage that it uses competition in the marketplace as a substitute for any formal proof that
we have found absolute minima in our search for optimal data compression.

7 So this is empiricism?

7.1 Chomsky’s critique of empiricism

Noam Chomsky is surely the most articulate spokesperson for the voice critical of empiricism in linguistics,
and as one of the many people who have learned a good deal of what they know about linguistics from
him, I think it is useful to hear what he has to say on the subject. I do not agree with his view of the
relationship of theory and evidence, which bears centrally on the present issue.'® At times Chomsky
has gone so far as to suggest that his method of science is one which allows a serious researcher to
ignore data when it is incompatible with his theory. In a recent interview, Chomsky discussed both the
methodological notions (which is what concerns us here) and some of the substantive notions involved in
minimalism. Chomsky looked at Galileo, and said that

[wlhat was striking about Galileo, and was considered very offensive at the time, was that he
dismissed a lot of data; he was willing to say, “Look, if the data refute the theory, the data are
probably wrong.” And the data he threw out were not minor. For example he was defending
the Copernican thesis, but he was unable to explain why bodies didn’t fly off the earth; if the
earth is rotating why isn’t everything flying off into space?...He was subjected to considerable
criticism at that time, in a sort of data-oriented period, which happens to be our period for
just about every field except the core natural sciences. We’re familiar with the same criticism
in linguistics....that’s what science had to face in its early stages and still has to face. But the
Galilean style...is the recognition that it is the abstract systems that you are constructing that
are really the truth; the array of phenomena are some distortion of the truth because of too
many factors, all sorts of things. And so, it often makes good sense to disregard phenomena
and search for principles that really seem to give some deep insight into why some of them
are that way, recognizing that there are others that you can’t pay attention to. Physicists, for
example, even today can’t explain in detail how water flows out of the faucet, or the structure
of helium, or other things that seem too complicated....the Galilean style referred to that major
change in the way of looking at the world: you're trying to understand how it works, not just
describe a lot of phenomena, and that’s quite a shift. [1]

Chomsky summarizes the Galilean style as “the dedication to finding understanding, not just coverage.”
Of course that sounds great—the problem, though, is that there is no one who is against understanding.

7There are two closely related concerns, however, that we have not satisfactorily addressed. The first is why we chose in (15) [check] to
minimize the sum of the lengths of the emulators, rather than use some more complex function (sum of the logs of the lengths, etc.); about
this we will say nothing directly. But it remains a possibility that a group could collude to give an unhealthy result in the competition
which we have sketched; we discuss this in the appendix to this chapter.

181f it wasn’t obvious already, I might as well acknowledge that this paper is a dialog with a position that fits my best understanding
of Chomsky. He has posed many of the right questions in a way that many others might have but didn’t.
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Even thoughtful pre-Galilean people were in favor of understanding. No one wants to join a team that
declares itself not interested in understanding.

It’s certainly a wildly inaccurate description of what Galileo was doing to suggest that his methodological
advance was to ignore data, and I find it hard to conceive of why Chomsky would offer that interpretation,
other than as a justification for urging others to ignore data when the data contradict their favorite theory.
There is a very troubling and disturbing problem we encounter as soon as we undertake to ignore data—
does it need to be spelled out? The problem with this methodology is this: it works just fine for me,
but it is not fine for you, as far as I'm concerned. I am confident about my own ability to identify true
conjectures which do not appear to be supported by the data, but I am not so confident about yours.
And who knows? You might feel exactly the same way about it, only in reverse. That’s the problem.'®

If Galileo’s insight was not to ignore data, then what was it? First of all, he came to his work with a deep
and thorough skepticism regarding the received truth of the day, which was the Scholastic interpretation
of Aristotle. In Chomsky’s student days, the equivalent would have been a deep and thorough skepticism
regarding American structuralism; in today’s world, it would be a deep and thorough skepticism regarding
minimalism.

Beyond skepticism, though, Galileo’s theorizing was based on two principles before all others, and he could
not have said any more clearly what they were: first, that we must look not to books but to Nature,
the real phenomena, if we are to understand the world, and second, the language in which Nature is
written is mathematical, which is to say, quantitative in character. It was not for nothing that Galileo
is remembered for measuring the distance traveled by ball rolling down inclined planes: it was the study
of what things really do that allowed him to show that these patterns did not fit the received wisdom of
the time, no matter how well those theories satisfied the intellectual palettes of established scholars.

