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1Organization

My primary office is in Rosenwald 201B, and I can be found there. It is in the Linguistics Depart-

ment. I’m available a lot of the time; please email ahead and we can fix a time. For help with

coding, it is best that you work first with one of the TAs.

There are two TAs for the undergraduate version of this course. They are grad students in Com-

puter Science: Steven Basart (xdsteven@uchicago.edu) and Lang Yu (langyu@uchicago.edu).

The graduate version of this course is for graduate students in Computer Science, and they will

have an extra project to do—a team project on discovering compounds and multiword units

(MWEs).

Students will submit their homeworks through the CS department’s SVN server. There is informa-

tion on how to use it on the chalk website for this course.

There are 9 regular problem sets (1 for each week, though the graduating students will automat-

ically get full credit for the last problem), and full score on all problems gives 90 points, which

qualifies as an A. To facilitate your normal expectations about numbers, I will add 10 free points

to everyone’s score so that full score looks like 100 rather than 90.

Problem sets begin to be due in Week 2.

There will be no hourly exams or final; the grade is based on your assignments, plus class partic-

ipation. The HMM problem is the hardest, I think, and you really will have to set aside the time

needed for it during the middle three weeks of the quarter.

1.1 Homework assignments

Your assignment should in general contain the following components:

1. A README.txt file

It should begin with a table explaining the nature of the different files you have submitted. Here

is an example from a student’s homework last year:

1



Contains:

anagrams.py -Run this.

-Usage: python anagrams.py [-i] -F -N

where -F is followed by the filename

-N is followed by the min size of the anagram set

The [-i] flag will cause the program to print out the most

interesting anagram (Problem 6). Without the flag, the program

sorts the anagrams by size, length, and overlap.

Sample usage: python anagrams.py [-i] -Fdict.txt -N6

formatdata.py -Module to parse data

stringDistance.py -Module from hw6 to calculate string edit distance.

dict.txt -file to run the above on

sampleOutput.txt -output from running the above on dict.txt and size 6 (as requested by

the assignment and as given by the sample usage above)

sampleSurprisingOutput.txt -output from running the above on dict.txt and size 1

Then you should explain in prose what you have done.

2. Typically, you will have a file with a name such as "output.txt", whose significance will be

evident to the human eye, aided by the explanations you include.

1.2 Data

I have made a set of dx1 files from previous years available at www.cs.uchicago.edu/~jagoldsm/

data.

2 Chapter 1 Organization



2Introduction

2.1 What we are going to do in this course

This course has evolved over the past few years into a course that has a specific orientation: it

is a course about a number of methods that are widely used in computational linguistics (and

related fields), and it is a course about how quantitative methods and models can be used to

gain considerable insight into the structures of natural (human) languages. We could do the first

without worrying about the second, and it would still be a course on natural language processing

and computational linguistics, but it would be much less interesting, and not worthy of the Uni-

versity of Chicago in any event. To date, most use of quantitative models in modern linguistics

have been add-ons, after the fact—efforts to see how quantitative data can be used to support,

clarify, or infirm hypotheses that arise out of other methods. That is not what we will be doing.

Our goal is to find ways in which quantitative methods can be developed in order to deepen our

understanding of what grammatical structure is (using the term ‘grammatical structure’ in the

broadest way possible).

Redundancy = Structure

probability

Compression

Encoding

Observation

= Structure + Message + Noise

Structure ⇒ Prediction

2.1.1 Kinds of models

• Transitional probability models: FSAs

• Segmentation models

• Vector space models

3



Anagrams pairs

licenses silences
algorithm logarithm
cautioned education
continued unnoticed
generates teenagers
grandiose organised
integrals triangles
percussion supersonic
striptease tapestries
colonialist oscillation
entirety eternity

Tab. 2.1: Anagram pairs

2.1.2 Anagrams

What’s the best way to write a program to find anagrams?

I took a list of 44,000 English words, and found 1,200 sets of anagrams. Most of them are boring,

but how do we characterize ’boring’ (so we can go beyond knowing it when we see it)?

Some interesting ones are in table 2.1 (see just below).

Others are almost interesting, like countrimen and unromantic (who spells it countrimen?), or

coordinates and decorations, or incorporate and procreation.

A lot are boring for reasons that are easy to make explicit: there are many, many examples of the

form brother’s, brothers’. What is the principle that makes those cases uninteresting?

There are quite a few which are misspellings, like provdied and provided, or available and avaliable.

That’s not interesting either. Why?

Likewise, takeover and overtake, or nine-thirty and thirty-nine.

Or even conversation and conservation.

How about these:

I think we can all agree that last one is really boring, and so is the second to last. But the first one

is quite striking – worth remembering, to amaze people at a party (but not to tell them what you

learned at school today).

4 Chapter 2 Introduction



Anagrams

alerting altering integral relating triangle
enlist inlets listen silent tinsel
least slate stale steal tales
post pots spot stop tops

Tab. 2.2: Anagrams 2

There are two points to this brief look at anagrams. The first is the answer to the question, what’s

the right strategy for writing a program to identify anagrams? That’s a good question, with a

clear answer. The second question is interesting, but much vaguer – still, some of you might find

it interesting. It is: is it possible to write a program that will model our intutitions of what an

interesting set of anagrams is, as opposed to boring anagram sets? What contributes to some

anagram sets being boring? Surely length has a lot to do with it (post and pots, e.g.) but also

semantically unusual and surprising juxtapositions (like integral and triangle: it is relevant that

they both sit in the semantic field of mathematics, and yet otherwise have nothing to do with

each other, at least as far as letters are concerned–or listen and silent).

As to the first question—how to find anagrams—the point is that this is a case where we want

to do a little bit of preprocessing of the data, and it will make the job vastly more simple. We

don’t want to directly compare integral and triangle and compare the letters one by one. We

want to find a representation for each word that eliminates the linear ordering that makes each

word what it is. And often the most natural way to eliminate a certain kind of information in a

representation (here, the linear ordering of the letters) is to impose a regular pattern. The regular

pattern that we will impose is this: we will begin by alphabetizing the letters of each word. Then

we can sort (that is, alphabetize) those alphabetized lists, and all anagrams will end up next to

each other on that list. Couldn’t be easier.

2.2 State of the discipline of computational linguistics;

its relationship to neighboring domains.

1

This is the first, last, and only class that address intellectual history as such. And I can offer

right now the most important thing I will say all quarter: You don’t understand an answer

until you understand the question to which it is the answer. And we —we teachers—tend to

teach answers more often than we teach questions. And we test how well you understand the

answers, not how well you understand the questions. Sometimes we ourselves don’t understand

the questions to which we are offering the answers.

1Week 1, class 2
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The second most important thing I can say is that the work of each generation is the challenge

posed by two things: first, the technological advances offered to it and the advances made

in other fields, and second, a response to the perceived inadequacies of the answers offered

by their parents’ generation. This second is very important: each generation is very sensitive

and aware of the inadequacies of what is handed to it by its teachers’ generation. Ironically, of

course, the teachers’ generation passed on what it thought was most important, part of which

was the corrections that it offered of their teachers’ generation —and the irony then emerges for

natural reasons that each generation tends to feel a kinship to their grandparents’ (intellectual

grandparents) generation.

When we look at the way in which disciplines change from a generational point of view, it is help-

ful to separate internal or endogenous change, such as the desire of one generation to separate

itself and its problems from those of the generation before, from the external or em exogenous

changes, notably political events (such as World War II, or wars in general) and changes in tech-

nology (which we as computer scientists are very aware of).

Remember: the long tradition of viewing the goal of scientific knowledge as understanding, pre-

diction, and control. “Understanding” is intimately connected to the notion of “explanation,” a

term which means different things in different contexts (and times).

2.3 Brief history of computation, linguistics and

computational linguistics

Reading: Perreira, Abney (twice), Lillian Lee. Easy but very thoughtful papers.

2.3.1 History of modern computation

Began with Leibniz and Pascal, and their concern with the difference between soft mentalism and

hard mentalism. At this time, the principal observable difference was that people can think, and

no on else can. Some people can thinker better than others; is that just like the observation that

some people are stronger than others? Is being able to think more a kind of strength, or mental

strength?

By the 17th century, thinkers were becoming more concerned about certainty. The model for

certainty was Descartes (soft logic) and Euclid (hard logic). Mathematics was also a model for

knowledge; things were true or false, known or unknown. Things known through hard logic could

be accessible to a machine. Machines were new at this point. Is this a paradox, that mechanical

things can know the same things as are the most certain? Maybe so.

This became a more important question in the mid 19th century (George Boole, Gottlob Frege)

especially with David Hilbert. Part of the concern was the apparent destruction of the foundations
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of certainty, which was held up to the light with the changing status of geometry. (Kant, non-

Euclidian geometry)

George Boole tried to show that logical inference could be reduced to algebra. But at the same

time he accepted the (perhaps minority view) that knowledge must be divided into what is known

with certainty and what is known with probability.

David Hilbert in the late 1880s provided a new axiomatization for Euclidian geometry.

What would the foundations for arithmetic be? There was a lot of buzz and excitement about the

possibility of reducing arithmetic to set theory and logic. Peano, Frege, Russell.

Then Russell discovered his antinomy, and set theory no longer seemed the best place to build the

foundations of arithmetic.

Hilbert wanted to build a theory of mathematical inference, and that was done by several people

in the 1920s. Turing, Church, Godel.

Turing’s approach (and Post’s) involved an abstract object that looked very much like machines

that we have in the Real World.

Concern in the 1920s and 1930s about the notion of an effective procedure. Alan Turing and

his Turing machine (a-machine). World War II, and the three projects of the Allies that needed a

computer: artillery aim, code-breaking, atomic bomb modeling.

After World War II, there were serous concerns that the country would fall back into a depression.

No one knew whether the advent of computers would help or hurt the economy in this way.

2.3.2 History of [mainstream] linguistics

19th century linguistics focused on history—history of European languages, and the reconstruc-

tion of Proto-Indo-European, and its sense was that explanation meant historical explanation.

Reasons based on desire to understand the origin of peoples (nations), genealogically and geo-

graphically.

Discovery of Indo-European, with some uncertainty as to where it was spoken. Still a live question

today.

Linguistics began in Germany, and rose with the rise of the University (Wilhelm von Humboldt).

The research university was a new invention. Students come in order to learn how to do re-

search and make new discoveries. They are not learning to become preachers, or bureaucrats,

or ministers, or high school teachers. This system was strong in Germany, and not so much else-

where in Europe. It came to the US with Johns Hopkins, Clark, and the University of Chicago. 4

generations of American universities: Harvard, land-grant, Humboldtian, cold-war.
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Great interest in where we come from, biologically and culturally (and hence linguistically). Proto-

IndoEuropean. Relation to philology.

Shift around 1900, with Saussure, a shift to interest in synchronic linguistics.

In the 20th century, three new modes of explanation arose for the study of language: psycholog-

ical, sociological, and algorithmic. Chomsky’s principal contribution was bringing algorithmic

thinking, and a sense that such analysis provided a new kind of explanation, to mainstream lin-

guistics. This was part of a larger movement that took place in the 1950s, in large part an effect

of the rise of computers and computational modes of thinking.

Edward Sapir and Leonard Bloomfield were the two greatest American linguists of the first half

of the 20th century; they were followed by Zellig Harris and Charles Hockett, both informally

students of both Sapir and Bloomfield. Chomsky was the student of Harris.

1924: founding of Linguistics Society of America. American structuralist tradition: Bloomfield,

Sapir, Zellig Harris, Charles Hockett. Anti-metaphysical orientation, in keeping with the strong

positivist trend of the time. Zellig Harris: the goal of the linguist is to produce an account of how

and where a language departs from equiprobability of its component pieces.

Cycles of views about abstract objects and positivism.

Excursus on George Zipf, and his laws. Opinions at the time about quantitative generalizations

in linguistic analysis. Zipf’s Law: inverse linear relation between frequency and frequency rank.

Zipf perceived a hostility towards anything at all quantitative among the LSA linguists. Dynamic

philology.

2.3.2.1 Formal linguistics

Development of the notion of grammar as a generalization of the formalization of proof, starting

in the 1930s, notably through the work of the Polish logicians, e.g. Lukasiewicz. Konnexität.

1940s: development of information theory: Norbert Wiener, Claude Shannon (and Warren Weaver

of the Rockefeller Foundation).

1950s: Chomsky and Solomonoff: problem of induction, and the possible relevance of probability

theory.

Computers: embraced by many linguists in 1950s and 1960s. More, perhaps, in England even

than in the US.
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2.3.2.2 Back to computers

Computers 1940s, heavily supported by WWII (solving diff equations on the fly for artillery;

decoding; development of nuclear weapons)

Shannon, cybernetics, machine translations (MT) as part of the Cold War effort.

Cybernetics: Norbert Wiener. Machine translation: Warren Weaver of the Rockefeller Foundation

wrote a famous letter in c. 1948. Cold war, support from CIA, starting in 1951: MIT, Johns

Hopkins especially; about a dozen different places, mostly universities.

Not a great success. Oversold project, expectations were too high. Bar-Hillel. Started project at

MIT; wrote a report in the early 1960s that killed MT in the US.

Information theory: late 1940s: Shannon, Wiener, Weaver and Shannon. Wiener’s best seller!

Complexity: Ray Solomonoff, Greg Chaitin, Kolmogoroff. Solomonoff: University of Chicago and

Carnap. Cambridge MA.

2.3.2.3 Computational linguistics

MT:Journal named Mechanical Translation founded in 1954 by Victor Yngve (U Chicago). Name

changed to: Mechanical Translation and Computational Linguistics, and taken over by ACL in

1965.

ACL founded 1962, then called AMTCL; became ACL in 1968.

Two killer apps:

1. Machine translation: MT

2. ASR, automatic speech recognition.

[30m] 1990: rise of statistical models, probabilistic models, esp. in speech recognition. ASR. ASR

was the second thing on everyone’s wish list. Air Force was a buyer for this; they want pilots be

able to speak to their airplanes. Medical demand. Brief digression on speech generation; interest

in the 1990s. Email before smart phones. In the late 1980s, a group began to split off, these were

Jelinek/IBM model, and Jim Brown at Dragon Systems; the HMM view;

In this era, the task is not to model experts, but to create systems that learn when you give them

a lot of examples of what they have to learn: supervised learning. This seemed like way to high

a goal, but it is the perspective that has won the day.
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Second huge methodological change: insistence on quantitative evaluation of performace. Big

change in the values of what counts as computational linguistics.

The problem is not to write a program that can recognize what you’re saying; the problem is write

a program that can take a large corpus, tagged as needed, and itself develop a capacity to make

the link between sound and spelling.

Mainstream linguistics does not share these values! Why not? Why not learning + quantitative

evaluation.

Answer: Rise of generative grammar in the late 1950s. At first it seemed to many that Chomsky

would bring a link to computaitonal linguistics, but Chomsky himself always said that that was a

misunderstanding of what he was trying to do. He thinks that the problem of learning grammar

from data is unrealistic; the reason that we as children do it is that we have a good of prior

knowledge, a rich learning mechanism by virtue of our genetic endowment. There is no general

learning algorithm involved in learning language.

[41m] It would be false to say that all linguists follow him in this, but many do. This is changing,

because of big data on the internet; also because there are people like me and classes like this

one.

Abney’s paper admirably brings out the three themes that statistical computational linguistics

brought in the 1990s:

1. a demand for analyses that were robust (did not operate on toy data samples);

2. that were language-independent, and thus learned and were portable;

3. and analyses that were accompanied by quantitative measures of how well they did, or did

not, do.

2.3.3 Conflicts

Pereira’s paper is excellent, but casting the theme as Chomsky versus Zellig Harris is just a little

bit too local (to Penn), IMHO.

The falling out between expert-systems computational linguists and statistical machine-learning

computational linguists. This conflict is often symbolized by something Fred Jelinek said (and

wrote): Whenever I fire a linguist our system performance improves. From “Applying in-

formation theoretic methods: evaluation of grammar quality.” Workshop on Evaluation of NLP

Systems, Dec 1988. [Google on that].
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They don’t tell you that IBM Research was in the throes of a struggle between the two natural

language groups, Jelinek in one (developing applications of HMMs) and the other with George

Heidorn and Karen Jensen, who moved to MSR in 1991.

Jelinek: “My colleagues and I always hoped that linguistics will eventually allow us to strike

gold. . . The quote accentuated a certain situation that existed in ASR in the seventies and in NLP

in the eighties.”2

Based on Jelinek (2004, talk at JHU):

“The situation in the 1970s:

1. Rules and AI govern NLP and speech research

2. No distinction between training and test

3. IBM linguists had respect for but underestimated ASR problem

4. Chomsky thought that statistics were illegitimate

5. ARPA project on ASR (1971 to 1976) dominated by AI (except for Jim Baker at

CMU)

The View of the IBM Group

6. Linguistic intuition combined with ability to extract information will determine

the structure of models and their parameterization

7. Parameter values will be estimated from (annotated) data

8. We will rely on advice of linguists to create resources

9. The problem is not of direct interest to linguists

Creation of Linguistic Resources

10. Brown Corpus (1967)

11. Lancaster – Oslo- Bergen corpus (1970)

12. Lancaster POS tagging by rule (1982)

13. Lancaster treebank (1983 -1986): Geoff Leech and Geoff Sampson

14. IBM commissions 2 – 3 M word treebank at Lancaster (1987)

15. Linguistic Data Consortium, early 1990s

16. Penn parser, NSF support starting in 1990.

17. ACL 1990: 39 papers, 1 statistical; 2003: 62 papers, 48 statistical.

18. Statistical MT at IBM, starting in 1986; DARPA funding in 1991, including IBM

(Candide project), Pangloss at CMU, ISI, NMSU) and Lingstat at Dragon (Baker)

2from slides on the internet
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2.3.4 Chomsky and the chomskian view about language

learnability

What is the relative size of the information needed to describe a language, on the one hand, and

that needed to describe the learning algorithm? Chomsky believes that the learning algorithm is

much larger, and has a lot of essentially arbitrary information that cannot be inferred.

2.3.5 Data! Data! Data!

Poverty of the Stimulus

“There is no data like more data.” (Robert Mercer at Arden House, 1985)3

“More data is more important than better algorithms.” Eric Brill

Annotated or raw?

2.3.6 Relationship today between computational linguistics and

mainstream linguistics

Changing quite a bit, but not all that fast.

2.3.7 What is to be optimized

Classical generative grammar:

1. Function F1(g[rammar], d[ata]) → {Y es, No}

ĝ = argmings.t.F1(g,d)=Y eslength(g)

Find a grammar-language in which length is defined so that the preceding equation is true. This

assumes we have an independent and empirical way of characterizing F1.

2. Modern computational linguistics

For a given grammar model G, find a learning model L such that we can find ĝ = argmaxgp(g, d).

3Last November 2017, it was revealed that Robert Mercer had been pressured to step down as co-chief executive be-
cause of his support for Breitbart News. Mercer’s daughter Rebeka was a major backer of the Trump campaign, and
introduced Steve Bannon to the Trump team. She also created the Defeat Crooked Hillary PAC. Mercer was a lead
researcher at the IBM group that developed statistical machine translation in the late 1980s and early 1990s.
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p(g,d) is not the only expression we could imagine in that expression, but it is a natural place-

holder.

3. Minimum description length

Find ĝ = argming∈G=algorithms?(length(g) + plogg(d))

= argmax(2−length(g) × pg(d))

2.4 Final note

By the 1970s, the Chomskian wing of linguistic theory had come to one positive and one

negative conclusion that were relevant to the interests of computational linguists: (1) Language

is not just one thing after another (one phoneme after another, one letter after another, one word

after another): it is highly structured, and the discovery of that structure is the interesting part

of studying language. (2) It is not possible that this “hidden” structure is learned, so it must be

innate.

By the mid 1980s or a bit later perhaps, the mainstream of computational linguistics had come to a

complementary and divergent perspective: many language problems that had seemed completely

intractable could be dealt with much better if a probabilistic model was employed, and these models

were very naturally understood as models of language learning. The models were partly structural

(they had inherent structure, built by the scientist/engineer) but they had many parameters that

were empirically trained.

Probabilistic models for speech recognition: Let us just consider the case where individual (iso-

lated) words are to be recognized from speech. How do we go from the speech signal to the

underlying sequence of phonemes constituting the word?

Speech can be sampled every 10 msec., and speech transcribed into a rich alphabet of 1000

different speech samplets (“codebook”)—microphonetic distribution, but then a 0.5 seconds is 50

symbols long. We create a probabilistic model for each word (given its phonemic pronunciation)

and build a probability distribution over all sequences from the microphonetic symbols.

Then, given a speech sample S, we chose for the word which assigns the maximum probability to

that sample:

Perceived-word = arg maxcandidate−word pr(S | candidate-word)

Not quite. That’s an oversimplification, because its logic derives from Bayes’s Rule, and that

allows us to more properly infer:

Perceived-word = arg maxcandidate−word pr(S | candidate-word) pr(candidate-word)
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Hidden Markov models.

And then in the early 1990s, the IBM group took this HMM-inspired model and turned it on the

problem of machine translation.

2.5 The emphasis on quantitative evaluation

I noted earlier that one of the big innovations in computational linguistics has been its emphasis

on quantitative evaluation. (Alas, it has also become an obsession—the field has in some respects

gone too far—but that is not a tragedy; it can be fixed over time.) The most familiar method of

evaluation is based on precision and recall, and to use these terms, it is necessary to be able to

describe what the task is in terms of identifying a discrete set of objects. The first use of these

terms arose in the context of document retrieval. If you submit a request for all documents in a

system that bear on "finite state automata" by entering that phrase into your system, the system

will return a set of documents.

The documents retrieved can be divided into those that should have been retrieved, and those that

should not have. Those that were retrieved and indeed should have been are the true positives,

while those that were retrieved but should not have been are the false positives. In addition, we

are considering a situation in which we know the full set of documents that we had hoped to have

returned to us by our request: that would be the true set of relevant documents, and the full set

of documents that was returned (i.e., the truly relevant ones) are the positives.

Precision and recall are two simple ratios based on these notions. Precision is defined as the ratio

of (count of the) true positives to the (count of the) positives, and recall is defined as the ratio of

the (count of the) true positives to the (count of the) true set.

Precision = #true positives
#positives

;

Recall = #true positives
#true

;

But behind those simple statements are hidden secrets. We can take a project and devise several

different ways to apply these formulas, and get extremely different numerical results, depending

on what it is that we say we are trying to retrieve.

Here is a real example that illustrates this. We are interested in evaluating an algorithm that

performs word-breaking: it takes a large corpus in which the spaces have been removed, and it

must reverse engineer the corpus in order to discover the words.

What is it we are trying to recover? There are three natural ways to answer that question:

1. Find points between letters where a space should be placed. We will test how many of the

spaces put in were correct, and how many correct spaces were missed.
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2. Find word tokens in the output (broken) corpus. For example, if the string "theblackcat"

is turned into "theblack cat", then it has come up with two words, "theblack" and "cat", of

which only the second is correct. If another line of the corpus has that phrase and gets the

same analysis, the counts are increased, because we are counting tokens rather than types.

3. Find word types, that is, what proportion of the vocabulary that generated the corpus is

actually discovered by the algorithm

2.6 Topics to come

Here are the topics we will be focusing on in this course.