The fact is, there is no philosophy of science that allows one to ignore data. There is something else,
though, which we can do when we see our theories running into empirical difficulties: we can acknowledge
that our theories are still imperfect, and are inadequate for accounting for many things linguistic. There
is no shame in that. There is nothing wrong with a science, such as linguistics, allowing for some research
programs to be conducted despite poor empirical results, if there is enough agreement that the hypotheses
may pan out someday; this is the scientific equivalent of the “let a thousand flowers bloom” philosophy.

There is a much deeper flaw, though, in Chomsky’s appeal. Remember: Galileo wasn’t a success until his
theories had been established empirically, both by matching prediction to observation, and by showing
that what had appeared to be false predictions were only apparent, and not real. There’s no merit in
ignoring data at the time; the only merit is in retrospect, after the stunning predictions actually do match
the observations, when the scientist can pat himself or herself on the back for having never given up on
a theory that eventually paid off. Holding on to a theory whoses predictions don’t match the facts is
like holding on to some stock in the stock market when everyone else says you should sell. You probably
should sell, but if you don’t, and you eventually make a million dollars from it, then you can tell everyone
how smart you are. But you can’t start telling them how smart you are until the stock actually goes
up in value. There are far, far more people who have held onto to theories that never came back to
life than there are people whose hunches overcame initial disappointment. It is romantic to think that
holding on to a theory that seems to have been falsified is what made Einstein Einstein, but that kind
of thinking won’t work for cold fusion (or if you are still holding out for cold fusion, choose your favorite
once-exciting-but-now-shown-false theory to make my point).

When all is said and done, it would verge on the irrational to deny that the long term goal of our
research is to produce theories that simultaneously account for all of the relevant data, and to do so with
a minimum of assumptions. The new empiricism offers a way to measure success along these lines. It
may not be successful—we may find that probabilistic models cannot be established for some important
areas, or that surprisingly arbitrary constraints need to be imposed upon the class of possible grammars.
But it seems to me that we stand to learn a great deal from trying it out: we will learn where it succeeds,
and I am sure we will also learn in the places where it may fail.

Thus Chomsky’s first argument against this sort of empiricism may be summarized (not unfairly, I think)
as this: we should follow the footsteps of the original scientific revolutionaries. The response to this is
that Chomsky has both misread the historical record, and failed to propose a methodological canon that
we can all share (that is, it cannot be the case that we all get to choose which hypothesis is maintained

19We do not have to express this in an amusing way. An ethical theory generally adopts some version of Kant’s categorical imperative,
the notion that we must act only according to a principle that we wish to apply to everyone. But if all researchers wish to give all
researchers the limitless right to ignore data so long as they are interested in understanding, not just coverage, we will have chaos rather
than a discipline.
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regardless of the data; there will have to be shop stewards—or mandarins, or power brokers—who get to
decide; I've tried to suggest that this is a hopeless and unattractive position to maintain).

Chomsky has offered a different argument, and one that carries more conviction, I think, but it too is
based on just exactly what it is that we mean by science. His argument is that linguistics is either about
something in the real world, or it is not. If it is about something in the real world, the only reasonable
candidate about which linguistics can make claims is the human brain. If linguistics is not about the
human brain, then it is not about anything in the real world, and there is therefore no truth of the matter,
and therefore any linguist is free to believe anything s/he wishes to believe, and there are no scientific
guidelines or standards—and in particular, linguistics is then not a science. Hence, if linguistics can be
a science, then it must be a science of the brain.

While that is my summary of Chomsky’s idea, it has been laid out explicitly in a number of places.
Here is one place, where Chomsky is responding to critics whose criticism he finds impossible to fathom,
linguists who do not believe that they are making claims about the human brain:

Since there are no other objects in the natural world that the linguist’s theory is about, the
demand apparently is that the linguist construct a theory of some non-natural object. Again
the tacit—and sometimes explicit—assumption seems to be that there are entities independent
of what people are and what they do, and these objects are what theories of language are
about, and further, must be about, on pain of irresponsibility. Again, we are left in the dark
about these curious entities and how we are to identify their properties. Considerations of
communication, the theory of meaning, the theory of knowledge, and folk psychology have
also been adduced to argue that there are independent entities, external to the mind/brain, of
which each of us has only a partial and partially erroneous grasp, always leaving as a mystery
the manner in which they are identified, except by stipulation, and what empirical purpose is
served by assuming their existence. I think there are ample grounds for skepticism about all of
these moves...

Adopting this approach, we abandon the hopeless search for order in the world of direct expe-
rience, and regard what can be observed as a means to gain access to the inner mechanisms of
mind.2°

There are two central points here: the first is whether linguists must declare their theories to be about
minds (or brains) or else suffer the conclusion that theirs are not theories at all; the second is whether the
search for order in the world of experience (or “direct experience,” as Chomsky calls it) is an important
part of the scientific tradition from which we hope to learn, and to which we hope to contribute.

Do linguists know what objects their theories are about, some or all of the time? Let’s put that question
on hold for a moment. Do scientists in general know what their theories are about? The answer to this
latter question is not as unequivocal as we might think. It is not infrequently the case that creative new
scientific theories come along with a nagging uncertainty as to what they are about. Newton’s theory
of gravitation was the first classic case of this sort: Isaac Newton, like all the other great thinkers of
the scientific revolution, was committed to a mechanistic world-view, one in which the only sensible way
in which objects could interact was through immediate contact and collision. And yet his theory of
gravitation flew in the face of this, and many of his contemporaries were aghast at the theory’s inability
to give an account of what this thing could be that leads to the action at a distance that we observe
and call “gravity.” Newton was as unhappy as anyone, but he could not deny the compelling force of the
mathematical model that he developed which allowed an elegant and powerful account of motion both on
the Earth and in the solar system. Mathematics and accurate prediction, according to Newton, trumps
being able to say what in the real world the theory is about. (In the end, it was not until the beginning
of the 20th century that a new idea came along—that of space-time with an inherent curvature—that
allowed us to say what the theory of gravitation is about, and it did it by throwing out, in a sense, all of
the substance of Newton’s ideas.)

Mendel’s theory of the gene is another classic example of a scientific theory which does not know what
it is about. Mendel’s account, followed up on by many others, was based on finding repeated statistical
effects in the distribution of traits in successive generations of plants, fruit flies and everything else. But
it was not until the discovery of the form and function of DNA nearly a century after Mendel that we
began to know what kind of thing a gene is in the physical world. Before then, biologists developed a
theory of genetics and inheritance without knowing what theirs was a theory of in the physical world.

20Chomsky 1997[5], p. 18-19; all citations in this section are from that source.
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A third example along these lines is that of the wave theory of light. By the end of the 19th century,
there were strong proponents on both sides of the divide between those who viewed light as a wave of
something, and those who viewed it as movements of particles.?!, but overall, it is probably fair to say
that the wave-theorists had the strongest arguments when all is said and done: they could give an account
of wave interference patterns that was very hard for the particle theorists to counter. And they gave a
name to the substance that light was a vibration of: they called it ether. And they were utterly certain
that ether existed, because after all, they had a great scientific theory, and it had to be about something
in the physical universe. But they were simply wrong: there is no ether, and while their theory based on
ideas involving vibrations led them to good models for a large number of physical phenomena, it turned
out that all along, they had been wrong in thinking that they even had a clue as to what their theory
was about, at a scientific level: we had to wait for the quantum theory of the photon to reach a point
where we could say that we have a reasonably good idea of what the theory of light is about.

What all these cases—Newtonian gravity, Mendelian genes, undulatory theory of light— have in common
(and we could have chosen many others to make the same point) is that careful and detailed observation
and measurement were compared with quantitative models, usually but not always under controlled
conditions, and convincing cases were made for the ability of formal and mathematical methods to model
the data.