1. Introduction

2. History

3. Resources, etc.

4. Distributions, probability, plots, letters, words, etc.

5. Plogs, extensive and intensive quantities, MI and PMI;

6. KL divergence

7. Memoizing algorithms: words on a page for latex; string edit distance;

8. HM1: FSAs, probabilistic FSA, Viterbi (max) generation

9. HM2:

10. Compression, numeric compression and graphing L to R, R to L compressed form.

11. Words: Sequitur

12. MDL: As a method to compute hypothesis preference, and as a stopping criterion

13. Words: de Marcken (MDL approach), the good and the bad.

2.6 Topics to come 15



14. Word-internal structure: morphology. Initial heuristic based on ZHarris.

15. Morphology: signatures. Using MDL for hypothesis preference.

16. Morphology: problem cases.

17. Using Linguistica 4, 5.

18. Graphs and their uses. Gephi.

19. Computing word-similarity by context overlaps. Spectral decomposition.

20. Interpreting the graph of word-context similarity. Clustering and social networking.

21. Neural nets; word2vec.
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3Basics of probability and information theory

1. Notation: max, min, argmax, argmin. If X={-2, -1, 0, 1, 2} and Y is the real numbers and

f(x) = x2, then maxx∈X = 2 and argmaxx∈Xf(x) = 2. Clear?1 If it is not clear, it’s

probably because you are thinking maxx∈Xf(x) = 4, which is true.

2. Probability as the quantitative theory of evidence.

3. Probability distribution: definition.

4. We typically require ourselves to assign a probability distribution over some set, typically

infinite, and typically the entire set of strings generated by an alphabet or lexicon.

5. This is a methodological commitment, not a substantive commitment.

6. Difference from the mainstream linguistic assumption that the goal is to create a grammar

that generates all and onlGy the well-formed expressions of a language.2 Importance for

NLP to deal with all expected inputs. Grammar checkers.

7. The purpose of assigning probability to data is to test the grammar, not the data.

8. That means we have to think intelligently about the difference between frequency and

probability.

9. AOTBE, the best grammar is the one that assigns the highest probability to the grammar.

10. Counts versus frequency (or relative frequency).

11. Good and bad aspects of using observed frequencies as probabilities. Brittleness.

12. Language identification as an NLP project.

13. Difference between letters and words: with letters, they are from an alphabet and you

observe the whole alphabet pretty quickly. New words all the time.

14. Explore letters and phoneme frequencies in a couple of languages.

1Well, I had written a number other than 2 there. How could that have happened?
2Alternative: form-meaning connection.
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15. Letter frequencies in corpora and in dictionaries.

16. Zipf.

17. distribution over [0,1] corresponding to first symbol of alphabet (a, or 1); sums to 1.0.

18. probability of a string S = product of probability of each letter * probability of a string of

length |S|.

19. nested intervals as a visualization of numeric compression.

20. Conditional probability. Examples: (1) Conditioned on how long a string is.

Probability and the recognition process

By William S. Cooper3

An assumption which underlies most of the research being conducted by the MIT Mechan-

ical Translation group is that a mechanical translation process should make a distinction

between language recognition and language generation. That is, it is assumed that all input

text should be subject to a recognition process which reduces it to what are terms specifi-

cers and after suitable manipulation these specifiers should be used to guide the generation

of a target-language output. Now, specifiers are defined and labelled by the linguists them-

selves, so there need be no problem of ambiguity in interpreting the specifiers for the purpose

of generating the target-langauge output. However, the recognition process must interpret

the source-language input, and so it must meet head-on all the ambiguities with which the

source-langauge is fraught. Or more exactly, it must resolve all those ambiguities whose res-

olutions would affect the choice of specifiers. Since many ambiguities can occur on various

levels with a small amount of text, the multiple-choice problem associated with each ambi-

guity may be aggravated by the ambiguities surrounding it. In this manner, multiple-choice

problems can proliferate in a way which makes the task of resolution quite formidable. This

paper defends the application of probabilistic methods as an integral part of the recognition

process, both as a means of making the best guesses about unresolvable ambiguities and as

a technique for speeding up the decision when the ambiguities are resolvable....

By a “multiple choice” we mean situations in which some linguistic unit (e.g. a word) is

ambiguous with respect to some finite set of classes. Such a situation would presumably

arise because a dictionary or a table has failed to tag the unit with a unique class name

at some earlier stage of the process. . . Indeed, the multiple-choice situation seems to be

characteristic of many fields such as speech recognition, character recognition, and library

searching, as well as the field presently under discussion. For operations such as our sentence-

3Dear Professor Goldsmith, I don’t think I wrote that, or at least I can’t remember doing so, but it is so close to my
interests at the time it could almost have been written by me. In 1958 and 1959 I wrote a M.Sc. thesis at MIT on how
to use Markov transition probabilities to help resolve ambiguities in automatic translation, or if not resolve them at
least to rank the possibilities in order of likelihood. Conceivably this was written as a description of my work, perhaps
as part of a grant application or report. William S. Cooper. 4/21/11.
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parsing procedure above, there seems to be no recourse from turning to the contexqt for the

reduction of ambiguities.

...[F]or both unresolvable and resolvable ambiguities, a probability distribution over the al-

ternatives of a multiple-choice situation would be very useful. For unresolvable ambiguities,

it would provide some basis for choice among the alternatives, and would make possible the

establishment of a threshold for the elimination of low-probability alternatives. For resolv-

able ambiguities, probability distributions would permit the ordering of tentative selections,

so that an advanced resolution process would never be wasted on an unlikely selection un-

less the likelier ones had been tried first. In other words, for both kinds of ambiguity, a

rough-and-ready technique is needed to assign meaningful probabilities to the alternatives

of a multiple choice situation.

For the data necessary to assign the probabilities, we will need two kinds of statistics. The

first we will call “dictionary information” and the second, “transition information.” The

dictionary information is simply a listing of all the possible linguistic units, together with

a probability distribution for each unit over the set of classes according to which the units

must be tagged. For example, the parsing machine ...would require a dictionary listing each

possible word, together with the probability that that word (considered out of context) might

be a noun, a pronoun, a verb, etc.. The transition information must be gleaned from a large

body of text; it tells the likelihood of a linguistic unit’s belinging to a given class, when the

class membership of one or more of the preceeding units is known. In our example, we would

require the probability that an article, say, would be followed by a noun, a pronoun, etc..

Although these two kinds of information by no means describe completely the probabilistic

picture, they are adequate for purposes of obtaining rough guesses about the true class

memberships of the linguistic units.

Language data and its models. Alphabet: Σ. Includes # = ‘ ’. All strings: Σ∗; Σ+. These sets

always countable. A subset of Σ∗ is a lexicon or a vocabulary. 4

A corpus or text is a single string in Σ∗ that ends with # and contains no internal ##. If it contains

at least one internal #, it is ‘broken’ (a good thing, not bad). It has word-breaks, boundaries.

In most contexts, when we refer to a word, we mean a string that ends in # and has no internal

#s, like dog#.

A broken corpus gives us a lexicon in a natural way.

Notation: s ∈ Σ∗; ‘dog’ S[1] = ‘d’; ‘dog#’ t[1] = ‘d’.

4Σ∗, lexicon, vocabulary
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Elements are discrete: we can assign a non-negative
probability to each point.

b

b
b

b

b

Fig. 3.1: A view of a discrete sample space universe

3.1 Counts, distributions, frequencies, letters,

phonemes, probabilities, sequences, words – and

finite-state automata (FSAs).

5

(Virtually) all our models are discrete for now (later we will have probabilities over models with

continuous real-valued parameters). 6 Notation: Count[s] = CountC [s] = [s]C = [s].

A probability space is a triple: (i) a sample space Ω, the set of all possible outcomes: this

could be single draws from a deck; it could a lexicon; it could be a corpus; (ii) a set of events

or observable events, where such an event is a set of outcomes (the phrase “observable event” is

sometimes used because it helps make clear the sense that sometimes the underlying events are

too ‘fine’ to be directly observed—a particular real value could be a member of the events, but it

is not observable—so we restrict the assignment of probabilities to intervals and sets composed

out of intervals); and (iii) a function (p(), perhaps)which maps events to reals in [0,1] —and it

must be true that p(Ω) = 1. When the sample space Ω is countable, we can assign a probability

to each member, and the probability of an event is the sum of the probabilities of the member

outcomes.

When it is not discrete, then we are required to limit the sets about which we can ask the question:

what probability mass is assigned to them? In particular, we cannot ask what the probability mass

is of a point, or a discrete set of points, in a continuous case. All this is the way that probability

is generally defined and described, and sometimes it feels like this terminology is not terribly

helpful in the cases that we look at, at this point.

5Week 2, Monday
6This section revised a bit, 10 Jan 2014.
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Elements are not discrete: we cannot assign a non-negative
probability to each point.

Fig. 3.2: A view of a continuous sample space universe

Map from our sample space

to some set of interest.

b

b
b

b

b

b b b b

Fig. 3.3: A random variable

When it is discrete (which is the normal case for us), then we can talk about all of the values

that the probability function takes on for the possible outcomes, and we call this a distribution7.

A distribution is just a multiset of numbers that sum to 1.0—perhaps in the limit, if the set is

infinite. We will be using this term all the time; we will say, for example, that we need to be sure

that some multiset of numbers does indeed form a distribution. For this to be true, each number

must be greater than or equal to 0, and they must sum (possibly in the limit) to 1.0.

A random variable8 is a function from the sample space Ω to another (measurable) space,

called the state space. A traditional example is a random variable that maps from coin tosses to

a sample space, the set {0, 1} (Heads corresponds, let’s say, to 0, and Tails to 1.) Each of the two

outcomes, 0 and 1, has a probability assigned to it, and those probabilities sum to 1. (In specific

contexts, like work on language, we may allow the state space to be words, for example, rather

than numbers. And then the words have a probability assigned to them.)

If you read standard introductions to probability, you will find that they focus on numbers and

quantity, and there is a good deal of discussion of the cases where the values of the random

variable are numbers, and then we look at (for example) the subset of Ω which is the “preimage”

of the interval in the state space from −∞ to any particular value x. But even though that is

standard, it is really not very helpful, more often than not, in the cases that we look at in this

course: we are usually not looking at a range of numerical values between this value and that

7distribution
8Random variables: neither random nor variables.
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value. Familiar numerical values are cases where the sample space is a population of people, and

the random variable is age. Or the random variable might be age. Both map to real numbers.

Both have meaningful means (averages). (And we might look for a relationship between the two

random variables: maybe if someone is older, he or she is older.) But when we look at words, for

example, it is not generally meaningful to talk about the average of a set of words, or the average

of the alphabet of a language.

In cases that we will look at, most sample spaces are either finite alphabets or finite lexicons

(strings of symbols from the alphabet), or else they are infinite sequences of elements from an

alphabet or lexicon. (Don’t take that as a promise that we will not consider cases outside of those

cases; it’s just a heads-up from a tour-guide.) As I have noted, we are especially interested in the

infinite sequences case, and we can either deal with those cases by establishing that the sample

space consists of such infinite sequences, or we can say that the sample space is the finite alphabet

(resp. lexicon), and that we are considering a sequence (possibly infinite) of random variables.

[Picture] We sometimes say that these random variables are indexed (i.e., by their position in the

sequence); we also talk about them comprising a stochastic process.

Example 1. The sample space is the two rolls of a die, (x, y), and the random variable f maps

each point to a value x + y. The inverse image of 2, f−1(2), is (1,1), and its probability is 1
36 for a

fair die. In this case, we have built the sequentiality—the time element—into the sample space.

Example 2. The sample space is letters of the alphabet, and the random variable is the first letter

of each word in this document—which is to say, it is a variable that takes on values in the sample

space, and the probability of the inverse image of an element in the sample space (e.g., m) is the

probability that the letter m occurs here as the first letter of a word.

Example 3. The sample space is the letters of the alphabet, and we have a sequence of random

variables, X1, X2, . . . , X5, which are the first, second, and third letter of a (random) word in this

document. In fact, the probability of the values taken on by X2 is different depending on the

value taken on by X1.

In this case, we talk of a sequence of random variables, and what we mean by that is that each

point (call it x) in the sample space is mapped by each of the random variables to an element in

the range of the random variable.

Most of the time, this kind of modeling is based on the belief that there is an underlying reality

that is changing over time, and that time can be modeled discretely, and that reality’s shifts can

be viewed as shifts from one point in the sample space to another, and that our observations

correspond to the values of a random variable, and that the complexity of the evolution of the

underlying system can be at least partially understood if we consider the dependencies between

random variables Xn and Xn+i, where i is a small number (like 1 or 2).

Example 4. Word length studies. (Based on Peter Grzybek 2006)
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Thomas Corwin Mendenhall (1841-1924). American physicist and metereologist: purely empiri-

cal study, but he looked at the distribution, and not (merely) the average word length.

Sir William P. Elderton (1877-1962). 1949: Geometrical distribution of syllables, based on 1-

initial geometrical distribution. P(n) = p(1 − p)n−1, where n is the number of syllables. He

measured a mean length of 1.3487 syllables per word, hence is (its reciprocal) 0.7415.

Syllable count count frequency predicted count pred freq

1 2987 0.7613 3883 0.7415

2 831 0.1587 1004 0.1917

3 281 0.0537 259.5 0.0496

4 121 0.0231 67 0.0128

5 15 0.0029 17 0.0033

6 2 0.0004 4.48 0.0009

Sergei Chevanov 1897-1955: 1947. Many languages. Also syllable based, but used Poisson

distribution: P(n) = e−λ an−1

(n−1)! , where a is a free parameter (so-called “1-displaced Poisson distri-

bution”).

Does it make sense to study word-length in terms of number of letters/phonemes?

What if we know the average length of a syllable in a particular language?

Is there going to be a relationship between the number of distinct phonemes in a language and

the average length of a word?

A geometric distribution will always give the greatest probability to the shorter strings. But a

Poisson distribution will not.

3.1.1 Frequencies and probabilities

Some of the basic terms we need to be clear on:

rank position in a sorted list

count number of occurrences

frequency proportion of number of occurrences of this divided by all

log frequency

plog frequency -1 × log frequency

probability a value in a distribution

plog [probability] -1 × log probability
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We can use frequencies as our probabilities, but bear in mind that these two concepts are quite

different.

Some additional remarks, spring 2018.

The passage from frequencies to probabilities can be very confusing, and the worst

part is that virtually everything we read adds to that confusion; there is a great deal

of comfort and ease that comes from ignoring the difference. Let’s try to do a little bit

better.

The first obstacle concerns the status of causality. There are two subparts to this

obstacle. First of all, we all share a certain kind of implicit positivism, by which

I mean the view that the fundamentally correct way to view the universe is as a

complex object in 3 dimensions, whose evolution in time is based on an arbitrarily

small window of access to the past. If we are thinking about falling objects, the

positivist will remind us that if we know the force of gravity, and the position and the

velocity of something falling, then we will be sure of its position and velocity at all

moments before it hits the ground. Furthermore, we have a belief that we can account

for those facts (location, velocity) in terms of the underlying forces (a gravitational

field). The object falls at a certain rate because of its weight and the details of the

gravitational field at the various points that the object passes through.

What does this have to do with linguistics and probability? The point is this: We

do not need to embrace a belief that the information (= values of parameters, values

of a random variable) that we use as conditions are causally related to the outcomes

whose probability we wish to estimate.

Two important cases: bigram model conditioning on the left ( = past) and condi-

tioning on the right ( = future).

We will often consider a model of English or some other language in which the

choice of a word (for example) at a moment (or at a point in a string) is conditioned

by the previous word. If we do that consistently for a string [including its finality-

marking punctuation #)], then if we multiply all of the conditional probabilities, we

get a probability for the whole string.

But. . . we get the same probability for the string if we compute its probability from

right to left, using a conditional probability for each word based on the word that

follows.

So, which is it? Is the sentence generated from left to right, or from right to left?

The answer (of course!) is neither. We have created two different models which have

different usefulnesses, but which agree on a number of calculations of probabilities.

To make matters even more confusing (if that were possible), we can easily imag-

ine a third way to assign a probability to a sentence, one which is more familiar to

linguists. We could create a grammar that assigns probabilities to trees rather than

words (or words sequences). S becomes NP VP with probability 1.0. NP becomes

pronoun (.5), noun (.2), adjective + noun (.3). pronoun becomes he (.3) or she(.4),

him (.2), her (.1); noun becomes boy (.4) girl (.5) dog (.1). VP becomes V + NP (.3)

or V (.7). V becomes sees (.5) or knows (.5)
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We could then calculate the probability of "he sees her" and of "he sees she". Let’s

do it...

Is this a model of causality? No. Is it a better probabilistic model? Let’s calculate

and see.

Let9 us start10 by looking at a probabilistic model for strings of symbols. The symbols will rep-

resent phonemes or letters, but they could also correspond to feature bundles, autosegmental

representations, etc. We begin with a finite set of symbols, A, referred to as the alphabet. The

notation A+ denotes all strings (sequences) of one or more symbols drawn from A. We have a

special symbol in A, #, to represent the word boundary, or space.11 We then define a word as

any finite sequence of one or more symbols that ends with #. Given this definition, a word-set S

is a subset of the set of all possible words: S ⊆ (A+#). Similarly, a word-list or corpus C is an

element of the set of all possible sequences of words, C ∈ (A+#)∗. The definitions that we give

in this section will be for word-sets.

One of the simplest questions that can be asked about a set of words is how often any given single

symbol, or unigram,12 appears. For a unigram a, we will write Count(a) to indicate the total

number of times that a occurs in all the words in the set. For each symbol a ∈ A ∪ {#}, the

unigram model induced from a word-set S assigns a probability to a that represents its frequency

in the word-set. That is:

p(a) =
Count(a)

|S| (3.1)

where |S| equals the total number of symbols in all the words in S.

For a word w ∈ S, we use the notation w[n] to refer to the n-th symbol in the string (i.e. w[1]

is the first symbol, w[2] the second, and so on). Given a word w, the unigram probability of w,

denoted p1(w), is defined as the product of the probabilities of the segments comprising the word.

For a set of words S, the product of the probabilities of the words is denoted p1(S). These are

given in (3.2a) and (3.2b):

a. p1(w) =

|w|
∏

i=1

p1(w[i]) b. p1(S) =
∏

w∈S

p(w) (3.2)

where |w| denotes the number of symbols in w (i.e., the length of the word).

There is a small point here that we must not lose sight of, and it is the main reason we defined

a word as a sequence that ends with # (and has no internal #). If we have a distribution over

the letters of an alphabet, then the sum of the probabilities of all sequences of length 1 must sum

to 1.0. Likewise (though the reasoning takes one extra step algebraically), if we consider the

set of all 2-letter strings, and assign each 2-letter string a probability equal to the product of the

9Week 2, class 2; Jan 15 2014
10I’m using some text from Goldsmith and Riggle ITAP
11This allows us to assess average word length and to refer to segments at word edges as being adjacent to # in the

same way that they are adjacent to their segmental neighbors. Like the symbols for phonemes in A, the symbol # is
associated with a probability and can condition the probability of its neighbors. Thus, in what follows, we will refer to
# as a phoneme (though it is, in many ways, a different kind of abstract object than a consonant or a vowel).

12unigram
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3.9

N

4.1

Z

5.1

#

2.9

average:

4.662

Fig. 3.4: Unigram model

probabilities of its letters, then the sum of those probabilities will also be 1.0. Hence, we can’t

use this apportioning of probability and expect it to give us a distribution over strings of several

different lengths (let alone over all strings of any length). In order to get a distribution over

strings of many lengths, we must construct explicitly a distribution over lengths (call it “λ(n)”,

perhaps), and then we can say that the probability of a string of 2 letters is the product of the

probability of each letter times λ(2). Or else we can do that implicitly, by setting up a symbol

(such as #) which is assigned some of the probability mass that would otherwise go to the letters

of the alphabet, and insist that a word ends with #. Can you see that this gives us the right result?

It may not be a completely realistic model of word-length, however.

In many cases, the probability computed by a model is the product of a number of distinct factors;

because log(x×y) = log(x)+log(y) we can interpret the probability assigned to a form as the sum

of the logarithms of these factors. Since log(x) is negative for 0 < x < 1, the logs of probabilities

are often multiplied by −1 to yield what is referred to as inverse log probability; we propose a

simpler neologism, the positive log probability, or plog,13 for short. Thus (3.2) can be recast with

plogs as in (3.3).

a. plog(w) = −
|w|
∑

i=1

log p(w[i]) b. plog(S) = −
∑

w∈S

log p(w) (3.3)

The average plog of a word w or word-set S can be calculated as in (3.4a) or (3.4b).

a. − 1

|w|

|w|
∑

i=1

log p(w[i]) b. − 1

|S|
∑

w∈S

log p(w) (3.4)
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Fig. 3.5: Unigram model with mutual information

The average plog, as calculated in (3.4a), encodes the average complexity14 of the phonemes

comprising the word. If we calculate this figure for all the words of our vocabulary and sort them

in light of this figure, the words with the smallest value will be the words largely composed of

high frequency phonemes, and the words with the largest values will be words composed largely

of low frequency phonemes.

Average below is 2.58 (down from 4.64)
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Green: Mutual information in stations

Blue: Unigram plot in stations
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Blue: Log conditional (bigram) probability in stations

Decrease from unigram model is exactly the mutual information

In Table 3.2 we illustrate the range of average plogs from the top ten and the bottom ten of a sam-

ple of 63,204 English words along with the positive logs of the frequencies of the top and bottom

ten of 54 English phonemes. The data combines a modified version of the CMU English lexicon

weighted by word frequencies based on counts from the Brown corpus. The particular transcrip-

tions that appear may raise some eyebrows, but we have used their transcription throughout,

though we have used here American phonetic symbols rather than the Darpabet.

13plog
14Not obvious, perhaps, that we want to use the word that way. We will talk about this.
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0.4

average:
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Fig. 3.6: Bigram model

rank orthography phonemes avg. plog

1 a @ 3.11
2 an @n 3.44
3 to t@ 3.47
4 and @nd 3.80
5 eh É 3.88

63,200 geoid ǰ́iŎyd 7.40
63,201 Cesare čĕzárĕ 7.40
63,202 Thurgood TÄ́g2̆d 7.47
63,203 Chenoweth čÉnŎwĔT 7.49
63,204 Qureshey k@réšĕ 7.54

Tab. 3.1: Top and bottom five words and phonemes by average plog

If one takes the (not uncontroversial) position that markedness is correlated with frequency,

then the plogs in this table would be seen as roughly quantitative estimates of various segments’

markedness.15

Tab. 3.2: Top and bottom five words and phonemes by average plog

15In constraint-based models other than Optimality Theory [?] that allow violability but eschew strict domination such
as, e.g., Pater, Potts, and Bhatt ([?]), Hayes and Wilson ([?]), or [?] one could view the unigram model as setting up
a constraint against each segment, and weighting the violation of constraint *a by the value plog(a).
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Fig. 3.7: Nightclub, in French
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0.0

a

0.2

e

0.5

i

0.6

o

0.8

u

0.9

#

1.0

0.20

a

0.26

e

0.35

i

0.38

o

0.44

u

0.47

#

0.5

Symbol Probability Range

a 0.2 [0, 0.2)

e 0.3 [0.2, 0.5)

i 0.1 [0.5, 0.6)

o 0.2 [0.6, 0.8)

u 0.1 [0.8, 0.9)

$ 0.1 [0.9, 1.0)
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0.0

a

0.2

e

0.5

i

0.6

o

0.8

u

0.9

#

1.0

0.20

a

0.26

e

0.35

i

0.38

o

0.44

u

0.47

#

0.5

0.20

a

0.212

e

0.23

i

0.236

o

0.248

u

0.254

#

0.26

0.230 0.236

3.2 Linear structure: bigram model and conditional

probability

Unigram models describe the basic frequency of phonemes. Much of the phonological structure

of languages, however, involves conditions on sequences of phonemes, which goes beyond the

descriptive purview of unigram models. The natural way to encode this information is to use a

bigram model, which is to say, to use as the probability for a given phoneme its probability in

given context.16

One of the simplest models along these lines conditions the probability of a phoneme on its

left-hand neighbor in the word. Because the initial segment of a word, w[1], does not have a

left-neighbor, it is conventional to define w[0] as the boundary symbol #. Informally speaking,

16There has been an unfortunate inconsistency in the use of the terms 0-order and 1st-order Markov models over the years.
The older tradition of usage defines a 0-order Markov model as one assigning a uniform distribution over symbols, and
a 1st-order Markov model as one in which each symbol is assigned a probability independent of context—what we
call here a unigram model. The newer tradition of usage, which we follow here, uses the term 0-order Markov model
the unigram model and the term 1st-order model for models with one symbol of context (e.g., bigram models).
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the conditional probability of phoneme b immediately following a, where a is the left-neighbor or

# if b is word-initial, is calculated as in (3.5):

p(b | a) =
Count(ab)

Count(a)
(3.5)

where Count(ab) denotes the number of times that b occurs in context a in the word-set and

Count(a) denotes the number of times that context a occurs.17

3.2.1 Simple example

Imagine a language for which we have just 3 words:

#bada#

#banda#

#nand#

16 letters: we do not count the first #; its probability of being there is 1.0. We do count the final

#, because its occurrence where it is is not predictable, and its presence allows a generalization

to be made about what letters are likely to occur word-finally.

Here and throughout, rows indicate the first (preceding) letter.

count

first second letter

letter a b d n # count

a 0 0 1 2 2 5

b 2 0 0 0 0 2

d 2 0 0 0 1 3

n 1 0 2 0 0 3

# 0 2 0 1 0 3

frequency

second letter

a b d n #

a 0 0 1
16

2
16

2
16

b 2
16 0 0 0 0

d 2
16 0 0 0 1

16

n 1
16 0 2

16 0 0

# 0 ‘ 2
16 0 1

16 0

17The right way to say this is:

p(w[i]=b | w[i − 1]=a) =
p(w[i − 1] = a & w[i] = b)

p(w[i − 1] = a)
. (3.6)
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probability of second letter, given the first (preceding): (rows sum to 1.0)

second letter

a b d n #

a 0 0 1
5

2
5

2
5

b 1 0 0 0 0

d 2
3 0 0 0 1

3

n 1
3 0 2

3 0 0

# 0 2
3 0 1

3 0

probability of first letter, given the second (following): (columns sum to 1.0)

second letter

a b d n #

a 0 0 1
3

2
3

2
3

b 2
5 0 0 0 0

d 2
5 0 0 0 1

3

n 1
5 0 2

3 0 0

# 0 1 0 1
3 0

3.3 Logarithms

A considerable advantage comes now from using logarithms: it allows us to easily express what

the advantage is of the bigram model over the unigram model. The change in the log probability

computed under the unigram and the bigram models is precisely equal to another quantity of

particular interest, the mutual information, defined as in (3.7).

MI(a; b) = log
p(ab)

p(a)p(b)
= log p(ab) − log p(a) − log p(b)

= −plog(ab) + plog(a) + plog(b)

(3.7)

If p(ab) = Count(ab)
|S| is the probability of the pair ab and p(a)p(b) is the product of the symbol’s

individual probabilities, then the mutual information between a and b is the log of the ratio of

these quantities. The probability of a joint event, such as the sequence ab, is equal to the product

of the individual probabilities just in case the two events are independent of each other (this

being the definition of independence), so the ratio here takes the value 1 just in case the two

events are independent.

18 If the probability sequence of the phonemes is greater than the product of the individual prob-

abilities, then the structure involved in the model being explored pulls the two events together,

18mutual information, pointwise mutual information, weighted mutual information
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while if the probability of the phonemes together is less than the product, the structure at hand

is responsible for them repelling each other, so to speak. By taking the logarithm of this ratio, we

translate attraction to a positive value, repelling to a negative value, and independence to a zero

value. (When we are calculating this quantity for particular symbols, the term pointwise mutual

information is often used, and then the term mutual information is used to describe the average

pointwise mutual information as we average over all pairs of elements, each pair weighted by its

probability. The weighted mutual information of a pair is the pair’s MI times its count.)

Just as important, the mutual information is exactly the difference between the unigram and

bigram model’s log probability. This is shown in (3.8).

|w|
∑

i=1

log p(w[i] | w[i − 1]) =

|w|
∑

i=1

log
p(w[i] w[i − 1])

p(w[i − 1])

=

|w|
∑

i=1

log p(w[i]) +

|w|
∑

i=1

log
p(w[i] w[i − 1])

p(w[i − 1])p(w[i])

=

|w|
∑

i=1

log p(w[i]) + MI(w[i − 1]; w[i])

(3.8)

plog(a)

plog(b)

MI(a,b)

plog(a and b)

For a concrete illustration we return to our English word list from Table 3.2. Our English data set

contains 54 phonemes, and thus there are 542 = 2, 916 possible bigrams. Consider, in Table 3.3,

the way that the bigram model enriches the evaluation of the English data by taking 2-word slices

at six points along the ranking of all 63,000 words according to their average bigram plog.

With the bigram model, we obtain a set of parameters that describe the phonological well-

formedness (in terms of ‘typicality’) to a second order degree of detail. If there are P phonemes

in the language, then the number of parameters for the unigram and bigram models together is

P + P 2. Each setting of values (weights) for the parameters assigns a probability to a corpus, and
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rank orthography phonemes avg. plog2

1 the D@ 1.93
2 hand hǽnd 2.15

12,640
12,640 plumbing pl2́mĬN 3.71

12,642 Friday fráyd̆i 3.71

25,281 tolls tólz 4.01

25,282 recorder r ĭ k ó r d Ä̆ 4.01

37,922 overburdened óvÄ̆bÄ́d@nd 4.32
37,923 Australians Ŏstréyly@nz 4.32

50,563 retire r̆Itáyr 4.75
50,564 poorer púrÄ̆ 4.75

63,200 eh É 9.07
63,201 Oahu óáhŭ 9.21

Tab. 3.3: English words ranked by average plog in the bigram model

the degree of success acheived by a set of parameters with weightings can be measured by that

probability: the higher the probability, the more successful the characterization.19

3.3.0.1 Some notation we’re using

N =
∑

l∈a..z

[l]

pr(S[i] = wj) =
[wj ]

N

pr(S[i] = h|S[i − 1] = t)

or (sorry, this is really a terrible abuse of notation)

pr2(h|t) =
[th]

[t]

19One striking characteristic of probabilistic phonology of the 1950s (e.g., Cherry, Halle, and Jakobson (1953) [?]; [?];
etc.), compared with what we attempt to do here (or Coleman and Pierrehumbert (1977) ([?])), is the focus in that
early work on average values over an entire corpus. The clearest example of this is the emphasis on calculating the
entropy of a language under various models. The entropy is the weighted average of the inverse log frequency, and
each word in the lexicon contributes to its computation in proportion to the word’s frequency in the language. By
contrast, we are not only interested in these “ensemble averages,” we are also interested in how some words (or
subgroups of words) differ from other words.
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Remember that plog (x) equals −log2pr(x) if we are talking about a particular distribution pr

over a set containing x, and that is clear from context; else plog(x) = −log2(x) and 0 < x ≤ 1.

plog(h|t) = plog(
[th]

[t]
) = plog(

fr(th)

fr(t)

because we divide both numerator and denominator by N .

Remember comparing observed to expected? Here, expected is typically taken to be if there were

no structure, and distributions were independent.

Pointwise mutual information of the ordered pair ab is log p(ab)
p(a)p(b) = log p(ab)

p(a) − logp(b), or

log
p(ab)

p(a)p(b)
= −plog

p(ab)

p(a)
+ plogp1(b)

That tells us that the bigram plog of b is equal to the unigram plog of b minus the PMI of (ab):

plog2(b|a) = plog1(b) − log
p(ab)

p(a)p(b)
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word count frequency word count frequency
1 the 69903 0.068271 11 for 9472 0.009251
2 of 36341 0.035493 12 it 9082 0.008870
3 and 28772 0.028100 13 with 7277 0.007107
4 to 26113 0.025503 14 as 7244 0.007075
5 a 23309 0.022765 15 his 6992 0.006829
6 in 21304 0.020807 16 on 6732 0.006575
7 that 10780 0.010528 17 be 6368 0.006219
8 is 10100 0.009864 18 s 5958 0.005819
9 was 9814 0.009585 19 I 5909 0.005771
10 he 9799 0.009570 20 at 5368 0.005243

Tab. 3.4: Top of the unigram distribution for the Brown Corpus.

word count count / 69,936 word count count / 69,936
0 first 664 0.00949
1 same 629 0.00899 11 way 239 0.00342
2 other 419 0.00599 12 old 234 0.00335
3 most 419 0.00599 13 last 223 0.00319
4 new 398 0.00569 14 house 216 0.00309
5 world 393 0.00562 15 man 214 0.00306
6 united 385 0.00551 16 next 210 0.00300
7 state 271 0.00418 17 end 206 0.00295
8 two 267 0.00382 18 fact 194 0.00277
9 only 260 0.00372 19 whole 190 0.00272
10 time 250 0.00357 20 American 184 0.00263

Tab. 3.5: Top of the Brown Corpus for words following the.

3.3.0.2 Words

plog(a)

plog(b)

MI(a,b)

plog(a and b)
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word count count / 36,388 word count count / 36,388
1 the 9724 0.267 11 her 252 0.00693
2 a 1473 0.0405 12 our 251 0.00690
3 his 810 0.0223 13 its 229 0.00629
4 this 553 0.01520 14 it 205 0.00563
5 their 342 0.00940 15 that 156 0.00429
6 course 324 0.00890 16 such 140 0.00385
7 these 306 0.00841 17 those 135 0.00371
8 them 292 0.00802 18 my 128 0.00352
9 an 276 0.00758 19 which 124 0.00341

10 all 256 0.00704 20 new 118 0.00324

Tab. 3.6: Top of the Brown Corpus for words following of.

word count count / 69,936 word count count / 69,936
1 of 9724 0.139 11 from 1415 0.0202
2 . 6201 0.0887 12 that 1397 0.0199
3 in 6027 0.0862 13 by 1349 0.0193
4 , 3836 0.0548 14 is 799 0.0114
5 to 3485 0.0498 15 as 766 0.0109
6 on 2469 0.0353 16 into 675 0.00965
7 and 2254 0.0322 17 was 533 0.00762
8 for 1850 0.0264 18 all 430 0.00615
9 at 1657 0.0237 19 when 418 0.00597

10 with 1536 0.0219 20 but 389 0.00556

Tab. 3.7: Top of the Brown Corpus for words preceding the.

word count count / 69,936 word count count / 69,936
1 of 10861 0.155 11 for 598 0.00855
2 . 4578 0.0655 12 were 386 0.00552
3 , 4437 0.0634 13 with 370 0.00529
4 and 2473 0.0354 14 on 368 0.00526
5 to 1188 0.0170 15 states 366 0.00523
6 ’ 1106 0.0158 16 had 340 0.00486
7 in 1082 0.0155 17 are 330 0.00472
8 is 1049 0.0150 18 as 299 0.00428
9 was 950 0.0136 19 at 287 0.00410

10 that 888 0.0127 20 or 284 0.00406

Tab. 3.8: Top of the Brown Corpus for words 2 to the right of the.
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3.4 All words

Words, sorted by frequency

rank word count frequency plog

1 the 179173 0.070 3.846

2 , 170882 0.066 3.915

3 . 110224 0.043 4.547

4 of 106057 0.041 4.603

5 and 79108 0.031 5.026

6 in 68995 0.027 5.223

7 a 42377 0.016 5.926

8 to 39522 0.015 6.027

9 ) 30051 0.012 6.422

10 ( 30029 0.012 6.423

11 is 22204 0.009 6.859

12 by 19874 0.008 7.019

13 was 18721 0.007 7.105

14 as 18073 0.007 7.156

15 for 15699 0.006 7.359

16 are 14412 0.006 7.482

17 ; 13294 0.005 7.599

18 on 12487 0.005 7.689

19 with 12481 0.005 7.690

20 that 12153 0.005 7.728

21 or 11468 0.004 7.812

22 from 10973 0.004 7.876

23 he 10751 0.004 7.905

24 his 10116 0.004 7.993

25 an 8432 0.003 8.256
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Word pairs, sorted by bigram frequency

rank bigram count frequency plog MI weighted MI

1 of the 30635 0.011918 6.391 2.059 63066.629

2 , and 22761 0.008855 6.819 2.121 48283.513

3 . the 19962 0.007766 7.009 1.385 27649.829

4 in the 17633 0.006860 7.188 1.882 33185.650

5 , the 11492 0.004471 7.805 -0.044 -506.398

6 ) , 11492 0.004471 7.805 2.532 29095.481

7 . in 8910 0.003466 8.172 1.598 14239.550

8 and the 7801 0.003035 8.364 0.508 3964.006

9 to the 7178 0.002792 8.484 1.389 9971.902

10 by the 6424 0.002499 8.644 2.221 14267.029

11 ) . 5479 0.002132 8.874 2.096 11482.449

12 on the 5117 0.001991 8.973 2.563 13115.775

13 , which 4465 0.001737 9.169 3.094 13815.228

14 , in 4334 0.001686 9.212 -0.074 -321.299

15 , a 3992 0.001553 9.331 0.510 2037.870

16 of a 3654 0.001422 9.458 1.071 3913.485

17 , or 3427 0.001333 9.551 2.176 7457.119

18 . he 3400 0.001323 9.562 2.890 9826.966

19 as a 3333 0.001297 9.591 3.491 11636.471

20 from the 3330 0.001295 9.592 2.130 7092.465

21 with the 3265 0.001270 9.621 1.916 6254.613

22 for the 3094 0.001204 9.698 1.507 4662.985

23 as the 2993 0.001164 9.746 1.256 3759.392

24 , but 2909 0.001132 9.787 3.331 9689.344

25 at the 2875 0.001118 9.804 2.404 6911.103
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Word pairs, sorted by repelling bigram mutual informa-
tion

rank bigram count frequency plog MI weighted MI

491124 the the 1 0.000000 21.294 -13.601 -13.6

724434 and . 1 0.000000 21.294 -11.720 -11.7

241133 in of 1 0.000000 21.294 -11.467 -11.5

85092 the . 4 0.000002 19.294 -10.900 -43.6

469339 in in 1 0.000000 21.294 -10.847 -10.8

90186 , . 4 0.000002 19.294 -10.831 -43.3

472961 ( . 1 0.000000 21.294 -10.323 -10.3

199147 the ) 2 0.000001 20.294 -10.025 -20.0

93866 of in 3 0.000001 19.709 -9.882 -29.6

675385 and ) 1 0.000000 21.294 -9.845 -9.8

22555 the , 13 0.000005 17.593 -9.832 -127.8

744829 , ; 1 0.000000 21.294 -9.780 -9.8

278561 the or 1 0.000000 21.294 -9.635 -9.6

643287 of for 1 0.000000 21.294 -9.332 -9.3

118452 a of 3 0.000001 19.709 -9.179 -27.5

395579 ; . 1 0.000000 21.294 -9.147 -9.1

93085 to . 3 0.000001 19.709 -9.134 -27.4

399701 as and 1 0.000000 21.294 -9.112 -9.1

343518 at , 1 0.000000 21.294 -9.017 -9.0

90508 , ) 4 0.000002 19.294 -8.957 -35.8

45181 the a 7 0.000003 18.486 -8.713 -61.0

84208 of to 4 0.000002 19.294 -8.664 -34.7

364211 in ; 1 0.000000 21.294 -8.471 -8.5

287576 or and 1 0.000000 21.294 -8.456 -8.5

612868 ) ) 1 0.000000 21.294 -8.449 -8.4
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Word pairs, sorted by attracting bigram mutual information

rank bigram count frequency plog MI weighted MI

146446 capo d’istria 2 0.000001 20.294 22.301 44.6

147015 guillaine barré 2 0.000001 20.294 22.301 44.6

157955 angina pectoris 2 0.000001 20.294 22.301 44.6

164650 governador valadares 2 0.000001 20.294 22.301 44.6

219935 dosso dossi 2 0.000001 20.294 22.301 44.6

223527 akutagawa ryûnosuke 2 0.000001 20.294 22.301 44.6

145303 chikamatsu monzaemon 2 0.000001 20.294 21.301 42.6

149146 dandie dinmont 2 0.000001 20.294 21.301 42.6

205812 fukuzawa yukichi 2 0.000001 20.294 21.301 42.6

225440 petrus christus 1 0.000000 21.294 21.301 21.3

225815 cactus-thorn "tool 1 0.000000 21.294 21.301 21.3

225993 befuddled underachiever 1 0.000000 21.294 21.301 21.3

226959 hesperiphona vespertina 1 0.000000 21.294 21.301 21.3

227239 uuno kailas 1 0.000000 21.294 21.301 21.3

227246 kostes palamas 1 0.000000 21.294 21.301 21.3

227365 gian-carlo menotti 1 0.000000 21.294 21.301 21.3

227391 siegbert tarrasch 1 0.000000 21.294 21.301 21.3

227663 seraphima astafieva 1 0.000000 21.294 21.301 21.3

228582 pogonias cromis 1 0.000000 21.294 21.301 21.3

228790 tetramorium caespitum 1 0.000000 21.294 21.301 21.3

230101 tursiops truncatus 1 0.000000 21.294 21.301 21.3

230889 clapham sect-a 1 0.000000 21.294 21.301 21.3

231365 tetraborate decahydrate-a 1 0.000000 21.294 21.301 21.3

231716 "carrying amount" 1 0.000000 21.294 21.301 21.3

231936 toivo pekkanen 1 0.000000 21.294 21.301 21.3
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Word pairs, sorted by attracting bigram weighted mutual informa-
tion

rank bigram count frequency plog MI weighted MI

1 of the 1 0.000000 6.391 2.059 63066.6

2 , and 1 0.000000 6.819 2.121 48283.5

4 in the 1 0.000000 7.188 1.882 33185.7

6 ) , 1 0.000000 7.805 2.532 29095.5

3 . the 1 0.000000 7.009 1.385 27649.8

26 u .s 1 0.000000 9.841 9.825 27540.6

30 such as 1 0.000000 10.049 6.278 15237.3

10 by the 1 0.000000 8.644 2.221 14267.0

7 . in 1 0.000000 8.172 1.598 14239.6

13 , which 1 0.000000 9.169 3.094 13815.2

12 on the 1 0.000000 8.973 2.563 13115.8

29 he was 1 0.000000 10.009 5.001 12478.7

72 united states 1 0.000000 11.028 9.949 12247.0

27 .s . 1 0.000000 9.899 4.486 12081.3

19 as a 1 0.000000 9.591 3.491 11636.5

11 ) . 1 0.000000 8.874 2.096 11482.4

34 it is 1 0.000000 10.181 4.937 10934.4

68 more than 1 0.000000 10.982 8.215 10440.7

9 to the 1 0.000000 8.484 1.389 9971.9

18 . he 1 0.000000 9.562 2.890 9827.0

24 , but 1 0.000000 9.787 3.331 9689.3

77 have been 1 0.000000 11.042 7.724 9415.8

99 new york 1 0.000000 11.345 9.381 9268.1

48 ( see 1 0.000000 10.581 5.477 9190.4

63 known as 1 0.000000 10.842 6.339 8874.4
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Word pairs, sorted by bigram count

3.5 the

rank bigram count frequency plog MI weighted MI

1 of the 30635 0.011918 6.391 2.059 63066.6

3 . the 19962 0.007766 7.009 1.385 27649.8

4 in the 17633 0.006860 7.188 1.882 33185.7

5 , the 11492 0.004471 7.805 -0.044 -506.4

8 and the 7801 0.003035 8.364 0.508 3964.0

9 to the 7178 0.002792 8.484 1.389 9971.9

10 by the 6424 0.002499 8.644 2.221 14267.0

12 on the 5117 0.001991 8.973 2.563 13115.8

20 from the 3330 0.001295 9.592 2.130 7092.5

21 with the 3265 0.001270 9.621 1.916 6254.6

22 for the 3094 0.001204 9.698 1.507 4663.0

23 as the 2993 0.001164 9.746 1.256 3759.4

25 at the 2875 0.001118 9.804 2.404 6911.1

32 is the 2367 0.000921 10.085 0.621 1468.8

35 the first 2197 0.000855 10.192 3.097 6803.4

40 the u 2026 0.000788 10.309 3.366 6819.6

41 during the 1976 0.000769 10.345 3.157 6238.2

46 ; the 1777 0.000691 10.498 0.947 1682.8

51 the most 1605 0.000624 10.645 2.485 3988.3

60 was the 1431 0.000557 10.811 0.141 201.3

67 the city 1280 0.000498 10.972 2.469 3159.9

69 the united 1250 0.000486 11.006 3.546 4433.0

73 that the 1231 0.000479 11.028 0.547 673.1

78 the american 1218 0.000474 11.043 2.495 3039.0

88 the french 1126 0.000438 11.157 2.830 3186.4
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Word pairs, with the sorted by Weighted Mutual Information

rank bigram count frequency plog MI weighted MI

1 of the 30635 0.011918 6.391 2.059 63066.6

4 in the 17633 0.006860 7.188 1.882 33185.7

3 . the 19962 0.007766 7.009 1.385 27649.8

10 by the 6424 0.002499 8.644 2.221 14267.0

12 on the 5117 0.001991 8.973 2.563 13115.8

9 to the 7178 0.002792 8.484 1.389 9971.9

20 from the 3330 0.001295 9.592 2.130 7092.5

25 at the 2875 0.001118 9.804 2.404 6911.1

40 the u 2026 0.000788 10.309 3.366 6819.6

35 the first 2197 0.000855 10.192 3.097 6803.4

21 with the 3265 0.001270 9.621 1.916 6254.6

41 during the 1976 0.000769 10.345 3.157 6238.2

22 for the 3094 0.001204 9.698 1.507 4663.0

69 the united 1250 0.000486 11.006 3.546 4433.0

51 the most 1605 0.000624 10.645 2.485 3988.3

8 and the 7801 0.003035 8.364 0.508 3964.0

95 the same 1010 0.000393 11.313 3.791 3829.4

23 as the 2993 0.001164 9.746 1.256 3759.4

88 the french 1126 0.000438 11.157 2.830 3186.4

67 the city 1280 0.000498 10.972 2.469 3159.9

78 the american 1218 0.000474 11.043 2.495 3039.0

118 the late 868 0.000338 11.532 3.483 3022.8

109 the british 923 0.000359 11.443 3.050 2815.4

103 among the 938 0.000365 11.420 2.710 2542.3

139 the university 754 0.000293 11.735 2.810 2118.5
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Word pairs, with the on left side, sorted by bigram count