I have gone into this matter in this detail because I want to emphasize that the empiricist model of
linguistics as a science which I have sketched is not intended to be a partial approximation to some
larger scientific model which will include a brain, and without which linguistics will have no sense or
meaning. Linguistics is already a science of the data that linguists can argue need to be accounted for,
and the bayesian methods that we have explored here provide an unambiguous account of what it means
to compare two or more theories.

There is a flip side to this as well. I believe that many linguists think that they believe their theories
are about minds and brains, but do not act as if they believe it. The vast majority of linguists do not
pursue their linguistic theories with the goal, direct or indirect, of establishing a location in the brain
and a function in the neural circuitry for their syntactic or phonological components. At best, they offer
an 1.0.U.—that is, a promise that at some unspecified future date, a physical location in the brain will
be found. Our view is that there is no difference between promising, some day, to do something in a yet
undiscovered way, and not promising to do it at all. It is not the linguist’s job to determine how the
brain works: that is a good thing, since there are few linguists with any serious training in neuroanatomy.
It is the linguist’s job to figure out how language works, and as that challenge continues to be handled,
linguists and neuroscientists will be able in the future to come up with a synthetic view.

Consider a well-establishesd theoretical concept in phonology: take the mechanisms of autosegmental
phonology, as applied to problems of analyzing Bantu tone languages, for example. To the best of my
knowledge, despite more than thirty years’ of work on the linguistic side of things, there is no evidence
that the brain employs autosegmental representations—mnor even a clear specification of what kind of
data could be interpreted as confirming, or disconfirming, that hypothesis. And yet the phonologist’s
confidence in the model is not shaken; it is not the case that the linguistic arguments for autosegmental
analysis were not very good, that they were the best we could come up with at the time while we waited
for neurosciences to make good the promise to test some hypothesis about neural circuitry that the
linguist came up with.

The naive realist?? against whom I am arguing thinks that the empiricist is deluding himself; the naive

realist thinks that the empiricist really does believe that the objects described by the theory do exist, and
that is why even the empiricist wants to scour the universe to discover whether neutrinos and gravitons
and Higgs bosons and autosegments and all sorts of exotic theoretical objects exist. The naive realist tells
the empiricist: you see! you really do want to test whether the things that you postulate exist. If you
can’t find them, you (or your colleagues) will no longer be satisfied with your theory. Just accounting for
the observations isn’t enough, if you know that the entities you postulate to account for those observations
cannot be found when the tests are run.

The empiricist thinks that the naive realist gets carried away. The empiricist can love an elegant theory
as much as the next person (and maybe more), but he knows that history has shown that dragging the

2lcite Mertz vol. 2

22Not everyone who uses the term “naive” takes the trouble to define it, which leaves a reader’s mind willing to read too much or
too little into it. I will say what I mean by this characterization. I think that a naive defender of a position is one who thinks that his
opponents disagree with him because they have not even considered the evident, obvious reasons for his position. In short, the naive
realist does not realize that there are intellectually valid and defensible positions different than his own, and thinks that empiricists say

disagreeable things because they haven’t thought much about the problem.
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entities postulated by a theory into the world of what is observed is difficult and treacherous.

It’s not difficult the way it is difficult to drag up a ship that has sunk to the bottom of the sea; it is
difficult the way it is to get a stain out of a rug, it is difficult the way it is to find an equitable way to share
the wealth of our society. These are difficult things to do, and even if we try hard we may not succeed in
accomplishing these tasks, and it does not mean that we were misguided by trying to accomplish them.
But our best hopes may not be met. That is how the empiricist feels about theoretical entities: it is very
reasonable to undertake to find them in space and time, if they are entities that are postulated to exist
in space and time. If we find them, we will have enhanced our observed universe. But science continues,
and it continues in its full-bore fashion with no problems at all, thank you very much, whether those
theoretical entities are observed, or observable, or neither.

The realist replies: if you do not believe that those entities really exist, then you cannot believe, really and
truly believe, the scientific theory, and you do not have a real explanation for the regularities you have
found in the data and the observables until you acknowledge that you also believe that the unobserved
things the theory postulates do in fact exist, so that they can actually cause the things observed to come
into existence.