rank bigram count frequency plog MI weighted MI

35 the first 2197 0.000855 10.192 3.097 6803.4

40 the u 2026 0.000788 10.309 3.366 6819.6

51 the most 1605 0.000624 10.645 2.485 3988.3

67 the city 1280 0.000498 10.972 2.469 3159.9

69 the united 1250 0.000486 11.006 3.546 4433.0

78 the american 1218 0.000474 11.043 2.495 3039.0

88 the french 1126 0.000438 11.157 2.830 3186.4

95 the same 1010 0.000393 11.313 3.791 3829.4

109 the british 923 0.000359 11.443 3.050 2815.4

118 the late 868 0.000338 11.532 3.483 3022.8

131 the new 803 0.000312 11.644 1.660 1332.9

134 the world 794 0.000309 11.661 2.245 1782.4

135 the early 782 0.000304 11.683 2.483 1941.9

139 the university 754 0.000293 11.735 2.810 2118.5

157 the english 672 0.000261 11.901 2.478 1665.0

163 the north 657 0.000256 11.934 2.497 1640.8

168 the great 648 0.000252 11.954 2.044 1324.6

174 the state 633 0.000246 11.988 2.045 1294.2

178 the country 624 0.000243 12.008 3.164 1974.4

181 the national 610 0.000237 12.041 2.346 1431.3

184 the roman 598 0.000233 12.070 2.420 1446.9

188 the other 579 0.000225 12.116 0.787 455.8

211 the german 527 0.000205 12.252 2.579 1359.1

214 the south 522 0.000203 12.266 2.329 1215.9

216 the 19th 521 0.000203 12.268 3.358 1749.4

50 Chapter 3 Basics of probability and information theory



Word pairs, with the on left side, sorted by Weighted Mutual Infor-
mation

rank bigram count frequency plog MI weighted MI

40 the u 2026 0.000788 10.309 3.366 6819.6

35 the first 2197 0.000855 10.192 3.097 6803.4

69 the united 1250 0.000486 11.006 3.546 4433.0

51 the most 1605 0.000624 10.645 2.485 3988.3

95 the same 1010 0.000393 11.313 3.791 3829.4

88 the french 1126 0.000438 11.157 2.830 3186.4

67 the city 1280 0.000498 10.972 2.469 3159.9

78 the american 1218 0.000474 11.043 2.495 3039.0

118 the late 868 0.000338 11.532 3.483 3022.8

109 the british 923 0.000359 11.443 3.050 2815.4

139 the university 754 0.000293 11.735 2.810 2118.5

178 the country 624 0.000243 12.008 3.164 1974.4

135 the early 782 0.000304 11.683 2.483 1941.9

134 the world 794 0.000309 11.661 2.245 1782.4

216 the 19th 521 0.000203 12.268 3.358 1749.4

157 the english 672 0.000261 11.901 2.478 1665.0

163 the north 657 0.000256 11.934 2.497 1640.8

239 the middle 483 0.000188 12.378 3.256 1572.8

237 the principal 483 0.000188 12.378 3.202 1546.5

232 the term 493 0.000192 12.348 3.075 1515.8

184 the roman 598 0.000233 12.070 2.420 1446.9

246 the end 471 0.000183 12.414 3.059 1440.9

181 the national 610 0.000237 12.041 2.346 1431.3

211 the german 527 0.000205 12.252 2.579 1359.1

256 the second 455 0.000177 12.464 2.938 1337.0
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Word pairs, with the on right side, sorted by bigram count

rank bigram count frequency plog MI weighted MI

1 of the 30635 0.011918 6.391 2.059 63066.6

3 . the 19962 0.007766 7.009 1.385 27649.8

4 in the 17633 0.006860 7.188 1.882 33185.7

5 , the 11492 0.004471 7.805 -0.044 -506.4

8 and the 7801 0.003035 8.364 0.508 3964.0

9 to the 7178 0.002792 8.484 1.389 9971.9

10 by the 6424 0.002499 8.644 2.221 14267.0

12 on the 5117 0.001991 8.973 2.563 13115.8

20 from the 3330 0.001295 9.592 2.130 7092.5

21 with the 3265 0.001270 9.621 1.916 6254.6

22 for the 3094 0.001204 9.698 1.507 4663.0

23 as the 2993 0.001164 9.746 1.256 3759.4

25 at the 2875 0.001118 9.804 2.404 6911.1

32 is the 2367 0.000921 10.085 0.621 1468.8

41 during the 1976 0.000769 10.345 3.157 6238.2

46 ; the 1777 0.000691 10.498 0.947 1682.8

60 was the 1431 0.000557 10.811 0.141 201.3

73 that the 1231 0.000479 11.028 0.547 673.1

89 are the 1087 0.000423 11.207 0.121 131.9

101 after the 956 0.000372 11.393 2.119 2025.3

102 into the 951 0.000370 11.400 1.987 1889.6

103 among the 938 0.000365 11.420 2.710 2542.3

132 between the 803 0.000312 11.644 2.272 1824.8

133 when the 795 0.000309 11.659 1.853 1472.7

138 under the 761 0.000296 11.722 2.457 1869.7
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Word pairs, with the on right side, sorted by Weighted Mutual In-
formation

rank bigram count frequency plog MI weighted MI

1 of the 30635 0.011918 6.391 2.059 63066.6

4 in the 17633 0.006860 7.188 1.882 33185.7

3 . the 19962 0.007766 7.009 1.385 27649.8

10 by the 6424 0.002499 8.644 2.221 14267.0

12 on the 5117 0.001991 8.973 2.563 13115.8

9 to the 7178 0.002792 8.484 1.389 9971.9

20 from the 3330 0.001295 9.592 2.130 7092.5

25 at the 2875 0.001118 9.804 2.404 6911.1

21 with the 3265 0.001270 9.621 1.916 6254.6

41 during the 1976 0.000769 10.345 3.157 6238.2

22 for the 3094 0.001204 9.698 1.507 4663.0

8 and the 7801 0.003035 8.364 0.508 3964.0

23 as the 2993 0.001164 9.746 1.256 3759.4

103 among the 938 0.000365 11.420 2.710 2542.3

101 after the 956 0.000372 11.393 2.119 2025.3

102 into the 951 0.000370 11.400 1.987 1889.6

138 under the 761 0.000296 11.722 2.457 1869.7

132 between the 803 0.000312 11.644 2.272 1824.8

148 through the 710 0.000276 11.822 2.455 1743.3

46 ; the 1777 0.000691 10.498 0.947 1682.8

133 when the 795 0.000309 11.659 1.853 1472.7

32 is the 2367 0.000921 10.085 0.621 1468.8

200 over the 550 0.000214 12.190 2.485 1366.7

196 against the 561 0.000218 12.162 2.430 1363.4

304 throughout the 402 0.000156 12.643 3.153 1267.3
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3.6 of

Word pairs, sorted by bigram count

with of

rank bigram count frequency plog MI weighted MI

1 of the 30635 0.011918 6.391 2.059 63066.6

16 of a 3654 0.001422 9.458 1.071 3913.5

47 one of 1707 0.000664 10.556 3.417 5832.7

54 of his 1550 0.000603 10.696 1.900 2945.7

65 part of 1296 0.000504 10.954 4.212 5458.6

81 number of 1178 0.000458 11.091 4.323 5092.5

122 , of 849 0.000330 11.564 -3.046 -2586.3

127 of which 816 0.000317 11.621 1.330 1085.5

136 of an 772 0.000300 11.701 1.158 893.6

137 because of 768 0.000299 11.709 3.326 2554.3

140 use of 753 0.000293 11.737 3.598 2709.4

143 university of 741 0.000288 11.760 3.541 2624.0

142 most of 741 0.000288 11.760 2.126 1575.7

151 of these 699 0.000272 11.844 2.604 1820.0

154 of their 695 0.000270 11.853 1.867 1297.8

159 of its 669 0.000260 11.908 1.773 1186.4

158 ) of 669 0.000260 11.908 -0.883 -590.4

171 king of 646 0.000251 11.958 3.212 2074.7

173 of this 640 0.000249 11.972 1.802 1153.1

183 form of 603 0.000235 12.058 3.100 1869.6

198 development of 551 0.000214 12.188 3.657 2015.2

202 end of 547 0.000213 12.198 4.031 2205.2

215 of all 521 0.000203 12.268 2.049 1067.4

217 that of 521 0.000203 12.268 0.063 32.8

225 of about 504 0.000196 12.316 0.993 500.5
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Word pairs, with of sorted by Weighted Mutual Information

rank bigram count frequency plog MI weighted MI

1 of the 30635 0.011918 6.391 2.059 63066.6

47 one of 1707 0.000664 10.556 3.417 5832.7

65 part of 1296 0.000504 10.954 4.212 5458.6

81 number of 1178 0.000458 11.091 4.323 5092.5

16 of a 3654 0.001422 9.458 1.071 3913.5

54 of his 1550 0.000603 10.696 1.900 2945.7

140 use of 753 0.000293 11.737 3.598 2709.4

143 university of 741 0.000288 11.760 3.541 2624.0

137 because of 768 0.000299 11.709 3.326 2554.3

202 end of 547 0.000213 12.198 4.031 2205.2

171 king of 646 0.000251 11.958 3.212 2074.7

198 development of 551 0.000214 12.188 3.657 2015.2

183 form of 603 0.000235 12.058 3.100 1869.6

247 parts of 469 0.000182 12.420 3.982 1867.7

270 series of 441 0.000172 12.509 4.160 1834.6

151 of these 699 0.000272 11.844 2.604 1820.0

243 members of 477 0.000186 12.396 3.639 1735.7

315 variety of 390 0.000152 12.686 4.310 1681.0

142 most of 741 0.000288 11.760 2.126 1575.7

284 son of 428 0.000167 12.552 3.588 1535.8

375 consists of 348 0.000135 12.851 4.384 1525.8

362 member of 360 0.000140 12.802 4.124 1484.7

376 types of 348 0.000135 12.851 4.025 1400.5

325 capital of 384 0.000149 12.709 3.503 1345.3

384 site of 339 0.000132 12.888 3.940 1335.8
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Word pairs, with of on left side, sorted by bigram count

rank bigram count frequency plog MI weighted MI

1 of the 30635 0.011918 6.391 2.059 63066.6

16 of a 3654 0.001422 9.458 1.071 3913.5

54 of his 1550 0.000603 10.696 1.900 2945.7

127 of which 816 0.000317 11.621 1.330 1085.5

136 of an 772 0.000300 11.701 1.158 893.6

151 of these 699 0.000272 11.844 2.604 1820.0

154 of their 695 0.000270 11.853 1.867 1297.8

159 of its 669 0.000260 11.908 1.773 1186.4

173 of this 640 0.000249 11.972 1.802 1153.1

215 of all 521 0.000203 12.268 2.049 1067.4

225 of about 504 0.000196 12.316 0.993 500.5

381 of france 341 0.000133 12.880 2.544 867.4

405 of new 331 0.000129 12.923 1.138 376.6

407 of england 328 0.000128 12.936 2.444 801.5

438 of such 306 0.000119 13.036 0.738 225.8

487 of two 282 0.000110 13.154 1.271 358.3

502 of modern 273 0.000106 13.201 2.236 610.4

601 of many 237 0.000092 13.405 0.885 209.8

622 of great 231 0.000090 13.442 1.313 303.2

621 of other 231 0.000090 13.442 0.218 50.4

692 of life 210 0.000082 13.579 1.716 360.5

690 of king 210 0.000082 13.579 1.591 334.0

716 of human 205 0.000080 13.614 2.381 488.1

717 of one 205 0.000080 13.614 0.359 73.6

738 of several 199 0.000077 13.657 1.593 317.1
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Word pairs, with of on left side, sorted by Weighted Mutual Infor-
mation

rank bigram count frequency plog MI weighted MI

1 of the 30635 0.011918 6.391 2.059 63066.6

16 of a 3654 0.001422 9.458 1.071 3913.5

54 of his 1550 0.000603 10.696 1.900 2945.7

151 of these 699 0.000272 11.844 2.604 1820.0

154 of their 695 0.000270 11.853 1.867 1297.8

159 of its 669 0.000260 11.908 1.773 1186.4

173 of this 640 0.000249 11.972 1.802 1153.1

127 of which 816 0.000317 11.621 1.330 1085.5

215 of all 521 0.000203 12.268 2.049 1067.4

136 of an 772 0.000300 11.701 1.158 893.6

381 of france 341 0.000133 12.880 2.544 867.4

407 of england 328 0.000128 12.936 2.444 801.5

502 of modern 273 0.000106 13.201 2.236 610.4

1102 of christ 147 0.000057 14.094 3.484 512.2

225 of about 504 0.000196 12.316 0.993 500.5

716 of human 205 0.000080 13.614 2.381 488.1

952 of god 167 0.000065 13.910 2.776 463.6

1015 of saint 157 0.000061 13.999 2.806 440.5

1214 of higher 137 0.000053 14.196 2.891 396.1

1432 of whom 122 0.000047 14.363 3.111 379.6

1666 of representatives 107 0.000042 14.552 3.522 376.8

405 of new 331 0.000129 12.923 1.138 376.6

787 of any 191 0.000074 13.716 1.935 369.6

692 of life 210 0.000082 13.579 1.716 360.5

487 of two 282 0.000110 13.154 1.271 358.3
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Word pairs, with of on right side, sorted by bigram count

rank bigram count frequency plog MI weighted MI

47 one of 1707 0.000664 10.556 3.417 5832.7

65 part of 1296 0.000504 10.954 4.212 5458.6

81 number of 1178 0.000458 11.091 4.323 5092.5

122 , of 849 0.000330 11.564 -3.046 -2586.3

137 because of 768 0.000299 11.709 3.326 2554.3

140 use of 753 0.000293 11.737 3.598 2709.4

143 university of 741 0.000288 11.760 3.541 2624.0

142 most of 741 0.000288 11.760 2.126 1575.7

158 ) of 669 0.000260 11.908 -0.883 -590.4

171 king of 646 0.000251 11.958 3.212 2074.7

183 form of 603 0.000235 12.058 3.100 1869.6

198 development of 551 0.000214 12.188 3.657 2015.2

202 end of 547 0.000213 12.198 4.031 2205.2

217 that of 521 0.000203 12.268 0.063 32.8

243 members of 477 0.000186 12.396 3.639 1735.7

241 and of 477 0.000186 12.396 -2.767 -1319.8

247 parts of 469 0.000182 12.420 3.982 1867.7

266 some of 447 0.000174 12.489 1.836 820.6

270 series of 441 0.000172 12.509 4.160 1834.6

284 son of 428 0.000167 12.552 3.588 1535.8

305 center of 401 0.000156 12.646 2.968 1190.0

315 variety of 390 0.000152 12.686 4.310 1681.0

322 those of 385 0.000150 12.705 2.801 1078.4

321 many of 385 0.000150 12.705 1.585 610.4

325 capital of 384 0.000149 12.709 3.503 1345.3
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Word pairs, with of on right side, sorted by Weighted Mutual Infor-
mation

rank bigram count frequency plog MI weighted MI

47 one of 1707 0.000664 10.556 3.417 5832.7

65 part of 1296 0.000504 10.954 4.212 5458.6

81 number of 1178 0.000458 11.091 4.323 5092.5

140 use of 753 0.000293 11.737 3.598 2709.4

143 university of 741 0.000288 11.760 3.541 2624.0

137 because of 768 0.000299 11.709 3.326 2554.3

202 end of 547 0.000213 12.198 4.031 2205.2

171 king of 646 0.000251 11.958 3.212 2074.7

198 development of 551 0.000214 12.188 3.657 2015.2

183 form of 603 0.000235 12.058 3.100 1869.6

247 parts of 469 0.000182 12.420 3.982 1867.7

270 series of 441 0.000172 12.509 4.160 1834.6

243 members of 477 0.000186 12.396 3.639 1735.7

315 variety of 390 0.000152 12.686 4.310 1681.0

142 most of 741 0.000288 11.760 2.126 1575.7

284 son of 428 0.000167 12.552 3.588 1535.8

375 consists of 348 0.000135 12.851 4.384 1525.8

362 member of 360 0.000140 12.802 4.124 1484.7

376 types of 348 0.000135 12.851 4.025 1400.5

325 capital of 384 0.000149 12.709 3.503 1345.3

384 site of 339 0.000132 12.888 3.940 1335.8

365 study of 359 0.000140 12.806 3.698 1327.6

393 means of 335 0.000130 12.906 3.918 1312.5

399 type of 334 0.000130 12.910 3.882 1296.6

472 seat of 289 0.000112 13.119 4.402 1272.3
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3.7 to

with to

rank bigram count frequency plog MI weighted MI

9 to the 7178 0.002792 8.484 1.389 9971.9

56 to be 1491 0.000580 10.752 4.062 6057.0

75 to a 1225 0.000477 11.035 0.918 1125.1

116 , to 874 0.000340 11.522 -1.580 -1381.2

161 and to 663 0.000258 11.921 -0.868 -575.4

189 used to 577 0.000224 12.121 3.564 2056.4

193 according to 571 0.000222 12.136 6.023 3439.3

250 to have 466 0.000181 12.429 2.718 1266.4

290 began to 423 0.000165 12.569 4.626 1956.8

367 led to 358 0.000139 12.810 4.748 1699.8

371 . to 353 0.000137 12.830 -2.256 -796.3

396 returned to 334 0.000130 12.910 5.697 1902.8

401 applied to 333 0.000130 12.914 5.286 1760.3

463 to form 292 0.000114 13.104 3.478 1015.7

480 to his 286 0.000111 13.134 0.886 253.5

489 up to 280 0.000109 13.164 3.952 1106.5

512 to make 270 0.000105 13.217 4.923 1329.2

530 order to 262 0.000102 13.260 4.183 1096.0

568 ) to 248 0.000096 13.339 -0.890 -220.7

581 to produce 242 0.000094 13.375 4.947 1197.2

604 is to 236 0.000092 13.411 -0.525 -123.9

619 able to 231 0.000090 13.442 5.811 1342.4

627 continued to 229 0.000089 13.454 4.715 1079.8

656 elected to 221 0.000086 13.506 4.513 997.3

676 to an 214 0.000083 13.552 0.731 156.4
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Word pairs, with to sorted by Weighted Mutual Information

rank bigram count frequency plog MI weighted MI

9 to the 7178 0.002792 8.484 1.389 9971.9

56 to be 1491 0.000580 10.752 4.062 6057.0

193 according to 571 0.000222 12.136 6.023 3439.3

189 used to 577 0.000224 12.121 3.564 2056.4

290 began to 423 0.000165 12.569 4.626 1956.8

396 returned to 334 0.000130 12.910 5.697 1902.8

401 applied to 333 0.000130 12.914 5.286 1760.3

367 led to 358 0.000139 12.810 4.748 1699.8

619 able to 231 0.000090 13.442 5.811 1342.4

512 to make 270 0.000105 13.217 4.923 1329.2

250 to have 466 0.000181 12.429 2.718 1266.4

581 to produce 242 0.000094 13.375 4.947 1197.2

75 to a 1225 0.000477 11.035 0.918 1125.1

489 up to 280 0.000109 13.164 3.952 1106.5

530 order to 262 0.000102 13.260 4.183 1096.0

627 continued to 229 0.000089 13.454 4.715 1079.8

463 to form 292 0.000114 13.104 3.478 1015.7

656 elected to 221 0.000086 13.506 4.513 997.3

950 said to 167 0.000065 13.910 5.714 954.3

809 related to 187 0.000073 13.747 4.997 934.4

762 addition to 195 0.000076 13.686 4.719 920.3

848 designed to 180 0.000070 13.802 4.893 880.8

999 attempt to 160 0.000062 13.972 5.495 879.2

931 went to 168 0.000065 13.901 5.161 867.1

1062 to prevent 152 0.000059 14.046 5.613 853.2

3.7 to 61



Word pairs, with to on left side, sorted by bigram count

rank bigram count frequency plog MI weighted MI

9 to the 7178 0.002792 8.484 1.389 9971.9

56 to be 1491 0.000580 10.752 4.062 6057.0

75 to a 1225 0.000477 11.035 0.918 1125.1

250 to have 466 0.000181 12.429 2.718 1266.4

463 to form 292 0.000114 13.104 3.478 1015.7

480 to his 286 0.000111 13.134 0.886 253.5

512 to make 270 0.000105 13.217 4.923 1329.2

581 to produce 242 0.000094 13.375 4.947 1197.2

676 to an 214 0.000083 13.552 0.731 156.4

691 to their 210 0.000082 13.579 1.565 328.6

919 to provide 169 0.000066 13.893 4.828 816.0

968 to its 164 0.000064 13.936 1.169 191.8

965 to about 164 0.000064 13.936 0.797 130.8

1062 to prevent 152 0.000059 14.046 5.613 853.2

1064 to become 151 0.000059 14.055 3.866 583.8

1103 to that 147 0.000057 14.094 -0.338 -49.8

1124 to which 145 0.000056 14.114 0.262 38.0

1186 to establish 140 0.000054 14.164 5.652 791.3

1218 to those 137 0.000053 14.196 2.734 374.6

1437 to develop 121 0.000047 14.375 4.984 603.1

1485 to use 118 0.000046 14.411 2.348 277.1

1493 to all 118 0.000046 14.411 1.330 157.0

1503 to protect 117 0.000046 14.423 5.588 653.8

1549 to france 114 0.000044 14.461 2.387 272.1

1572 to other 112 0.000044 14.486 0.598 66.9
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Word pairs, with to on left side, sorted by Weighted Mutual Infor-
mation

rank bigram count frequency plog MI weighted MI

9 to the 7178 0.002792 8.484 1.389 9971.9

56 to be 1491 0.000580 10.752 4.062 6057.0

512 to make 270 0.000105 13.217 4.923 1329.2

250 to have 466 0.000181 12.429 2.718 1266.4

581 to produce 242 0.000094 13.375 4.947 1197.2

75 to a 1225 0.000477 11.035 0.918 1125.1

463 to form 292 0.000114 13.104 3.478 1015.7

1062 to prevent 152 0.000059 14.046 5.613 853.2

919 to provide 169 0.000066 13.893 4.828 816.0

1186 to establish 140 0.000054 14.164 5.652 791.3

1503 to protect 117 0.000046 14.423 5.588 653.8

1437 to develop 121 0.000047 14.375 4.984 603.1

1717 to create 105 0.000041 14.579 5.668 595.2

1064 to become 151 0.000059 14.055 3.866 583.8

1820 to determine 99 0.000039 14.664 5.521 546.5

1628 to take 110 0.000043 14.512 4.657 512.3

2175 to obtain 87 0.000034 14.851 5.616 488.6

2148 to reduce 88 0.000034 14.834 5.291 465.6

2197 to maintain 87 0.000034 14.851 5.284 459.7

1944 to serve 95 0.000037 14.724 4.774 453.5

2544 to avoid 78 0.000030 15.008 5.793 451.8

1928 to give 95 0.000037 14.724 4.730 449.4

2407 to achieve 81 0.000032 14.954 5.488 444.5

2630 to ensure 76 0.000030 15.046 5.836 443.5

2542 to keep 78 0.000030 15.008 5.374 419.2
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Word pairs, with to on right side, sorted by bigram count

rank bigram count frequency plog MI weighted MI

116 , to 874 0.000340 11.522 -1.580 -1381.2

161 and to 663 0.000258 11.921 -0.868 -575.4

189 used to 577 0.000224 12.121 3.564 2056.4

193 according to 571 0.000222 12.136 6.023 3439.3

290 began to 423 0.000165 12.569 4.626 1956.8

367 led to 358 0.000139 12.810 4.748 1699.8

371 . to 353 0.000137 12.830 -2.256 -796.3

396 returned to 334 0.000130 12.910 5.697 1902.8

401 applied to 333 0.000130 12.914 5.286 1760.3

489 up to 280 0.000109 13.164 3.952 1106.5

530 order to 262 0.000102 13.260 4.183 1096.0

568 ) to 248 0.000096 13.339 -0.890 -220.7

604 is to 236 0.000092 13.411 -0.525 -123.9

619 able to 231 0.000090 13.442 5.811 1342.4

627 continued to 229 0.000089 13.454 4.715 1079.8

656 elected to 221 0.000086 13.506 4.513 997.3

696 was to 209 0.000081 13.586 -0.454 -94.9

762 addition to 195 0.000076 13.686 4.719 920.3

786 similar to 191 0.000074 13.716 4.339 828.8

809 related to 187 0.000073 13.747 4.997 934.4

811 him to 186 0.000072 13.754 3.391 630.8

848 designed to 180 0.000070 13.802 4.893 880.8

855 them to 179 0.000070 13.810 3.070 549.5

931 went to 168 0.000065 13.901 5.161 867.1

950 said to 167 0.000065 13.910 5.714 954.3
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Word pairs, with to on right side, sorted by Weighted Mutual Infor-
mation

rank bigram count frequency plog MI weighted MI

193 according to 571 0.000222 12.136 6.023 3439.3

189 used to 577 0.000224 12.121 3.564 2056.4

290 began to 423 0.000165 12.569 4.626 1956.8

396 returned to 334 0.000130 12.910 5.697 1902.8

401 applied to 333 0.000130 12.914 5.286 1760.3

367 led to 358 0.000139 12.810 4.748 1699.8

619 able to 231 0.000090 13.442 5.811 1342.4

489 up to 280 0.000109 13.164 3.952 1106.5

530 order to 262 0.000102 13.260 4.183 1096.0

627 continued to 229 0.000089 13.454 4.715 1079.8

656 elected to 221 0.000086 13.506 4.513 997.3

950 said to 167 0.000065 13.910 5.714 954.3

809 related to 187 0.000073 13.747 4.997 934.4

762 addition to 195 0.000076 13.686 4.719 920.3

848 designed to 180 0.000070 13.802 4.893 880.8

999 attempt to 160 0.000062 13.972 5.495 879.2

931 went to 168 0.000065 13.901 5.161 867.1

786 similar to 191 0.000074 13.716 4.339 828.8

1360 tend to 126 0.000049 14.316 6.008 757.0

1348 referred to 127 0.000049 14.305 5.953 756.1

1053 return to 153 0.000060 14.036 4.870 745.2

1018 subject to 157 0.000061 13.999 4.685 735.6

985 came to 162 0.000063 13.954 4.510 730.6

1306 due to 130 0.000051 14.271 5.522 717.8

1131 moved to 144 0.000056 14.124 4.948 712.5
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3.8 house

with house

rank bigram count frequency plog MI weighted MI

499 house of 274 0.000107 13.196 3.515 963.1

637 the house 225 0.000088 13.480 2.474 556.7

3183 house , 65 0.000025 15.271 0.751 48.8

5928 house ( 40 0.000016 15.972 2.559 102.4

7924 a house 31 0.000012 16.339 1.695 52.5

8671 . house 29 0.000011 16.436 0.219 6.4

9295 house . 28 0.000011 16.486 0.169 4.7

11715 opera house 23 0.000009 16.770 9.080 208.8

12045 house in 22 0.000009 16.834 0.497 10.9

17176 house and 16 0.000006 17.294 -0.160 -2.6

19327 lower house 15 0.000006 17.387 7.167 107.5

19060 each house 15 0.000006 17.387 5.506 82.6

22523 white house 13 0.000005 17.593 6.510 84.6

34760 court house 9 0.000004 18.124 5.469 49.2

35512 and house 8 0.000003 18.294 -1.160 -9.3

43943 house was 7 0.000003 18.486 0.726 5.1

53432 royal house 6 0.000002 18.709 5.674 34.0

55523 house may 6 0.000002 18.709 3.154 18.9

51674 house on 6 0.000002 18.709 1.088 6.5

54336 house are 6 0.000002 18.709 0.881 5.3

64761 upper house 5 0.000002 18.972 6.389 31.9

62681 either house 5 0.000002 18.972 5.317 26.6

59445 state house 5 0.000002 18.972 3.322 16.6

63693 ( house 5 0.000002 18.972 -0.441 -2.2

66422 house to 5 0.000002 18.972 -0.837 -4.2
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Word pairs, with house sorted by Weighted Mutual Information

rank bigram count frequency plog MI weighted MI

499 house of 274 0.000107 13.196 3.515 963.1

637 the house 225 0.000088 13.480 2.474 556.7

11715 opera house 23 0.000009 16.770 9.080 208.8

19327 lower house 15 0.000006 17.387 7.167 107.5

5928 house ( 40 0.000016 15.972 2.559 102.4

22523 white house 13 0.000005 17.593 6.510 84.6

19060 each house 15 0.000006 17.387 5.506 82.6

7924 a house 31 0.000012 16.339 1.695 52.5

34760 court house 9 0.000004 18.124 5.469 49.2

3183 house , 65 0.000025 15.271 0.751 48.8

84487 random house 4 0.000002 19.294 9.157 36.6

72133 hull house 4 0.000002 19.294 8.982 35.9

53432 royal house 6 0.000002 18.709 5.674 34.0

77031 house arrest 4 0.000002 19.294 8.497 34.0

64761 upper house 5 0.000002 18.972 6.389 31.9

73936 customs house 4 0.000002 19.294 6.952 27.8

62681 either house 5 0.000002 18.972 5.317 26.6

162587 carlton house 2 0.000001 20.294 11.526 23.1

109679 ruling house 3 0.000001 19.709 7.321 22.0

154063 somerset house 2 0.000001 20.294 9.652 19.3

55523 house may 6 0.000002 18.709 3.154 18.9

162648 manor house 2 0.000001 20.294 9.411 18.8

177819 house correspondent 2 0.000001 20.294 8.789 17.6

59445 state house 5 0.000002 18.972 3.322 16.6

81491 country house 4 0.000002 19.294 4.140 16.6
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Word pairs, with house on left side, sorted by bigram count

rank bigram count frequency plog MI weighted MI

499 house of 274 0.000107 13.196 3.515 963.1

3183 house , 65 0.000025 15.271 0.751 48.8

5928 house ( 40 0.000016 15.972 2.559 102.4

9295 house . 28 0.000011 16.486 0.169 4.7

12045 house in 22 0.000009 16.834 0.497 10.9

17176 house and 16 0.000006 17.294 -0.160 -2.6

43943 house was 7 0.000003 18.486 0.726 5.1

55523 house may 6 0.000002 18.709 3.154 18.9

51674 house on 6 0.000002 18.709 1.088 6.5

54336 house are 6 0.000002 18.709 0.881 5.3

66422 house to 5 0.000002 18.972 -0.837 -4.2

77031 house arrest 4 0.000002 19.294 8.497 34.0

70505 house has 4 0.000002 19.294 2.015 8.1

80278 house from 4 0.000002 19.294 0.690 2.8

90260 house ; 4 0.000002 19.294 0.413 1.7

82307 house for 4 0.000002 19.294 0.173 0.7

120579 house shall 3 0.000001 19.709 5.249 15.7

96089 house national 3 0.000001 19.709 2.940 8.8

105389 house is 3 0.000001 19.709 -0.742 -2.2

177819 house correspondent 2 0.000001 20.294 8.789 17.6

178456 house speaker 2 0.000001 20.294 7.557 15.1

130699 house staff 2 0.000001 20.294 6.482 13.0

205515 house encyclopedia 2 0.000001 20.294 6.439 12.9

166491 house near 2 0.000001 20.294 2.918 5.8

146131 house during 2 0.000001 20.294 1.470 2.9
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Word pairs, with house on left side, sorted by Weighted Mutual
Information

rank bigram count frequency plog MI weighted MI

499 house of 274 0.000107 13.196 3.515 963.1

5928 house ( 40 0.000016 15.972 2.559 102.4

3183 house , 65 0.000025 15.271 0.751 48.8

77031 house arrest 4 0.000002 19.294 8.497 34.0

55523 house may 6 0.000002 18.709 3.154 18.9

177819 house correspondent 2 0.000001 20.294 8.789 17.6

120579 house shall 3 0.000001 19.709 5.249 15.7

178456 house speaker 2 0.000001 20.294 7.557 15.1

130699 house staff 2 0.000001 20.294 6.482 13.0

205515 house encyclopedia 2 0.000001 20.294 6.439 12.9

622825 house t’ 1 0.000000 21.294 12.111 12.1

623903 house varied-depending 1 0.000000 21.294 12.111 12.1

12045 house in 22 0.000009 16.834 0.497 10.9

384777 house centipede 1 0.000000 21.294 10.111 10.1

706010 house searches 1 0.000000 21.294 9.111 9.1

457123 house wiring 1 0.000000 21.294 8.941 8.9

96089 house national 3 0.000001 19.709 2.940 8.8

380911 house carpenter 1 0.000000 21.294 8.526 8.5

340965 house chooses 1 0.000000 21.294 8.304 8.3

332198 house appropriations 1 0.000000 21.294 8.111 8.1

70505 house has 4 0.000002 19.294 2.015 8.1

248760 house finch 1 0.000000 21.294 7.789 7.8

480626 house dwellers 1 0.000000 21.294 7.205 7.2

664208 house originating 1 0.000000 21.294 6.982 7.0

633864 house shrine 1 0.000000 21.294 6.902 6.9
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Word pairs, with house on right side, sorted by bigram count

rank bigram count frequency plog MI weighted MI

637 the house 225 0.000088 13.480 2.474 556.7

7924 a house 31 0.000012 16.339 1.695 52.5

8671 . house 29 0.000011 16.436 0.219 6.4

11715 opera house 23 0.000009 16.770 9.080 208.8

19327 lower house 15 0.000006 17.387 7.167 107.5

19060 each house 15 0.000006 17.387 5.506 82.6

22523 white house 13 0.000005 17.593 6.510 84.6

34760 court house 9 0.000004 18.124 5.469 49.2

35512 and house 8 0.000003 18.294 -1.160 -9.3

53432 royal house 6 0.000002 18.709 5.674 34.0

64761 upper house 5 0.000002 18.972 6.389 31.9

62681 either house 5 0.000002 18.972 5.317 26.6

59445 state house 5 0.000002 18.972 3.322 16.6

63693 ( house 5 0.000002 18.972 -0.441 -2.2

65857 , house 5 0.000002 18.972 -2.949 -14.7

84487 random house 4 0.000002 19.294 9.157 36.6

72133 hull house 4 0.000002 19.294 8.982 35.9

73936 customs house 4 0.000002 19.294 6.952 27.8

81491 country house 4 0.000002 19.294 4.140 16.6

81357 british house 4 0.000002 19.294 3.461 13.8

86882 his house 4 0.000002 19.294 0.807 3.2

84279 that house 4 0.000002 19.294 0.542 2.2

109679 ruling house 3 0.000001 19.709 7.321 22.0

118812 government house 3 0.000001 19.709 2.865 8.6

101702 under house 3 0.000001 19.709 2.731 8.2
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Word pairs, with house on right side, sorted by Weighted Mutual
Information

rank bigram count frequency plog MI weighted MI

637 the house 225 0.000088 13.480 2.474 556.7

11715 opera house 23 0.000009 16.770 9.080 208.8

19327 lower house 15 0.000006 17.387 7.167 107.5

22523 white house 13 0.000005 17.593 6.510 84.6

19060 each house 15 0.000006 17.387 5.506 82.6

7924 a house 31 0.000012 16.339 1.695 52.5

34760 court house 9 0.000004 18.124 5.469 49.2

84487 random house 4 0.000002 19.294 9.157 36.6

72133 hull house 4 0.000002 19.294 8.982 35.9

53432 royal house 6 0.000002 18.709 5.674 34.0

64761 upper house 5 0.000002 18.972 6.389 31.9

73936 customs house 4 0.000002 19.294 6.952 27.8

62681 either house 5 0.000002 18.972 5.317 26.6

162587 carlton house 2 0.000001 20.294 11.526 23.1

109679 ruling house 3 0.000001 19.709 7.321 22.0

154063 somerset house 2 0.000001 20.294 9.652 19.3

162648 manor house 2 0.000001 20.294 9.411 18.8

59445 state house 5 0.000002 18.972 3.322 16.6

81491 country house 4 0.000002 19.294 4.140 16.6

81357 british house 4 0.000002 19.294 3.461 13.8

192997 neither house 2 0.000001 20.294 6.572 13.1

252306 music-publishing house 1 0.000000 21.294 12.111 12.1

262579 finlandia house 1 0.000000 21.294 12.111 12.1

275419 chief’s house 1 0.000000 21.294 12.111 12.1

279889 tullie house 1 0.000000 21.294 12.111 12.1
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3.9 French de

Words, sorted by frequency

rank word count frequency plog

1 , 595592 0.068 3.880

2 de 456678 0.052 4.263

3 . 376252 0.043 4.543

4 la 301251 0.034 4.864

5 et 228471 0.026 5.263

6 le 198547 0.023 5.465

7 les 193829 0.022 5.500

8 des 162899 0.019 5.751

9 à 158076 0.018 5.794

10 en 141333 0.016 5.956

11 du 112781 0.013 6.281

12 ) 93263 0.011 6.555

13 ( 93189 0.011 6.556

14 dans 73744 0.008 6.894

15 par 71346 0.008 6.942

16 une 63388 0.007 7.112

17 un 62680 0.007 7.129

18 ! 58448 0.007 7.229

19 qui 55319 0.006 7.309

20 au 55022 0.006 7.317

21 est 53503 0.006 7.357

22 il 52046 0.006 7.397

23 pour 43163 0.005 7.667

24 plus 37451 0.004 7.872

25 que 36473 0.004 7.910
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Word pairs, sorted by bigram frequency

rank bigram count frequency plog MI weighted MI

1 . . 92398 0.010492 6.575 2.511 232040.482

2 de la 82589 0.009378 6.737 2.391 197442.068

3 ) , 36538 0.004149 7.913 2.523 92168.874

4 , le 30075 0.003415 8.194 1.152 34634.721

5 à la 27628 0.003137 8.316 2.341 64688.161

6 . les 27473 0.003120 8.324 1.718 47209.126

7 , les 25779 0.002927 8.416 0.964 24849.392

8 , la 24622 0.002796 8.483 0.262 6438.885

9 . le 23396 0.002657 8.556 1.452 33969.446

10 . la 22957 0.002607 8.584 0.823 18896.382

11 , il 21894 0.002486 8.652 2.625 57476.213

12 , qui 21098 0.002396 8.705 2.484 52402.933

13 , et 20904 0.002374 8.719 0.424 8869.472

14 et de 20860 0.002369 8.722 0.804 16779.840

15 ! ; 19794 0.002248 8.797 7.200 142509.452

16 , en 19203 0.002181 8.841 0.995 19102.392

17 . il 17997 0.002044 8.935 3.005 54081.882

18 ) . 16909 0.001920 9.025 2.074 35061.948

19 . en 15769 0.001791 9.125 1.373 21653.130

20 et les 14794 0.001680 9.217 1.545 22857.744

21 dans le 14449 0.001641 9.251 3.108 44903.784

22 , de 14370 0.001632 9.259 -1.116 -16031.025

23 dans les 13924 0.001581 9.305 3.089 43011.843

24 et le 13371 0.001518 9.363 1.364 18244.296

25 dans la 13215 0.001501 9.380 2.377 31418.196
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Word pairs, sorted by repelling bigram mutual informa-
tion

rank bigram count frequency plog MI weighted MI

1728041 la de 1 0.000000 23.070 -13.943 -13.9

1425939 les la 1 0.000000 23.070 -12.707 -12.7

1142776 la des 1 0.000000 23.070 -12.456 -12.5

1774443 le et 1 0.000000 23.070 -12.342 -12.3

1145039 des et 1 0.000000 23.070 -12.057 -12.1

458967 de à 2 0.000000 22.070 -12.013 -24.0

1288153 le des 1 0.000000 23.070 -11.854 -11.9

528173 de en 2 0.000000 22.070 -11.851 -23.7

1826839 des les 1 0.000000 23.070 -11.820 -11.8

538057 en . 2 0.000000 22.070 -11.572 -23.1

1605348 du et 1 0.000000 23.070 -11.526 -11.5

310977 les . 3 0.000000 21.485 -11.442 -34.3

1280004 de il 1 0.000000 23.070 -11.410 -11.4

1198328 des en 1 0.000000 23.070 -11.364 -11.4

323008 la et 3 0.000000 21.485 -11.359 -34.1

1499628 en à 1 0.000000 23.070 -11.321 -11.3

769948 la dans 1 0.000000 23.070 -11.312 -11.3

1810844 et ) 1 0.000000 23.070 -11.252 -11.3

1787976 une la 1 0.000000 23.070 -11.094 -11.1

802782 un la 1 0.000000 23.070 -11.078 -11.1

537141 ( . 2 0.000000 22.070 -10.971 -21.9

339059 et et 3 0.000000 21.485 -10.960 -32.9

166757 de et 6 0.000001 20.485 -10.959 -65.8

527838 de dans 2 0.000000 22.070 -10.913 -21.8

1675721 pour . 1 0.000000 23.070 -10.860 -10.9
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Word pairs, sorted by attracting bigram mutual information

rank bigram count frequency plog MI weighted MI

211182 médard chouart 4 0.000000 21.070 21.058 84.2

213948 intracoastal waterway 4 0.000000 21.070 21.058 84.2

223771 pardo bazán 4 0.000000 21.070 21.058 84.2

224614 iuliu maniu 4 0.000000 21.070 21.058 84.2

225238 ibl al-haytham 4 0.000000 21.070 21.058 84.2

225348 iasnaäa poliana 4 0.000000 21.070 21.058 84.2

234999 marja al-taqlid 4 0.000000 21.070 21.058 84.2

237094 nasjonal samling 4 0.000000 21.070 21.058 84.2

238568 gentis anglorum 4 0.000000 21.070 21.058 84.2

246271 l’afrika korps 4 0.000000 21.070 21.058 84.2

251958 calvo sotelo 4 0.000000 21.070 21.058 84.2

255633 mwene mutapa 4 0.000000 21.070 21.058 84.2

260794 dazai osamu 4 0.000000 21.070 21.058 84.2

262923 entamoeba histolytica 4 0.000000 21.070 21.058 84.2

175091 santissima annunziata 5 0.000001 20.748 20.736 103.7

181551 geheime staatspolizei 5 0.000001 20.748 20.736 103.7

194347 llano estacado 5 0.000001 20.748 20.736 103.7

196837 delirium tremens 5 0.000001 20.748 20.736 103.7

216412 revolutionibus orbium 4 0.000000 21.070 20.736 82.9

223179 karlovy vary 4 0.000000 21.070 20.736 82.9

225153 kryvyï rih 4 0.000000 21.070 20.736 82.9

225195 bronislava nijinska 4 0.000000 21.070 20.736 82.9

231359 d’amadou koumba 4 0.000000 21.070 20.736 82.9

231620 tupac amaru 4 0.000000 21.070 20.736 82.9

233420 gösta berling 4 0.000000 21.070 20.736 82.9
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Word pairs, sorted by attracting bigram weighted mutual informa-
tion

rank bigram count frequency plog MI weighted MI

1 . . 4 0.000000 6.575 2.511 232040.5

2 de la 4 0.000000 6.737 2.391 197442.1

15 ! ; 4 0.000000 8.797 7.200 142509.5

3 ) , 4 0.000000 7.913 2.523 92168.9

5 à la 4 0.000000 8.316 2.341 64688.2

11 , il 4 0.000000 8.652 2.625 57476.2

17 . il 4 0.000000 8.935 3.005 54081.9

12 , qui 4 0.000000 8.705 2.484 52402.9

6 . les 4 0.000000 8.324 1.718 47209.1

21 dans le 4 0.000000 9.251 3.108 44903.8

23 dans les 4 0.000000 9.305 3.089 43011.8

18 ) . 4 0.000000 9.025 2.074 35061.9

4 , le 4 0.000000 8.194 1.152 34634.7

9 . le 4 0.000000 8.556 1.452 33969.4

25 dans la 4 0.000000 9.380 2.377 31418.2

31 , mais 4 0.000000 9.892 3.201 29677.6

28 par les 4 0.000000 9.710 2.732 28722.9

129 guerre mondiale 4 0.000000 11.614 9.491 26660.3

49 il fut 4 0.000000 10.671 4.782 25825.4

82 au cours 4 0.000000 11.186 6.739 25471.6

42 la ville 4 0.000000 10.505 4.111 24911.1

7 , les 4 0.000000 8.416 0.964 24849.4

87 ainsi que 4 0.000000 11.224 6.501 23941.5

37 sur le 4 0.000000 10.255 3.192 23011.5

20 et les 4 0.000000 9.217 1.545 22857.7
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Word pairs, sorted by bigram count

with de

rank bigram count frequency plog MI weighted MI

2 de la 82589 0.009378 6.737 2.391 197442.1

14 et de 20860 0.002369 8.722 0.804 16779.8

22 , de 14370 0.001632 9.259 -1.116 -16031.0

38 de son 6685 0.000759 10.363 2.077 13883.8

60 de ses 4578 0.000520 10.910 2.087 9553.2

78 . de 3839 0.000436 11.164 -2.357 -9049.4

79 de nombreux 3818 0.000434 11.172 3.975 15176.7

94 de sa 3508 0.000398 11.294 1.857 6515.5

107 plus de 3208 0.000364 11.423 0.712 2285.2

117 de cette 2982 0.000339 11.528 2.097 6254.4

123 partir de 2902 0.000330 11.567 3.548 10295.2

128 de nombreuses 2828 0.000321 11.605 3.973 11236.5

140 de ces 2687 0.000305 11.678 2.230 5992.2

145 nom de 2612 0.000297 11.719 2.861 7474.0

150 ou de 2555 0.000290 11.751 0.675 1725.1

151 près de 2551 0.000290 11.753 3.769 9614.0

160 de ce 2448 0.000278 11.813 1.528 3739.4

163 de leur 2416 0.000274 11.832 1.877 4534.4

171 partie de 2346 0.000266 11.874 2.591 6078.4

178 nombre de 2268 0.000258 11.923 3.259 7390.4

182 de plus 2236 0.000254 11.943 0.192 428.4

202 cours de 1991 0.000226 12.111 2.761 5496.2

211 lors de 1923 0.000218 12.161 3.276 6299.2

239 forme de 1716 0.000195 12.325 2.542 4362.9

267 de deux 1534 0.000174 12.487 1.136 1742.8
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Word pairs, with de sorted by Weighted Mutual Information

rank bigram count frequency plog MI weighted MI

2 de la 82589 0.009378 6.737 2.391 197442.1

14 et de 20860 0.002369 8.722 0.804 16779.8

79 de nombreux 3818 0.000434 11.172 3.975 15176.7

38 de son 6685 0.000759 10.363 2.077 13883.8

128 de nombreuses 2828 0.000321 11.605 3.973 11236.5

123 partir de 2902 0.000330 11.567 3.548 10295.2

151 près de 2551 0.000290 11.753 3.769 9614.0

60 de ses 4578 0.000520 10.910 2.087 9553.2

145 nom de 2612 0.000297 11.719 2.861 7474.0

178 nombre de 2268 0.000258 11.923 3.259 7390.4

94 de sa 3508 0.000398 11.294 1.857 6515.5

211 lors de 1923 0.000218 12.161 3.276 6299.2

117 de cette 2982 0.000339 11.528 2.097 6254.4

171 partie de 2346 0.000266 11.874 2.591 6078.4

140 de ces 2687 0.000305 11.678 2.230 5992.2

202 cours de 1991 0.000226 12.111 2.761 5496.2

315 l’université de 1397 0.000159 12.622 3.365 4701.3

163 de leur 2416 0.000274 11.832 1.877 4534.4

337 de l’empire 1322 0.000150 12.702 3.326 4397.4

239 forme de 1716 0.000195 12.325 2.542 4362.9

375 afin de 1209 0.000137 12.831 3.550 4291.4

319 celui de 1382 0.000157 12.638 3.093 4275.2

410 de fer 1132 0.000129 12.926 3.646 4126.9

342 celle de 1314 0.000149 12.710 2.958 3886.6

408 raison de 1144 0.000130 12.910 3.319 3796.7
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Word pairs, with de on left side, sorted by bigram count