The empiricist realizes that the stakes have grown larger now. The realist has just accused him of bad
faith, deep down inside. But the fact is that even the linguist who rejects empiricist philosophizing has
a very limited kind of belief in the reality of the theoretical entities he says he believes in.

The empiricist’s reply to the naive realist is this: you did not really believe that your unobserved entities
existed. If you want to insist that you really do believe they exist, you are going to have to acknowledge
that it is in a rather different sort of way than the way in which you believe that the Empire State Building
exists, or the Pentagon, or your left foot. Because we all know that scientific theories change, and what
was once strong motivation for believing that something (like caloric or phlogiston, or the ether of which
electro-magnetism is but a vibration, or the passive transformation if you are a generative grammarian)
may tomorrow burn off like the morning dew. You, naive realist, you are willing to change your view as
to what exists on the basis of learning a better theory! The very foundation of your belief in theoretical
entities is the conciseness of the theory that links the theoretical entities to the observations, and if there
is a better way to account for the observations, you have no trouble at all dropping yesterday’s belief in
phlogiston or grammatical transformations. You would never do that in the case of a physical object: if
the World Trade Center is gone today, it is because something happened to it, not because we have a
better theory today that does not need it anymore (whatever that might mean!). In short, the law of
rejected entities: both realists and empiricists say good-bye to rejected theoretical entities with no trouble
at all.

8 Doing linguistics this way

It may well appear to the reader that the discussion to this point has been abstract, and distant from the
working life of the linguist. But the fact is that the ideas presented in this paper have all emerged out of
very concrete research projects, and in this section I will describe how the study of morphology can be
pursued in a way that can be derived from the empiricist principles we have discussed. Linguistica is an
open-source unsupervised morphology learning program which has been described in a series of papers.?3
The goal of this project is to determine whether an empiricist program of the sort that I have outlined
in this paper can succeed in inducing a natural language morphology. In reality, work of this sort means
investigating and exploring morphology-induction hypotheses, and trying to learn from both the successes
and failures what changes need to be made to make the system more successful—where “success” means
that the system is able to take a large corpus of words from an unknown language (unknown to it, in any
event), and parse the words into morphs, develop a morphological grammar in the form of a finite-state
automaton, and propose hypotheses regarding morphophonology, that is, the changes in the shape of
morphemes that occur under the influence of near-by morphemes (e.g., the plural -s suffix in English is
preceded by a schwa after strident coronal consonants).?*

Linguistica in effect takes in a set of words as its data, and produces a probabilistic grammar that
generates those words (and perhaps unseen other words as well). It knows essentially only this: that it
would like to maximize the probability that it assigns to the data, and it would like to keep its grammar as
small and simple as possible. It could maximize the probability of the data by having a trivial morphology

23See http://linguistica.uchicago.edu for the program, as well as technical discussions in [8], [9], and a more general overview in [11]
24The morphs of a morpheme are the various phonological realizations of that morpheme.
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that generates each word in the corpus as an unanalyzed string, and assigning to each word precisely the
frequency with which it occurs in the data; it is a mathematical fact that such a system would assign the
highest probability to the data, among all the ways that could be considered. But such a morphology
is unreasonably large, and fails to capture any generalizations at all, and hence is bloated, to the point
of morbidity, by over-representing material in the morphology (which is nothing more than a word-list).
If the data includes linguist, linguists, and linguistic, it will fail to notice that the string linguist has
occurred three times, and that string can be augmented (so to speak) by the addition of suffixes (-0, -s,
-ic) that can be similarly employed throughout the morphology.

At the opposite extreme, the morphological grammar can be made very simple if we allow it to generate
all sequences of letters (or phonemes): this grammar is very small and simple, but it assigns extremely
low probabilities to each of the observed words—it is helpful to bear in mind that the more separate
pieces an analysis posits in the data, the smaller (all other things being equal, or even roughly equal) will
be the probability assigned to the data.

Linguistica proposes and evaluates a sequence of states, beginning with one in which each word is un-
analyzed, achieving initially a great deal of savings in the spelling out of the morphology by virtue of
extracting redundancies, which is to say, the existence of morphs in the analysis of particular words.
Positing a suffix -s increases the complexity of the morphology as a graph per se, but it greatly reduces
the complexity of the labels on the edges of the graph, and thus on balance decreases the complexity of
the lexicon.