rank bigram count frequency plog MI weighted MI

2 de la 82589 0.009378 6.737 2.391 197442.1

38 de son 6685 0.000759 10.363 2.077 13883.8

60 de ses 4578 0.000520 10.910 2.087 9553.2

79 de nombreux 3818 0.000434 11.172 3.975 15176.7

94 de sa 3508 0.000398 11.294 1.857 6515.5

117 de cette 2982 0.000339 11.528 2.097 6254.4

128 de nombreuses 2828 0.000321 11.605 3.973 11236.5

140 de ces 2687 0.000305 11.678 2.230 5992.2

160 de ce 2448 0.000278 11.813 1.528 3739.4

163 de leur 2416 0.000274 11.832 1.877 4534.4

182 de plus 2236 0.000254 11.943 0.192 428.4

267 de deux 1534 0.000174 12.487 1.136 1742.8

289 de leurs 1472 0.000167 12.547 2.168 3190.7

306 de france 1426 0.000162 12.592 1.789 2551.1

321 de se 1380 0.000157 12.640 -0.295 -407.8

337 de l’empire 1322 0.000150 12.702 3.326 4397.4

381 de paris 1195 0.000136 12.847 2.655 3173.2

394 de “ 1165 0.000132 12.884 0.577 672.1

410 de fer 1132 0.000129 12.926 3.646 4126.9

442 de de 1030 0.000117 13.062 -4.535 -4670.8

449 de façon 1012 0.000115 13.087 3.658 3702.4

455 de plusieurs 1007 0.000114 13.094 1.588 1598.9

466 de même 989 0.000112 13.120 1.252 1238.2

478 de nouvelles 967 0.000110 13.153 3.383 3271.4

511 de guerre 922 0.000105 13.222 0.836 771.0
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Word pairs, with de on left side, sorted by Weighted Mutual Infor-
mation

rank bigram count frequency plog MI weighted MI

2 de la 82589 0.009378 6.737 2.391 197442.1

79 de nombreux 3818 0.000434 11.172 3.975 15176.7

38 de son 6685 0.000759 10.363 2.077 13883.8

128 de nombreuses 2828 0.000321 11.605 3.973 11236.5

60 de ses 4578 0.000520 10.910 2.087 9553.2

94 de sa 3508 0.000398 11.294 1.857 6515.5

117 de cette 2982 0.000339 11.528 2.097 6254.4

140 de ces 2687 0.000305 11.678 2.230 5992.2

163 de leur 2416 0.000274 11.832 1.877 4534.4

337 de l’empire 1322 0.000150 12.702 3.326 4397.4

410 de fer 1132 0.000129 12.926 3.646 4126.9

160 de ce 2448 0.000278 11.813 1.528 3739.4

449 de façon 1012 0.000115 13.087 3.658 3702.4

478 de nouvelles 967 0.000110 13.153 3.383 3271.4

289 de leurs 1472 0.000167 12.547 2.168 3190.7

381 de paris 1195 0.000136 12.847 2.655 3173.2

546 de manière 874 0.000099 13.299 3.439 3005.3

520 de l’le 908 0.000103 13.244 2.896 2629.7

306 de france 1426 0.000162 12.592 1.789 2551.1

600 de l’ordre 805 0.000091 13.417 3.144 2530.9

729 de nouveaux 697 0.000079 13.625 3.487 2430.5

526 de l’est 900 0.000102 13.256 2.573 2315.3

653 de l’homme 755 0.000086 13.510 3.017 2277.9

609 de l’eau 797 0.000090 13.432 2.858 2277.7

697 de l’europe 721 0.000082 13.576 3.112 2243.8
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Word pairs, with de on right side, sorted by bigram count

rank bigram count frequency plog MI weighted MI

14 et de 20860 0.002369 8.722 0.804 16779.8

22 , de 14370 0.001632 9.259 -1.116 -16031.0

78 . de 3839 0.000436 11.164 -2.357 -9049.4

107 plus de 3208 0.000364 11.423 0.712 2285.2

123 partir de 2902 0.000330 11.567 3.548 10295.2

145 nom de 2612 0.000297 11.719 2.861 7474.0

150 ou de 2555 0.000290 11.751 0.675 1725.1

151 près de 2551 0.000290 11.753 3.769 9614.0

171 partie de 2346 0.000266 11.874 2.591 6078.4

178 nombre de 2268 0.000258 11.923 3.259 7390.4

202 cours de 1991 0.000226 12.111 2.761 5496.2

211 lors de 1923 0.000218 12.161 3.276 6299.2

239 forme de 1716 0.000195 12.325 2.542 4362.9

276 nord de 1503 0.000171 12.517 1.950 2930.8

283 est de 1481 0.000168 12.538 -0.917 -1358.6

310 sud de 1412 0.000160 12.607 2.104 2971.0

313 fin de 1400 0.000159 12.619 2.245 3142.3

315 l’université de 1397 0.000159 12.622 3.365 4701.3

319 celui de 1382 0.000157 12.638 3.093 4275.2

324 ) de 1367 0.000155 12.653 -1.835 -2507.9

325 ville de 1366 0.000155 12.654 1.361 1859.4

339 roi de 1321 0.000150 12.703 2.285 3018.3

342 celle de 1314 0.000149 12.710 2.958 3886.6

354 centre de 1280 0.000145 12.748 2.471 3162.9

375 afin de 1209 0.000137 12.831 3.550 4291.4
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Word pairs, with de on right side, sorted by Weighted Mutual Infor-
mation

rank bigram count frequency plog MI weighted MI

14 et de 20860 0.002369 8.722 0.804 16779.8

123 partir de 2902 0.000330 11.567 3.548 10295.2

151 près de 2551 0.000290 11.753 3.769 9614.0

145 nom de 2612 0.000297 11.719 2.861 7474.0

178 nombre de 2268 0.000258 11.923 3.259 7390.4

211 lors de 1923 0.000218 12.161 3.276 6299.2

171 partie de 2346 0.000266 11.874 2.591 6078.4

202 cours de 1991 0.000226 12.111 2.761 5496.2

315 l’université de 1397 0.000159 12.622 3.365 4701.3

239 forme de 1716 0.000195 12.325 2.542 4362.9

375 afin de 1209 0.000137 12.831 3.550 4291.4

319 celui de 1382 0.000157 12.638 3.093 4275.2

342 celle de 1314 0.000149 12.710 2.958 3886.6

408 raison de 1144 0.000130 12.910 3.319 3796.7

398 traité de 1159 0.000132 12.892 3.261 3779.9

508 série de 925 0.000105 13.217 3.462 3202.0

354 centre de 1280 0.000145 12.748 2.471 3162.9

313 fin de 1400 0.000159 12.619 2.245 3142.3

339 roi de 1321 0.000150 12.703 2.285 3018.3

519 autour de 908 0.000103 13.244 3.306 3001.9

310 sud de 1412 0.000160 12.607 2.104 2971.0

390 mort de 1168 0.000133 12.880 2.510 2932.2

276 nord de 1503 0.000171 12.517 1.950 2930.8

409 avant de 1142 0.000130 12.913 2.321 2650.4

694 types de 726 0.000082 13.566 3.590 2606.5

82 Chapter 3 Basics of probability and information theory



average average

unigram bigram unigram bigram

word phonemes plog plog MI plog plog

A # AH0 # 6.14 9.64 -3.50 3.07 4.82

A’S # EY1 Z # 13.60 13.45 0.15 4.53 4.48

AACHEN # AA1 K AH0 N # 21.16 17.20 3.96 4.23 3.44

AAMODT # AA1 M AH0 T # 21.82 19.15 2.67 4.36 3.83

AARDVARK # AA1 R D V AA1 R K # 39.70 36.67 3.04 4.96 4.58

AARON # EH1 R AH0 N # 20.51 15.50 5.01 4.10 3.10

AARON’S # EH1 R AH0 N Z # 25.79 17.35 8.44 4.30 2.89

ABABA # AA1 B AH0 B AH0 # 27.93 26.19 1.73 4.65 4.37

ABACK # AH0 B AE1 K # 22.59 20.24 2.35 4.52 4.05

ABACO # AE1 B AH0 K OW1 # 29.38 27.45 1.93 4.90 4.57

ABACUS # AE1 B AH0 K AH0 S # 31.07 26.55 4.53 4.44 3.79

ABAD # AH0 B AA1 D # 22.98 20.63 2.35 4.60 4.13

ABALKIN # AH0 B AA1 L K IH0 N # 36.62 34.69 1.93 4.58 4.34

ABALONE # AE1 B AH0 L OW1 N IY0 # 39.18 30.48 8.70 4.90 3.81

ABANDON # AH0 B AE1 N D AH0 N # 35.30 26.14 9.16 4.41 3.27

ABANDONED # AH0 B AE1 N D AH0 N D # 40.28 28.64 11.63 4.48 3.18

ABANDONING # AH0 B AE1 N D AH0 N IH0 NG # 46.87 30.87 16.00 4.69 3.09

ABANDONMENT # AH0 B AE1 N D AH0 N M AH0 N T # 53.27 40.32 12.96 4.44 3.36

ABANDONS # AH0 B AE1 N D AH0 N Z # 40.58 27.99 12.59 4.51 3.11

ABANTO # AH0 B AE1 N T OW0 # 34.11 26.52 7.58 4.87 3.79

ABATE # AH0 B EY1 T # 22.61 19.73 2.89 4.52 3.95

ZUKIN # Z UW1 K IH0 N # 28.59 31.61 -3.03 4.76 5.27

ZUKOWSKI # Z AH0 K AO1 F S K IY0 # 44.35 42.75 1.61 4.93 4.75

ZULAUF # Z UW1 L AW0 F # 38.33 41.99 -3.66 6.39 7.00

ZULU # Z UW1 L UW1 # 26.33 29.53 -3.20 5.27 5.91

ZULUS # Z UW1 L UW0 Z # 33.83 33.61 0.22 5.64 5.60

ZURICH # Z UH1 R IH0 K # 30.76 31.35 -0.59 5.13 5.23

ZURICH’S # Z UH1 R IH0 K S # 35.19 33.22 1.97 5.03 4.75

ZURN # Z ER1 N # 19.33 21.45 -2.12 4.83 5.36

ZWEIBEL # Z W AY1 B AH0 L # 35.51 33.09 2.43 5.07 4.73

ZWEIG # Z W AY1 G # 27.60 30.86 -3.26 5.52 6.17

ZWETCHKENBAUM # Z W EH1 CH K AH0 N B AA0 M # 60.93 59.37 1.56 5.54 5.40

ZWICK # Z W IH1 K # 24.99 26.07 -1.08 5.00 5.21

ZYDECO # Z IH1 D AH0 K OW1 # 33.81 36.86 -3.05 4.83 5.27

ZYDECO(3) # Z AY1 D AH0 K OW1 # 34.61 36.13 -1.52 4.94 5.16

ZYGOTE # Z AY1 G OW0 T # 32.67 35.74 -3.06 5.45 5.96

ZYMAN # Z AY1 M AH0 N # 27.61 26.45 1.16 4.60 4.41

{BRACE # B R EY1 S # 23.22 18.04 5.18 4.64 3.61

{LEFT-BRACE # L EH1 F T B R EY1 S # 44.06 42.18 1.88 4.90 4.69

}CLOSE-BRACE # K L OW1 Z B R EY1 S # 44.66 38.07 6.59 4.96 4.23

}RIGHT-BRACE # R AY1 T B R EY1 S # 38.82 34.22 4.60 4.85 4.28
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average average

unigram bigram unigram bigram

word phonemes plog plog MI plog plog

A # AH0 # 6.14 9.64 -3.50 3.07 4.82

AN # AH0 N # 10.38 9.42 0.96 3.46 3.14

TO(3) # T AH0 # 10.51 12.23 -1.72 3.50 4.08

LE # L AH0 # 10.72 12.42 -1.69 3.57 4.14

DU # D AH0 # 11.11 12.01 -0.89 3.70 4.00

DE(3) # D AH0 # 11.11 12.01 -0.89 3.70 4.00

CAN # K AH0 N # 15.16 10.48 4.68 3.79 2.62

EH # EH1 # 7.63 17.15 -9.53 3.81 8.58

TO # T IH0 # 11.46 20.04 -8.58 3.82 6.68

IT # IH0 T # 11.46 11.91 -0.45 3.82 3.97

AND # AH0 N D # 15.35 11.92 3.43 3.84 2.98

OR # ER0 # 7.75 11.67 -3.92 3.87 5.83

ER # ER0 # 7.75 11.67 -3.92 3.87 5.83

ARE # ER0 # 7.75 11.67 -3.92 3.87 5.83

INTO(3) # IH0 N T AH0 # 19.75 18.41 1.34 3.95 3.68

N # EH1 N # 11.87 10.98 0.88 3.96 3.66

EN # EH1 N # 11.87 10.98 0.88 3.96 3.66

N. # EH1 N # 11.87 10.98 0.88 3.96 3.66

ITS # IH0 T S # 15.89 14.96 0.94 3.97 3.74

IT’S # IH0 T S # 15.89 14.96 0.94 3.97 3.74

ET # EH1 T # 12.00 12.56 -0.56 4.00 4.19

YAOBANG # Y AW1 B AE0 NG # 40.16 36.28 3.88 6.69 6.05

WYETH # W AY1 EH0 TH # 33.52 29.83 3.69 6.70 5.97

REGIME # R EY0 ZH IY1 M # 40.36 32.35 8.01 6.73 5.39

LITHGOW # L IH1 TH G AW0 # 40.51 37.87 2.64 6.75 6.31

WOJCIECH # V OY1 CH EH0 K # 40.53 31.77 8.76 6.75 5.30

VIRTUE # V ER1 CH UW0 # 33.78 24.28 9.50 6.76 4.86

THYROID # TH AY1 R OY0 D # 40.65 33.31 7.34 6.77 5.55

HAUPPAUGE # HH AW1 P AO0 JH # 40.94 36.90 4.03 6.82 6.15

CESARE # CH EY0 Z AA1 R EY0 # 47.88 41.49 6.39 6.84 5.93

TOYOO # T OY0 UW1 # 27.43 27.62 -0.19 6.86 6.91

GIRAUD # ZH AY0 R OW1 # 34.33 32.64 1.69 6.87 6.53

EURASIA # Y UH0 R EY1 ZH AH0 # 48.09 31.49 16.59 6.87 4.50

BOURGEOIS # B UH1 R ZH W AA0 # 48.10 41.78 6.32 6.87 5.97

QURESHEY # K UH0 R EY1 SH EY0 # 48.35 36.02 12.33 6.91 5.15

CEAUSESCU # CH AW0 CH EH1 S K Y UW0 # 62.61 46.62 15.99 6.96 5.18

GEOID # JH IY1 OY0 D # 34.88 26.75 8.13 6.98 5.35

PEUGEOT # P Y UW0 ZH OW1 # 42.30 33.56 8.74 7.05 5.59

THOU # DH AW1 # 21.34 23.70 -2.36 7.11 7.90

THURGOOD # TH ER1 G UH0 D # 42.67 35.21 7.46 7.11 5.87

CHENOWETH # CH EH1 N AW0 EH0 TH # 50.38 41.32 9.06 7.20 5.90
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average average

unigram bigram unigram bigram

word phonemes plog plog MI plog plog

STATIONS # S T EY1 SH AH0 N Z # 37.58 20.21 17.38 4.70 2.53

STATIONS’ # S T EY1 SH AH0 N Z # 37.58 20.21 17.38 4.70 2.53

STATION’S # S T EY1 SH AH0 N Z # 37.58 20.21 17.38 4.70 2.53

STATIONING # S T EY1 SH AH0 N IH0 NG # 43.87 23.08 20.79 4.87 2.56

PARENTING # P EH1 R AH0 N T IH0 NG # 42.07 23.30 18.77 4.67 2.59

CORRELATIONS # K AO1 R AH0 L EY1 SH AH0 N Z # 53.61 28.65 24.96 4.87 2.60

STATIONED # S T EY1 SH AH0 N D # 37.28 20.86 16.42 4.66 2.61

RATIONING # R EY1 SH AH0 N IH0 NG # 39.67 20.87 18.80 4.96 2.61

HANDING # HH AE1 N D IH0 NG # 35.81 18.31 17.50 5.12 2.62

CAN # K AH0 N # 15.16 10.48 4.68 3.79 2.62

WARREN’S # W AO1 R AH0 N Z # 34.05 18.35 15.70 4.86 2.62

STATION # S T EY1 SH AH0 N # 32.31 18.36 13.95 4.62 2.62

CONTESTING # K AH0 N T EH1 S T IH0 NG # 45.44 26.34 19.11 4.54 2.63

CONTENDING # K AH0 N T EH1 N D IH0 NG # 45.86 26.38 19.48 4.59 2.64

STRANDING # S T R AE1 N D IH0 NG # 42.06 23.76 18.30 4.67 2.64

STATING # S T EY1 T IH0 NG # 33.06 18.53 14.54 4.72 2.65

WARRING # W AO1 R IH0 NG # 32.05 15.90 16.16 5.34 2.65

RATIONED # R EY1 SH AH0 N D # 33.07 18.64 14.43 4.72 2.66

CONTRASTING # K AH0 N T R AE1 S T IH0 NG # 50.29 29.30 20.99 4.57 2.66

BANDING # B AE1 N D IH0 NG # 34.53 18.70 15.83 4.93 2.67

RANTING # R AE1 N T IH0 NG # 32.65 18.71 13.94 4.66 2.67

AYR # EY1 R # 12.92 21.53 -8.61 4.31 7.18

MUI # M UW1 IH0 # 19.59 29.08 -9.49 4.90 7.27

AER # EY1 IY1 AA1 R # 25.60 36.49 -10.89 5.12 7.30

THY # DH AY1 # 19.53 22.24 -2.71 6.51 7.41

ARROYO # ER0 OY1 OW0 # 25.32 30.03 -4.71 6.33 7.51

THEE # DH IY1 # 19.58 22.53 -2.96 6.53 7.51

OAHU # OW1 AA1 HH UW0 # 31.44 38.17 -6.73 6.29 7.63

DES # D IH1 # 12.90 22.90 -10.00 4.30 7.63

ARAU # AH0 R AW1 # 19.18 30.88 -11.70 4.80 7.72

ERR # ER1 # 9.81 15.56 -5.75 4.91 7.78

OY # OY1 # 11.96 15.70 -3.74 5.98 7.85

YE # Y EH1 # 15.36 23.55 -8.19 5.12 7.85

THOU # DH AW1 # 21.34 23.70 -2.36 7.11 7.90

OOH # UW1 # 9.28 16.02 -6.75 4.64 8.01

ZSA # ZH AA1 # 18.74 24.07 -5.33 6.25 8.02

UH # AH1 # 9.11 16.19 -7.08 4.55 8.10

YEAH # Y AE1 # 15.61 25.73 -10.11 5.20 8.58

EH # EH1 # 7.63 17.15 -9.53 3.81 8.58

AI # EY1 AY1 # 14.97 26.06 -11.09 4.99 8.69

THE # DH AH1 # 19.91 26.15 -6.24 6.64 8.72
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3.9.1 The problem of sparse data

The problem posed by sparse data is how to treat all the structures that occur rarely or not at all in

the training data. Thus far, we have been using what are known as Maximum Likelihood Estimates

(MLE) in our models.20 Using MLE, the probability assigned to structure a, p(a) = Count(a)/|S| is

essentially its frequency. This approach provides the tightest fit between the parameters (i.e. prob-

ability estimates) in a model and the data with which it is trained. Consequently, any structures

(phones, n-grams, whatever) that are not observed in the training data will be assigned zero prob-

ability, and that could be interpreted as a claim of grammatical impossibility, which is generally

an imprudent leap of logic to take. It can be the case, however, that the missing structures are

accidental gaps in the training data. When a model erroneously treats an accidental gap as a

systematic gap the model is said to have over-fit the training data.

If the goal is the construction of a generative model, MLE probabilities are usually avoided be-

cause they yield models that are ‘brittle’ in the sense that the occurrence of a zero-probability

element in a form nullifies all other distinctions (i.e. any pair of words containing zero probabil-

ity elements have the same probability, zero, regardless of any other distinctions between them).

This problem has been extensively studied in statistical natural language processing, and it has

been approached with a wide range of sophisticated solutions that go by the general name of

smoothing techniques.21

One of the most basic smoothing strategies is to use Laplace’s Law in a scheme that adds one

to all counts by initializing each count to one when computing frequencies. This is is a specific

instance of a more general strategy of adding λ, called Lidstone’s Law:

p(s) =
Count(s) + λ

N + Bλ
, (3.9)

where N is the total number of instances structures like s, and B is the number of possible kinds

of structures like s. When λ = 0 this formula is simply the maximum likelihood estimator; this

gives the best fit for the training data but reserves no probability for unseen events. When λ = 1

we are using what is usually referred to as Laplace’s law, which corresponds conceptually to a

uniform Bayesian prior over the possible structures. When λ = 1/2 we are using what is usually

called the Jeffreys-Perks Law (though Perks more strongly advocated λ = 1/|T | where T is the

set of types). The value λ = 1/2 is also referred to as Expected Likelihood Estimation (ELE) and

is the most commonly used fixed value for λ in language modeling. There are many strategies

for calculating optimal values for λ in given contexts and, more generally, many other strategies

for calculating the amount of probability to reserve for unseen events (see Manning and Schütze

([?, ch6]) for an overview and [?] for a thorough discussion of the development of many of

20Probability and likelihood are terms used in quite different ways. Here is how to keep them separate: a particular
probability distribution assigned to a set is a function that takes something as its input, and gives a non-negative real
( ≤ 1) as its output. In the cases we are interested in, that input typically contains something symbolic (like the
symbol k, say) and a distribution, a set of numbers, which either form a distribution or are used inside a mathematical
expression that forms a distribution over the sample set. Thus it takes the form: p(s, λ), where λ is a continuous
parameter, or more often a set of continuous parameters. If we hold λ constant and let s vary, we have what we
usually call a distribution; if we hold s fixed and let λ vary, we have a likeliness function. What value of λ will give the
largest value of this function for a given symbolic string? The answer is that string’s maximum likelihood specification.

21smoothing
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short string of symbols Q Device G Corpus

these ideas). In our general presentation of models in the sections that follow we will use MLE

probabilities. However, whenever we compare alternative models we will use ELE λ = 1/2 in

smoothing the probabilities. Smoothing is useful in comparing alternative models to evaluate

not only their ability to fit the data but also their tendency to over-fit the data. In §?? we will

discuss an alternative to smoothing whereby minimization of model complexity is used to avoid

over-fitting.

3.10 Grammars and data description

We are going to use a style of thinking about data that is derived from a long line of people who

have thought about computation, probability, and what it means to explain things. Among the

people prominent on this list are Alan Turing, perhaps Rudolf Carnap, Ray Solomonoff, and Jorma

Rissanen. This section is not intended to be understood right away: I expect that some of it will

be reasonably clear, but some of it will not really make sense until we have explored more ideas

of information theory. Still, this is here to give you a sense of where we are headed.

Let us suppose for a moment that our set of data C (our corpus) is from one particular language—

English, let us say.

We will think of the problem that we face as that of providing a good analysis of data C. To do

that, we need to make clear what the words analysis and good mean in this context.

We will apply a dynamic and computational interpretation: an analysis of a set of data C is a

device G that takes a string of symbols Q as its input and produces C as its output. We will

explain in just a moment what the intuition is that lies behind this “Q”.

And we have three expectations:

1. first, we want the input Q to be as small as possible;

2. second, we want the device G to be as simple as possible; and

3. third, when we want to analyze two sets of data (two different corpora) from the same

language, we want the device G to change very little or not at all.
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Everything else should follow from these initial desiderata.

Here are some points that we take to be natural inferences from this set of expections:

1. To make our task clearer (and perhaps simpler), we can insist that the input Q will take the

form of a string of binary digits (0s and 1s), and then we measure the size of Q as simply

its length. The length of Q will normally be less than the length of the corpus (in a sense

that will become much clearer as we go along). We will eventually see that it makes sense

to call Q the compressed version of the corpus Corpus, and then we say that the length of Q
is the compressed length of the corpus, given G.

2. As a first approximation, we will take the device G to be a program in some chosen pro-

gramming language, and its complexity to be based on the number of symbols, or charac-

ters, used in the program: in particular, it will be the number of characters multiplied by a

weighting factor λ—and λ is there because for the moment we declared our Q would be ex-

pressed in binary (symbols = {0,1}), whereas in programming languages we have a larger

alphabet. There will be an advantage to using a very austere programming style: there is

a disadvantage to calling a variable MaximumStringLength and an advantage to calling it

simply g, since we save 18 letters that way—but this is not a big deal. (We can imagine a

preprocessor that tokenizes the program, and assigns maximally short variable names, and

then use the output of the preprocessor for a length computation.)

3. We will find a way to express both the length of Q and the complexity of G in the same

units (so that λ then equals 1), and then we can express our desire to make Q short and to

make G simple as a desire to make the sum of the length of Q + complexity of G as small

as possible, which we can represent visually as trying to keep minimize the width of these

two blocks together:

Device G for Corpus 1 short sequence Q

Minimize this!

4. For any given corpus C, there are many possible analyses (where an analysis is a device

D and its corresponding Q), and they are not all equally good from the point of view of

minimizing the sum of the two quantitites. You can see in the figure below that the second

analysis is the best (the total width is the least) of the three.
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5. Eventually we will think of our “device” as no more and no less than the grammar of the

language—and that is the reason we chose to use the letter G as the symbol (rather than

“D”, for example).

6. If our data comes from two or more languages, then the device G is likely to split itself into

two layers. One layer contains information that is relevant for both (or all) languages, and

the other layer will partition into grammars for each language. We may refer to the part that

is relevant for all languages as universal grammar. It can also be thought of as a compiler

which defines the language in which individual grammars are written. So we will change

our description slightly, and in the following figure, we write “grammar of English” rather

than “Device 1,” and so forth. But just as before, our over-all goal is to minimize the total

area of the rectangles in the figure.
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These remarks might sound abstract and even cryptic now, but they will guide a lot of what we

do, and eventually they will seem intuitively clear, and reasonable.

3.11 Shannon information

Just some reminders about logarithms: Natural logs, base 10 logs. ln(x) is the natural log

(base e) of x. y = elny by definition. What’s y’s base 2 log? Since e = 2log2e it follows that

y = (2log2e)ln(y), which is 2log2(e)ln(y); so log2(y) = log2(e)ln(y). This illustrates the more general

fact that changing the base of a logarithm consistly just changes our numbers by a constant

multiplicative factor. There’s only one place where we really care about a special property of

natural logs that log2 do not have, and that’s the fact that ln(x) ≤ x − 1, which depends on the

derivative of ln(x) being 1 at x = 1.22

Now here is a trivial sort of algebraic manipulation that may not be totally obvious the first time

you see it. We have been thinking of the probability as the product of the individual segments as

we iterate through a string; but as long as we are considering unigram probabilities, independent

of context, we could also compute the same value by taking the product of each of the items in

the alphabet that produced the sequence, raising each letter in the alphabet to the power of how

many times it occurred in the sequence:

In the expressions below, we use l to represent a variable that is defined over the alphabet (think

l for letter)
i=len(string)

∏

i=1

S[i] =
∏

l∈lexicon

lcountS(l). (3.10)

logprob(S) =
∑

lexicon

countS(l)logprob(l). (3.11)

plog(S) =
∑

lexicon

countS(l)plog(l). (3.12)

If we divide through by the length of our string, we get the average which is Shannon’s entropy:

entropy(S) =
∑

lexicon

freqS(l)plog(l). (3.13)

since the count divided by the total count is the frequency. In short: the entropy of a message is

its average plog. The term is generally employed when we are considering a large sample from

some source.

22What is the slope of log(x) when the base is something other than e?
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Notice that both parts of the expression that we sum here involve probabilities or frequencies of

each letter in our alphabet. Each involve a distribution, and conceptually these two distributions

can be separated and made distinct. That is what we do next.

Cross entropy: where we keep the empirical frequencies, but vary the distribution whose plog

we use to compute the entropy. This is the “cross-entropy” of one distribution to the other (but

not symmetrical!). Entropy, or self-entropy, is always smaller than cross-entropy.

∑

x

p(x)ln
q(x)

p(x)
≤

∑

x

p(x)(1 − q(x)

p(x)
) (3.14)

Why? Look at the plot of ln(x), and compute its first and second derivatives, and its value at

(1,0).

=
∑

x

p(x) −
∑

x

p(x)
q(x)

p(x)
= 1 − 1 = 0. (3.15)

So
∑

x p(x)ln( q(x)
p(x) ≤ 0, which is to say, the cross-entropy always exceeds the entropy that isn’t

cross, when we use natural logs as our base.23 But we can maintain the inequality when we

switch to base 2 logs (which is what we use with plogs), since it just amounts to multiplying both

sides by a constant. First we get:

∑

x

p(x)ln q(x) ≤
∑

x

p(x)ln p(x) (3.16)

and then we multiply by -1:

∑

x

p(x)plogp(x) ≤
∑

x

p(x)plog q(x) (3.17)

The Kullback-Leibler divergence DKL(p, q) is defined as 24

∑

x

p(x) ln
p(x)

q(x)
(3.18)

You see that it’s the difference between the cross-entropy and the self-entropy—pay careful atten-

tion to the absence of a minus before the sum.

As we will see more clearly next class, given a distribution q(x) over an alphabet Σ, we can

always construct an encoding of Σ (which is map into {0, 1} with the prefix property) in which

each symbol is encoded by a string whose length is no longer than the plog of that symbol’s

23Cross-entropy ≥ (self-)entropy: always
24KL divergence
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property (well, we may have to round up to get an integral number of bits, but eventually we can

even get away from that restriction, hard as it may be to believe.)

An encoding has the prefix property iff there are no two x, y ∈ Σ such that the encoding of x

is the encoding of y followed by something else. Examples of encoding that does not have the

prefix property: a → 1; b → 11; c → 01. Given an encoding 111, we don’t know whether it is an

encoding of aaa, ab, or ba. We only want encoding systems with the prefix property, because they

parse themselves (so to speak) as we scan them from left to right, and if we already know the

encoding system, of course! This turns out to be an important consideration.

key words: entropy, cross-entropy, self-entropy, KL-divergence. Language ID.

3.12 Letters: Transitional phone (or letter) models

NB: I will use the terms “letter” and “phone” interchangeably here. Let’s explore transitional letter

models by seeing if we can write an algorithm that will identify the language in which a text is

written, based on letter frequencies.

We are given a text T . We will assume that all of our texts are encoded in (some) standard

Unicode, and we call that alphabet Σ, so T ∈ Σ∗. We are also given a set of texts from several

known languages, which we hope are reasonably representative of their respective languages. We

will consider three ways to assign probabilities to strings in Σ∗, and ways to draw the respective

parameters from those sample texts.

In the terms used originally by Shannon, these would be 0-order, 1st order, and 2nd order models.

Unfortunately, terminology has changed over time!

By a 0-order model, Shannon meant a model that assigns a uniform distribution over all of the

symbols that are in the alphabet of the model. The usual way of interpreting that in this context

is to say that we infer the alphabet used by a language from our sample: it is the smallest set of

symbols Σ such that S ∈ Σ∗; and then we assign a uniform distribution over this alphabet. This

choice will assign a probability of zero to any string containing one or more symbols not in the

original sample.

By a 1st order model, Shannon meant a model in which the probability of a symbol prU (where

‘U’ stands for ‘unigram’) is taken to be its frequency in the sample, and the probability of a string

is equal to the product of the probabilities of the symbols. (Note that we have to assume a

distribution over string length as well, which is typically done by assuming the existence of a

special symbol that only appears at the end of strings. We will return to this. For now, we will
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assume that there is a function prl() which is a distribution over the positive integers, and which

assigns a probability that a string will be of a given length.)25

p(s) = prl(|s|)
|s|
∏

i=1

prU (s[i]) (3.19)

But instead of calling this a 1st order model, we will call this a unigram model, since many writers

today use the term “1st order model” to mean something else.

By a 2nd order model, Shannon meant a model much like the unigram model, but in which the

probablity of a symbol was conditioned by the preceding symbol. We will call this a bigram model.

(Many writers today call this a 1st order Markov model.)

Shannon, in “The mathematical theory of communication,” gave three approximations of En-

glish:

Zero-order approximation: XFOML RXKHRJFFJUJ ALPWXFWJXYJ FFJEYVJCQSGHYD QPAAMK-

BZAACIBZLKJQD

First-order approximation: OCRO HLO RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHEN-

HTTPA OOBTTVA NAH BRL

Second-order approximation: ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D

ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

Third-order approximation: IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDE-

NOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE

We’ll get to word-based models shortly, but I’ll share with you Shannon’s approxima-

tions of English using a word-based model:

25This kind of model was explored by early cryptographers, notably al-Kindi, who lived from 801-873, and who worked
under the Abbasid caliphs in Baghdad, as well as al-Khwarizmi, c. 780-850. Al-kindi wrote (I have taken this from
http://www.muslimheritage.com/topics/default.cfm?articleID=372, who quotes Singh, The Code Book):

One way to solve an encrypted message, if we know its language, is to find a different plaintext of
the same language long enough to fill one sheet or so, and then we count the occurrences of each
letter. We call the most frequently occurring letter the ‘first’, the next most occurring letter the ‘second’,
the following most occurring the ‘third’, and so on, until we account for all the different letters in the
plaintext sample....

Then we look at the cipher text we want to solve and we also classify its symbols. We find the most
occurring symbol and change it to the form of the ‘first’ letter of the plaintext sample, the next most
common symbol is changed to the form of the ‘second’ letter, and so on, until we account for all symbols
of the cryptogram we want to solve.
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rank orthography phonemes log1 averageplog1

1 a @ 6.23 3.11
2 an @ n 10.33 3.44
3 to t @ 10.40 3.47
4 and @ n d 15.18 3.80
5 eh É 6.23 3.88
6 the ð @ 11.63 3.88
7 can k @ n 15.60 3.90
8 an ǽ n 11.72 3.91
9 Ann ǽ n 11.72 3.91

10 in Í n 11.72 3.91
63195 bourgeois b 2̆ r ž w á 50.44 7.21
63196 Ceausescu č Ŏ č É s k ŭ 64.86 7.21
63197 Peugeot p y ŭ ž ó 43.34 7.22
63198 Giraud ž ăy r ó 36.19 7.24
63199 Godoy g á d ŏy 36.35 7.27

63200 geoid ǰ í Ŏy d 37.00 7.40
63201 Cesare č ĕ z á r ĕ 51.80 7.40
63202 Thurgood T Ä́ g 2̆ d 44.86 7.47
63203 Chenoweth č É n Ŏ w Ĕ T 52.46 7.49
63204 Qureshey k @ r é š ĕ 52.77 7.54

Tab. 3.9: Top and bottom of English word list, based solely on unigram frequencies.

First-order word approximation: REPRESENTING AND SPEEDILY IS AN GOOD APT

OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO

EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE

Second-order word approximation THE HEAD AND IN FRONTAL ATTACK ON AN EN-

GLISH WRITER THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER

METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM

FOR AN UNEXPECTED

[Some of this material, especially the tables, is from a paper by Jason Riggle and John Goldsmith,

Information theoretical approaches to phonological structure: the case of vowel harmony.]

French oral vowels

Height Vowel example Vowel example Vowel example

Front unrounded Front rounded Back

High i vie y du u tout

Mid: tense e blé ö peu o mot

Mid: lax E tête œ peur O donne

Low: a plat
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rank phoneme frequency plog
1 # 0.20 2.30
2 @ 0.066 3.92
3 n 0.058 4.10
4 t 0.056 4.17
5 s 0.041 4.61
6 r 0.040 4.76
7 d 0.037 4.85
8 l 0.035 4.94
9 k 0.026 5.27

10 ǽ 0.025 5.31
45 Óy 0.000 78 10.32
46 æ̆ 0.000 69 10.50
47 ž 0.000 54 10.84
48 ăy 0.000 38 11.36
49 ă 0.000 36 11.42
50 Ŏ 0.000 28 11.79
51 ĕ 0.000 14 12.76
52 2̆ 0.000 05 14.30
53 ăw 0.000 05 14.35
54 Ŏy 0.000 02 15.91

Tab. 3.10: English phonemes, by frequency rank

rank orthography phonemic representation average plog
1 the D @ 1.93
2 hand h ǽ n d 2.15
3 and ǽ n d 2.20

12640 plumbing p l 2́ m Ĭ N 3.71
12641 aerobatics É r @ b ǽ t Ĭ k s 3.71

12642 Friday f r áy d ĭ 3.71
25281 tolls t ó l z 4.01

25282 recorder r ĭ k ó r d Ä̆ 4.01
25283 fives f áy v z 4.01
37922 overburdened ó v Ä̆ b Ä́ d @ n d 4.32
37923 Australians Ŏ s t r éy l y @ n z 4.32

37924 seeps s íy p s 4.32
50563 retire r Ĭ t áy r 4.75
50564 poorer p ú r Ä̆ 4.75
50565 vanished v ǽ n Ĭ š t 4.75
63,200 eh É 9.07
63,201 Oahu ó á h ŭ 9.21
63,202 Zhao ž áw 9.25

Tab. 3.11: Examples from English word list, ranked by average plog, bigram model
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predicted rank average reported rank standard deviation word
1 6.5 0.96 stations
2 4.17 3.02 hounding
3 4.17 2.97 wasting
4 10.2 5.37 dispensing
5 5.3 3.72 gardens
6 5.3 2.62 fumbling
7 15.5 1.88 telesciences
8 9.8 3.58 disapproves
9 1.8 0.69 tinker

10 12.7 4.35 observant
11 10.1 4.52 outfitted
12 18.7 2.29 diphtheria
13 11 3.27 voyager
14 13.8 4.63 Schafer
15 11.8 3.71 engage
16 16.2 3.71 Louisa
17 19.2 3.76 sauté
18 13.2 5.55 zigzagged
19 12.5 4.64 Gilmour
20 15.7 5.50 aha
21 16.5 4.11 Ely
22 23 0.58 Zhivkov
23 22.2 1.07 kukje

Tab. 3.12: predicted (bigram model) and average reported rank for 23 words of English

rank phoneme plog rank phoneme plog

1 # 2.88 21 f 6.03
2 r 3.60 22 ø 6.12
3 a 3.84 23 g 6.18
4 e 3.86 24 v 6.23
5 i 4.03 25 U 6.49
6 t 4.24 26 z 6.50
7 s 4.34 27 u 6.56
8 l 4.52 28 O 6.59
9 k 4.62 29 Z 6.69

10 o 4.80 30 S 7.09
11 p 5.06 31 w 7.48
12 m 5.18 32 O 8.48
13 d 5.31 33 œ 8.93
14 n 5.34 34 star 9.14
15 E 5.41 35 ! 9.41
16 æ 5.47 36 E 9.96
17 j 5.59 37 U with " 12.13
18 b 5.68
19 y 5.77
20 @ 6.01

Tab. 3.13: French phonemes, by frequency rank
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Fig. 3.8: Average reported rank of words in Figure 2

FRENCH NASAL VOWELS

Height Vowel example Vowel example Vowel example

Front unrounded Front rounded Back

Mid: lax Ẽ plein œ̃ brun* Õ bon

Low: ã dans

labial alveolar alveo-palatal palatal velar uvular laryngeal

Voiceless stop p t k

Voiced stop b d g

Voiceless fricative f s S

Voiced fricative v z Z K

Nasal m n ñ N

Liquid l

Glide w j 4
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p
b

t

d
k

g

m

n

N
f
v

s

z

Tab. 3.14: French phonemes

3.12.1 Language identification

If we know that a sample S was produced by one of the languages that constitute our sample of

languages, then we want to know what the probability is that language li generated it.

Why? Because our goal is to understand the world by finding the model that maximizes the

probability of the perceived world. We want a method that will provide us with the way(s)

that maximize the probability of the observations. (It’s less important to actually compute the

probability of the observations; what matters is comparing the models and the probabilities of

the data generated by the models. Sometimes you can more easily calculate the relationship

between the values f(x) and g(x) (e.g., f(x)
g(x) ) than it is to compute either f(x) or g(x).)

If we choose a model, we can calculate prli
(S) = p(S|li). But the probability that language li

generated S is p(S|li), which by Bayes’ rule is p(S|li)p(li)
p(S) .
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3.12.2 Cross-entropy

We have a corpus C of length N whose letter frequencies we know (because we can count them);

the frequency of a typical letter l is [l]
N

. We can consider various probability distributions πi over

the alphabet Σ. The probability of the corpus, using a unigram probability model and distribution

π, is

∏

l∈Σ

(π(l))
[l]

.

The logarithm of this quantity is
∑

l∈Σ

[l] log π(l),

and the -1 times the average of this quantity is called the entropy:

−
∑

l∈Σ

[l]

N
log π(l) = −

∑

l∈Σ

freq(l) log π(l)

We can visualize the entropy as the inner product of two vectors in R|V |. One of the vectors

describes a frequency, and hence is on the simplex consisting of points with non-negative coordi-

nates, whose coordinates sum to 1; the other vector is a surface consisting of the points whose

coordinates describe the -1 times the logarithms of a distribution (i.e., the surface of all points p

such that
∑

2−pi = 1). Each such point describes a probability distribution for our alphabet.

We can vary these two points independently. If we vary the first but keep the second fixed, we

may be looking at the entropy of different corpora, assuming the same distribution. If we vary

the second but keep the first fixed, we may be looking at the entropy of a given corpus under

different assumptions of the distribution that generated it. In that case, we call the quantity that

we have calculated the cross-entropy. Explain.

3.13 Categories: V, C etc.; HMMs

Suppose we want to divide the symbols of a language into two sets. A large part of what we do

when we analyze languages starts that way: we have a large set of elements of some sort; they all

have their distinctive characteristics, but let’s imagine that we divide them into a small number

of groups whose behavior is similar in some particular way.

Our first example of this involves dividing our symbols (letters or phonemes) into two sets. There

are many ways to do this. The natural way to understand this goal is to say, what is the simplest

model we can think of that assigns a probability to Σ∗ and which uses a partitioning of Σ into

two sets in order to assign a higher probability to observed sets of data?
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Already that critically important word “simplest” has crept in! What do we mean when we say

one model is simpler than another? Let’s assume for now that we calculate the complexity of a

model by the number of parameters that are used by the model. For example, a unigram with

V symbols in its alphabet Σ has V + 1 parameters. One of them is the alphabet-size parameter

(whose value is V !), and the others are p(li), for each letter l in Σ.

We will explore the methods for automatically learning this kind of structure, in part because the

natural tool to use first is a hidden Markov model, or HMM, and they are very useful for many

problems in machine learning: if you have a problem that can be solved with an HMM, then you

are in fine shape; and if you have a problem that cannot be solved with an HMM, then it is helpful

to understand exactly why an HMM is not powerful enough.

Our main reading on this is from the Manning and Schütze book. Here I will add some supple-

mental material.

3.13.0.1 Hidden Markov models: finding classes of letters

Brief overview of HMMs, to which we will return in more detail. HMMs present us with the

first case in which we talk about non-integral counts (which we can also call expected counts).

This involves the case where we understand observed data (which normally we would count

with integral counts) as containing only a partial specification of the “reality” we’re interested in:

reality contains further parameters whose values we can’t directly observe. So we use a model

to make statements about how often we expect the system to be in various states, given the

observations that we in fact make.

Here is a non-hidden markov model: given the outputs, you know the path it takes through the

graph.

Start
a //

b

""❊
❊❊

❊❊
❊❊

❊❊
A

a //

b

  ❅
❅❅

❅❅
❅❅

❅ A
a //

b

  ❅
❅❅

❅❅
❅❅

❅ A

B
b //

a

>>⑦⑦⑦⑦⑦⑦⑦⑦
B

b //

a

>>⑦⑦⑦⑦⑦⑦⑦⑦
B

Here you don’t:

Start
0.75 //

0.25

""❊
❊❊

❊❊
❊❊

❊❊
1

aipt //

aipt

��❃
❃❃

❃❃
❃❃

❃ 1
aipt //

aipt

��❃
❃❃

❃❃
❃❃

❃ 1

2
aipt //

aipt

@@��������
2

aipt //

aipt

@@��������
2

Let us suppose that in State 1, the probability of generating p is 1/3, t 1/3, a 1/6, i 1/6, and in

State 2, the probability of generating p is 1/6, t 1/6, a 1/3, and i 1/3.
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Start
0.75 //

0.25
""❊

❊❊
❊❊

❊❊
❊❊

1

p.33,t.33,a.16,i.16

��

.9

��
2

p.33,t.33,a.16,i.16

DD

.9

HH

Then we want to be able to answer questions like (and we can answer them): What is the prob-

ability of emitting the string #p (i.e., the string starting ‘p’)? The answer is: it’s the sum of

going through the paths Start-1-2 and emiting p, Start-1-1 and emitting p, Start-2-1 and emitting

p, and Start-2-2 and emiting p. Which is: .75(1/3) + .25(1/6) = 7/24 ≈ 0.29. (You can see I

summed together the probabilities of the paths State-1-1 and Start-1-2, that is, .75(1/3)(0.1) +

.75(1/3)(0.9)). Or we can ask: what is the probability of being in state 1 after emiting #p? The

answer to that is .75(1/3)(0.1) + 0.25(1/6)(0.9) = .025 + .0375 = 0.0625.

And now we can turn that into soft counts. That is, if we know the probability of being in State 2

after emiting #p just like we know the probability of being in State 1 after emiting #p, then we

distribute the count of 1 over those two paths, in proportion to those probabilities.

Prob(being in state 2 after emiting #p) = 0.25(1/6)(.1) + 3/4(1/3)(.9) = 0.225 + 0.004167 =

0.229.

So the sum of the probabilities of being in states 1,2 after emiting #p is 0.0625 + 0.229 =

0.2915.

So now we can assign softcounts. The softcount of generating #p and being in State 1 is .0625
.2915 =

0.2144, while the softcount of generating #p and being in State 2 is .229
.2915 = 0.7855.

3.13.1 Syllables

3.13.2 Vowel harmony

3.14 Hidden Markov Models (HMMs)
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3.15 The problem

X = sequence of random variables (Xi). There are N states: S = S1 . . . SN . N=2 in these diagrams.

The random variables taken on the states as their values.

O = {oi}i=1,T Output sequence (letters, e.g.).

T Number of symbols output—so we care about T+1 states.

Π Initial probability distribution over the states.

A Transition probabilities from state to state.

B Emission probabilities: bxioi
.

oi is selected from our alphabet A. For our project, the alphabet is letters, but you could build an

HMM where the “alphabet” was words, i.e., the lexicon (vocabulary) of the language.

State S1

State S2

t=1

d

S1

S2

t=2

o

S1

S2

t=3

g

S1

S2

t=4

S1

S2

State S1

State S2

a1,1

a1,2 = 1 − a1,1

a2,2

a2,1 = 1 − a2,2

S1

S2

S1

S2

S1

S2

a1,1 a1,1

a2,2 a2,2

a 1,
2

a 1,
2

a
2
,1

a
2
,1
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Markov model on states: limited lookback (horizon) : p(Xt+1 = si|X1 . . . Xt) = p(Xt+1 = si|Xt)(3.20)

Stationaryp(Xt+1 = si|Xt) = p(X2 = sj |X1)(3.21)

Transition matrix:aij = (3.22)

So for fixed i,
|S|
∑

j=1

aij =

We initialize

p(X1) = πi.