But the model of learning that emerges is not at all one in which a series of ordered procedures must be
followed to the data in order to arrive at the ultimate grammar, along the lines that have been attributed
to American structuralist linguists in the 1940s and 1950s. The learning system spends considerable
amount of time considering alternative analyses that it ultimately rejects, rejecting them on the grounds
that all things considered, they are not superior to the analysis that has been considered so far. As long
as we have a good grammar evaluation model, we can be less concerned with a language discovery device
that considers possibilities that are incorrect for the language in question.

So when Linguistica explores the data of a European language like English or French, it does a very good
job of discovering stems and affixes; it runs into trouble when a morpheme has two possible realizations:
the final vowel of beauty is distinct from the second syllable of beautiful, from both a phonological and an
orthographic point of view, and the analysis of beauti+ful as stem plus suffix can be strongly suported
only once the alternation between beaty- and beati- (so to speak) has been considered as a candidate
generalization in the language. Thus to get Linguistica to better learn morphology, it is important to give
it the smarts to induce morphophonological generalizations, which in the final analysis are generalizations
which allow the morphology to be simplified.

Knowledge of syntax can be important in inducing the correct morphology as well, to be sure: again
considering English, while most pairs of words of the sort dim, dimly are adjective and adverb pairs,
there are many that are noun/adjective pairs, such as friend/friendly.

Development of Linguistica allows a range of important questions to move from highly theoretical to
plainly concrete. Consider the set of stems that it discovers in English that appear with the suffixes
—0, —ed, —ing, s, and those that it finds that appear with the suffixes —(),s. It would be wrong to
conclude that the those in the second set (which are nouns, of course) are of the same morphological
category as stems of the first set (verbs like jump or walk), but on what basis should that conclusion be
drawn? There is a great deal of evidence that supports the conclusion, notably the fact that there are
noun stems that occur with very high frequency in a text without either -ed or -ing appear after them:
the effect of this kind of negative evidence is easy to build into the learning model. But it would not be
unreasonable to attribute to the language learner the apriori concepts of noun and verb, associated with
the semantic notions of entity and predicate, and use this knowledge to induce the morphology learner
to associate different morphological patterns with the two distinct concepts. (We do not in fact do this
in Linguistica, but this is a case where a not unreasonably linguistic bias could play a role in correct
morphology induction.)

On the whole, Linguistica does quite well, though the project is certainly closer to its beginning than
it is to its completion. Most importantly, though, it is a concrete embodiment of the kind of empiricist
language-learning described here.
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9 Conclusion

The observations I've made in this paper undoubtedly sound quite abstract, but they do have a very
practical side to them, as I've briefly sketched in the preceding section. The discussion here has been
based on Minimum Description Length (MDL) analysis (Rissanen 1989 [14]), and MDL analysis lies at
the heart of Linguistica; MDL and related approaches are being pursued by a number of researchers
at this point.?® I believe that the approach discussed here can be applied quite directly to linguistic
problems, and the reader is welcome to see an example of that at the website indicated. In fact, the order
of things has been quite the opposite of what might appear to be the case, given the present paper: in
actual fact, the concrete applications came first, and the theory came later (which is the usual order, in
the lives of theories). The goal is to develop an understanding of what it means to develop a grammar of
a set of data which is explicit enough that it embodies the considerations that a human linguist applies
in determining what is the best grammar for the data.

The hypothesis that I have made in this paper is very simple: that a universal measure of algorithmic
complexity is enough to provide an explanation for properties of grammars. This may not be true, from
the point of view of neuroscientists: it may be that it is necessary to define, for example, a highly restricted
subclass of grammars that are possible human grammars, because we discover that the algorithmically
simpler ways of accounting for the data in these languages is not the way used by the human brain.
I don’t think that there is any reason for such pessimism at this point, but it is certainly possible in
principle.

But the main take-home point is that algorithmic complexity, working together with probabilistic gram-

mars, allows for a very appealing conception of what linguistics is, and developing an empiricist conception
of the task that is remarkably true to the spirit of Chomsky’s Logical Structure of Linguistic Theory.
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