So (what are we summing over?)
∑

πi =

3.16 Compression and encoding

3.16.1 First notions of optimal encoding

If we know (or think we know) the structure of the device of the device that produced

the message M , we can compress M as Ann sends it to Betty.

Claude Shannon developed a set of ideas known as information theory which had their first con-

crete application in the transmission of messages by digital means. The basic idea concerned a

situation in which Ann wants to sends Betty a message from a language: let’s say the language is

English, and as a first approximation, we will assume that the message is a concatenationation of

words from a prespecified lexicon (word-list) called L. Technology requires that the message be

just a series of 0’s and 1’s—that is, a string from {0, 1}+. Ann therefore needs an encoding, i.e.,

a map from L to {0, 1}+, and the map must be injective (no two words are encoding by the same

binary string) but not necessarily surjective. In fact, it will not be surjective, because there is a

natural condition that both Ann and Betty agree is necessary: the encoding must be prefix-free:

we place the constraint that the encoding of word w can never be the prefix of another word v

(i.e., if w encodes as 0101, then no other word can encode as 01011). In this way, the encoding

is instantaneous: after any digit, Betty knows if she has gotten to the end of the encoding of an

individual word.26

26For now, that conclusion comes immediately from looking at the sequence of bits Ann has just sent. When we get to
arithmetic encoding, we will see that Betty has to do some computation to reach that conclusion, but she does not
need to look ahead to future bits of the message.
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0 1

0 1 0 1

0 1

000 001

01 10 11

Fig. 3.9: binary tree of encodings with prefix property

Prefix-free encoding systems can be organized into a binary tree in which all encodings corre-

spond to terminal nodes of the tree, where the string indicates the path taken from the root to the

leaf: a 0 means take a left branch, and a 1 means take a right branch. If any non-terminal node

were used as an encoding and it dominated a terminal node that were used as an encoding, then

clearly the system would not be prefix-free. When we are talking about a particular encoding, we

will talk about the nodes of the tree that represents it, identifying strings and nodes in the natural

way. You should feel comfortable with the statement that there is an equivalence between a de-

scription of a set of strings which are jointly prefix-free (on the one hand) and the description of

a set of strings as the edge-labels of paths going from the root of a tree all the way to its leaves.

3.16.2 Addition April 2018

Let’s think about encoding from a base-10 point of view (with 10 digits and base 10 logs), and

then transfer the ideas to the binary world, where nothing essential is different at all.

We know that the cross-entropy is always greater than the self-entropy, and here that means that

if we have an encoding system which uses −logp(w) bits to encode w, we have an optimal system,

among those that have the prefix property (= are prefix-free).

We have a set of probabilities for the messages of our systems, and without real loss of general-

ization, we can say we have a set of probabilities for the letters of our alphabet, and an ordering

for the symbols too (i.e., we know how to alphabetize).

Then any string can be associated with an interval (p, q), where q − p is the probability of S. Our

goal is to devise a system that allows us an optimal encoding as a string of decimal digits (decimal

for now; after that, binary). This means proposing a map between strings of digits and strings in

the alphabet
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0 1

0 1 0 1

0 1

0 .125 .250 0.5 .75

Fig. 3.10: [0.0,0.001)= [zero, one eighth) = [0,.001) = from_string_to_interval(000)

0 1

0 1 0 1

0 1

0 .125 .250 0.5 .75

Fig. 3.11: [0.125, .250)= [0.001,0.10] = from_string_to_interval(001)

Example 1. If there are 10 letters (a − i plus #)and a uniform probability over the symbols, then

of course the encoding is simple: cab# has probability 10−4, i.e., .000 1, which corresponds to

the string 0001.

Example 2: Same letters but probabilities are not uniform. We compute a probability of 0.000 05

for string cab#, and it corresponds to an interval [0.010 j

3.16.3 Return to older text

If we have a message, like Paul Revere, which is one of just two possible messages (land or sea)

which have equal prior probabilities, then we are in a situation like this:
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0 1

0 1 0 1

0 1

0 .125 .250 0.5 .75

Fig. 3.12: [0.25, 0.5)= [0.01,0.1] = from_string_to_interval(01)

0 1

0 1 0 1

0 1

0 .125 .250 0.5 .75

Fig. 3.13: [0.5, 0.75) = [0.1,0.11] = from_string_to_interval(10)

0 1

0 1 0 1

0 1

0 .125 .250 0.5 .75

Fig. 3.14: [0.75, 1.0) = [.11,1.0) = from_string_to_interval(11)
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0 1

0 1 0 1

0 1

0 .125 .250 0.5 .75 .8125

Fig. 3.15: [0.75, 0.8125 ) = (three quarters, thirteen sixteenths) = [.11,.1101)=
from_string_to_interval(1100)

0 1

0 1 0 11

0 1 1

01

010

001

0 .125 .375 0.5 .75 .8125

Fig. 3.16: [0.125, .375) = (one eighth, three eights) = [.001,.011); width = 0.01
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0 1

0 1 0 11

0 1 1

01 still no good

010 still good, from .25 to .375

001 no good now!

0 .127 .377 0.50 .75 .8125

Fig. 3.17: [0.127, .377) = (one eighth, three eights) = [.001,.011); width = 0.01

LAND

SEA

0.5

0.5

Best encoding?

and the best encoding is to use just 1 bit: either 0 or 1, depending on which message you want

to communicate.

0.5 0.5

1.0

a b

In this simple case, each of the two possible messages has a probability which is an integral

power of 2: each of them has probability 2−1. We are going to consider several cases now in

which there are more than two possible words we which to communicate, but every one of them

has a probability which is an integral power of 2 (a
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We can imagine a red binary branching tree, with a 0 associated with each left-hand branch and

a 1 associated with each right-hand branch. Then any path through that tree will be described as

a sequence of 0s and 1s, and it will end on one of the leaves of the tree; that sequence will be the

encoding for the word on the leaf.

0.5

1.0

a

b

0encoding:

c
0.25

10 11

layer 1

layer 2

layer 0

10

0.5

1.0

a b

0encoding:

c
0.25

10 11

layer 1

layer 2

layer 0

10
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0.5

1.0

a b

0encoding:

c
0.25

10 11

layer 1

layer 2

layer 0
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l

m
n
o
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layer 2
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When Uniform prob p(x[i]) p(x[i] | x[i-1])
Shannon era 0 order Markov 1st order Markov 2nd order Markov
Later (now) 0 order Markov 1st order Markov

Today uniform unigram bigram
Tab. 3.15: Terminology: What order Markov model?

layer 1

layer 2

layer 0
0

layer 3

layer 4

layer 5

00 0 1111

a b c d e

f

gh i j k l nom p

We are interested in properties of good encoding systems, and one of the important qualities of

an encoding system is its ability to create relatively short strings (from {0, 1}+, given a particular

message from L∗ ). If we knew nothing about the frequencies of the different words in L, we

could easily create an encoding scheme which would limit the worst case length, by encoding

each word by a binary string of length ⌈log2|L|⌉ (where |L| is the number of items in L). We can

always enumerate the |L| different members of the lexicon and we will need no more than the

base 2 log of their count to do so, rounding up as necessary.

In discussing communication systems of this sort, we typically assume, however, that we know

certain statistical properties of the messages that Ann sends, such as the (time-averaged) fre-

quency of his usage each individual word in L, fr(wi). In that case, we can come up with much

better encoding systems.

Consider again the binary tree of the encodings of a prefix-free encoding systems. If all nodes are

either terminal or binary branching, we say that the tree is complete (every binary string either

identifies a node in the tree, or has a prefix which identifies a terminal node in the tree). There is

a natural way to associate each node in our tree with a subinterval of [0,1): if the string is s (e.g.,

01010), then we associate it with the interval that begins with the binary fraction we would write
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0 1

0 1 0 1

0 1

0 .125 .250 0.5 .75

Fig. 3.18: The canonical correspondence

as “0.s” (call that number p), of length 2−|s|; so the interval is [p, p + 2−|s|). This is very natural,

given the figure; see the figure on the canonical correspondence.27

Now, it is not hard to show that if we have a lexicon L whose members wi all have frequencies

which are (negative) powers of 2, then the very best encoding system that can be devised is one

satisfying the simple property that the length of the encoding of word wi is −log2 fr(wi). Why?

Recall that a distribution π over a set S assigns a non-negative member of [0,1] to each member

such that
∑

x π(x) = 1. Let’s use the term “plog distribution π()” to mean the function −log2π()

(“plog” standards for “positive log”). Plog distributions turn out to be central to information

theory. You can see that a plog distribution maps from the members of the set to the positive

reals. If we have a (complete, prefix-free) encoding E , then the canonical correspondence defines

a distribution, and its plog distribution is the lengths of each element of the encoding (i.e., the

lengths of the strings corresponding to the paths through the tree).

The cross-entropy H(P,Q) between two distributions P and Q over the same set X is defined as

− ∑

x∈X P (x)log2Q(x): you can see that this is the sum of the products of the corresponding

values of the distribution P and the values of Q’s plog distribution. And it turns out that this

quantity is always strictly larger than H(P,P) for any distribution Q 6= P :

∑

x

p(x)ln
q(x)

p(x)
≤

∑

x

p(x)

(
q(x)

p(x)
− 1

)

(3.23)

28

27See Li and Vitányi, Introduction to Kolmogorov Complexity, the standard book in this area.
28Why? Look at the plot of ln(x), and compute its first and second derivatives, and its value at (1,0): ln(x) ≤ x − 1.
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=
∑

x

p(x)
q(x)

p(x)
−

∑

x

p(x) = 1 − 1 = 0. (3.24)

So
∑

x p(x)ln( q(x)
p(x) ≤ 0, and the same holds then if we change the base of the logarithm to 2.

Therefore
∑

x p(x)log2q(x) ≤ ∑

x p(x)log2p(x), and multiplying both sides by -1, we see that

H(P, Q) ≥ H(P, P ).

Terminology: the quantity H(P,P) is known as the self-entropy of P, or simply as the entropy of P.

So what we have seen is this: any encoding system E maps to a distribution, and in particu-

lar to a plog distribution whose values are the lengths of the encodings. If we encode a mes-

sage M of length |M |using E, then the expected number of bits of the encoded message will be

|M | ∑

x∈L p(x)(−log q(x)). Better put, the average encoding length of a message drawn by distri-

bution P but encoded in a system derived from distribution Q in the way we have just sketched

is the cross-entropy H(P, Q). And we have already proven that the cross-entropy can never be

shorter than the self-entropy (and will in fact be larger, unless P=Q).

We can now speak of the optimal compressed length of data d given a model (grammar) h that

generates d and assigns a probability p(d): it is −log2prh(d). We’ll express that as |d|h. It is a

length, whose unit of measure is the bit.

3.16.4 Comparing an HMM to a probabilistic finite-state

automatmon (FSA)

Suppose we are interested in some words of length 4; we will start with “bill” and “trip”. Let us

imagine an FSA with four states. One of them is the start state; only one of them is an accepting

state. There is a very particular linear order to the graph of this FSA: an edge from state 1 to state

2, from state 2 to state 3, from state 3 to state 4, and no other edges. Each node is associated with

an emission probability, and the transition probabilities are trivial. Let’s suppose that initially the

emission probabilities form a uniform distribution over the 26 letters of the alphabet for all states.

Then the probability of each four letter word initially is 1
264 , and we get that by multiplying all

the a’s and b’s just as before, only the a’s are all 1.0, and the π is trivial too.

Suppose we now calculate the counts (like soft counts, but they are hard, not soft, now! nothing

is hidden), just for the HMM. That means we will add up the soft counts on a big SC table. Each

state will have associated with it a single row, and counts of all the letters that it emitted:
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state emission count

1 b 1

1 t 1

2 i 1

2 r 1

3 l 1

3 i 1

4 l 1

4 p 1

Now we can recompute (this is maximization!) the emission probabilities of each state. Here is

what we get for the first three states (you do the fourth):

state emission prob

1 a .0

1 b .5

1 . . . .0

1 t 0.5

1 . . . 0

1 z 0

state emission prob

2 a .0

2 . . . .0

2 i .5

2 . . . 0.5

2 r 0.5

2 . . . .0

state emission prob

3 a .0

3 . . . .0

3 i .5

3 . . . .0

3 l 0.5

3 . . . 0

What just happened? Essentially this: we have now created an FSA that generates the training

data with the largest possible probability. Each word has probability 1
24 . Why is that maximal?

Why isn’t it 0.5 probability for each word?

Let’s consider for a moment a different model, in which each state has the same probability

distribution: we say that the variables are tied. We are doing this just for educational reasons, so

we understand what happens when we do this. There’s nothing inherently interesting about this

assumption.

We would build a table in which we would not distinguish between the states, so it would be

simply this (compare to the one above):

state emission count

? b 1

? i 2

? l 2

? p 1

? r 1

? t 1

And maximization gives us frequencies:

state emission count

? b .125

? i .25

? l .25

? p .125

? r .125

? t .125

I put ’?’ to remind you that we are not distinguishing between states: we have tied their values

together. Question: what is the probability assigned to “bill”? And “trip”?
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Symbol Probability Range
a 0.2 [0, 0.2)
e 0.3 [0.2, 0.5)
i 0.1 [0.5, 0.6)
o 0.2 [0.6, 0.8)
u 0.1 [0.8, 0.9)
$ 0.1 [0.9, 1.0)

Tab. 3.16: BCW example: arithmetic encoding

3.16.5 Lempel-Ziv: the de facto standard

3.16.6 Arithmetic encoding

Arithmetic encoding was independently discovered by about 5 different people during the 1970s.29

It is conceptually elegant and useful in practice too, and clarifies some of the ideas we have

touched on so far. Arithmetic coding does not use an encoding in the sense that we have defined

it above; it employs an algorithm to map strings in Σ∗ to strings in {0, 1}+.

The fundamental insight behind arithmetic encoding is that if the sender and the receiver share a

model that assigns a probability to each possible message from a countable set, then we can use

the model to associate with each possible message m an interval Im, and these intervals partition

[0,1). To send a message m, then, we need only send the shortest (shortest, not smallest) binary

string that corresponds to a real in Im.

We can do this with pretty much any way of assigning a probability distribution over a countable

set. If we want to send message m which is the ith, we sum the probabilities of the messages with

lower index numbers: q =
∑i−1

j=1 p(j), and define m’s interval as [q, q + p(m)).

That’s a bit abstract. It’s clearer in a simple case, like a unigram model. Let’s suppose we are

sending the message eaii (i.e., eaii#). Then we drill down to smaller and smaller intervals. First,

the table tells us that to encode e, we want to restrict our attention to [0.2, 0.5). Now we take

that interval, and divide it up with exactly the same proportions as before (since this is a unigram

model: if we were using a bigram model, we would divide e’s interval up in a way different than

how we divide up i’s interval). We see that the interval corresponding to ea is [0.20, 0.26). We

then divide that smaller interval up, and we see that corresponding to i is the interval [0.23,

0.236), and next the subinterval corresponding to the 2nd i in eaii is [0.233, 0.2336). Finally we

break up that interval to find the part corresponding to #, which is [0.23354, 0.2336). Now we

just send the shortest binary string which corresponds to an interval entirely inside that calculated

interval.

29The very best source on text encoding of all sorts is Text Compression, by Bell, Cleary, and Witten.
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row 0

row 1

row 2

row 3

0.0

a

0.2

e

0.5

i

0.6

o

0.8

u

0.9

#

1.0

0.20

a

0.26

e

0.35

i

0.38

o

0.44

u

0.47

#

0.5

0.20

a

0.212

e

0.23

i

0.236

o

0.248

u

0.254

#

0.26

0.230 0.236

See (i.e., read) the discussion of arithmetic encoding (read the material placed on line excerpted

from Bell, Cleary, and Witten, Text Compression.)
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More discussion of arithmetic encoding; brief example of finding the interval corresponding to

the sequence ab, given a distribution (2/3, 1/4, 1/12) for a, b, c. 30

3.16.6.1 Different description, similar material

In what follows, we will use the symbol s to refer to a string in {0, 1}+ and put a hat on it (ŝ) to

indicate the number represented by this string of binary digits to the right of the binary point.31

We want to be able to easily talk about all of the positive “binary-rational” numbers, those of the

form m
2−k , with m odd. Imagine a grid (as in Figure 3.18) where each such number appears a

grid-row: in particular, on the kth grid row. 0 appears by default (so to speak) on all rows. So

any binary string s maps to ŝ, which is a binary-rational, and we will represent the inverse of that

hat-function by σ (think string): σ maps a binary-rational to a binary string.

We can also unambiguously talk about a binary-rational number’s predecessor: it is the binary-

rational to its left on the same row, which is to say, ŝ’s predecessor is ŝ − 2|s|. Let’s write it

Left(ŝ).

Here is an important thing to know: if we have an interval I of length ∆ = 2−k, call it [x, ∆), with

no restriction on x, then you can find a string of length no greater than k+1 which maps (via the

canonical mapping) to an interval entirely inside that interval I.

Here is how we see that. If x is itself a binary-rational number (that is, of the form m
2−k ) and

m ≤ k (which is to say, x is one of the points on the grid on the kth row or above) then the string

that we are looking for is simply σ(x), padded with enough 0’s on the right to make up a string

of length k.

Suppose that x is not such a coarse number: it might be a binary-rational on a lower row, or

simply not a binary rational at all. Clearly there is a binary-rational S of the form n
2−k somewhere

inside interval I. Then consider Left(Ŝ0), that is, the predecessor to Ŝ0. This is the binary rational

S − 2−(k+1). Call it Z.

If x > Z, then the string we are looking for is S0.

If x < Z, then the string we are looking for is Left(Ŝ)1: this maps to the interval [Z,Z+2k+1).

The best way to think of this is in terms of the canonical mapping of strings in B∗ to intervals in

[0,1]. On the top row, a dot over 0; on the second row, a dot over 0 and 0.5; on the third row,

a dot over 0, .25, .5, .75, and so on. On the kth row, a dot over z × 2−k. Draw a line from each

dot on each row to the dot immediately above it if there is one there, or if there isn’t one, to the

dot immediately above its left-hand neighbor. When that’s done, label the lines below each dot

30Brief discussion of Kraft’s inequality, which sets necessary and sufficient conditions for there to exist an encoding in
B∗ (where B is {0,1}), with the prefix property, in which the length of the encodings are {li}i. The condition is this:∑

i
2−li ≤ 1. Why?

31What is the source of this?
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Fig. 3.19: Case 1
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Fig. 3.20: Case 2
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Ŝ

Fig. 3.21: Case 3

row k

row k+1

Ŝ

Fig. 3.22: Case 3 bis
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Fig. 3.23: French

‘0’ and ‘1’, and the concatenation of the labels on the path from the root to each point is a string

s ∈ B∗ which uniquely identifies that point: ‘0.s’.

It should be easy to see that if you have an encoding (in B∗), then it can be embedded into that

graph we just made, and the lengths of the intervals corresponding to each of the lowest nodes

(the lowest nodes give the encodings) have the property that the sum of their magnitudes is less

than 1. The converse is not much harder: if you have a set of {li}, assume that they are sorted

in increasing (really, non-decreasing) size, and lay them out, left to right on the picture drawn

above, with each li on the ith row. Each interval will correspond to a canonical interval, and thus

will have an encoding found by tracing down to the node from the root.

This material is well discussed in Li and Vitányi, An Introduction to Kolmogorov Complexity and its

Applications – the bible of this area. Highly recommended.
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18k swahili words

"c:\\data\\swahili_compressedcoords_18Kwords_10decimals.txt" using 2:3

Fig. 3.24: Swahili

Fig. 3.25: The signature e.ed.ing.s
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Fig. 3.26: The signature NULL.ed.ing.s

What we have seen so far is a close connection between: (1) probability distributions over al-

phabets; (2) ways of partitioning [0,1); and (3) identifying intervals I in [0,1) with an encoding

from B∗ whose length is approximately −log2(|I|).

Conditional probability and probabilities of strings. We care about assigning distributions to Σ∗.

We have already observed that if we assign to a string s a value Uni(s) =
∏

p(s[i]), then the

sum of those values will be 1 if we sum over all the strings of length |s|. So we can use this as a

probability measure over all strings of a fixed or given length, but certainly not over all of Σ∗!

We have two ways to go. First, we could pick an arbitrary distribution over length λ, and then

assign a probability to each string s as λ(|s|) × Uni(s). That would give us a well-formed distri-

bution over all of Σ∗. Second, we could insist that we care not about Σ∗as such, but only about

those finite strings in it that end in ‘#’ and have no internal ‘#’s. Let’s call w = 1 − p(#); it’s the

probability of emitting a real letter. The probability of emitting the null string followed by # is

1 − w; then the sum of the probabilities of all strings of the form x# will be w(1 − w). The sum

of the probabilities of all strings of the form xy# will be w2(1 − w), sum of the probabilities of

all strings of the form xyz# will be w3(1 − w), and so on. Those numbers sum to 1, so we’re fine:

we have a way to assign a distribution, using ‘Uni’, to strings that end in # and have no internal

#s.

Conditional probability: we have a sequence of random variables U(i), but they typically are not

independent. For our purposes, we may think of a variable that is independent of what precedes

it as being specified by a single distribution labeled with the relevant alphabet Σ, and one that is
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not independent as one that has several such labeled distributions, and the one that is employed

is determined by the outcome of a preceding variable—and in the case that we want to consider

(the bigram model), it is determined by the outcome of the immediately preceding variable.

Start
a //

b

""❊
❊❊

❊❊
❊❊

❊❊
A

a //

b

  ❅
❅❅

❅❅
❅❅

❅ A
a //

b

  ❅
❅❅

❅❅
❅❅

❅ A
a //

b

  ❅
❅❅

❅❅
❅❅

❅ A

B
b //

a

>>⑦⑦⑦⑦⑦⑦⑦⑦
B

b //

a

>>⑦⑦⑦⑦⑦⑦⑦⑦
B

b //

a

>>⑦⑦⑦⑦⑦⑦⑦⑦
B

Each state is associated with a labeled distribution which is illustrated by its arcs leaving to the

right; each random variable has as many outcomes as there are states.

pr (U(t) = A|U(t − 1) = B) =
p(U(t) = A and U(t − 1) = B)

p(U(t − 1) = B)

This makes perfect sense if we think about using frequencies for our parameters. The probability

of h, given that we have just seen a t, is then defined as the probability of a th, divided by the

probability of a t.

Last thing: mutual information, which we have already talked about. We say MI(a, b) when we

really mean something like MI(U(i) = q, U(i + 1) = b), for example. In such a case, this is

defined as log p(U(i)=a) & U(i+1)=b)
p(U(i)=a×p(U(i+1)=b) .

You can see that in such a case, MI(a,b) is log p(a|b)
pr(a) = log p(a & b)

p(b)×pr(a)

The upshot of that is simply this: the bigram conditional plog of b, when immediately following

a, is equal to b’s unigram plog less MI(a,b):

plog(U(t) = b | U(t − 1) = a) = plog(U(t) = b) − MI(U(t − 1) = a & U(t) = b)

• Discussion of the next homework problem: finding compounds automatically, and evaluat-

ing results.

• Definition of MI(a,b); simple manipulations of the definition of conditional probability.

• MI is the difference between the information content of a corpus using the unigram model

and using the bigram model.

• Our goal is to find a sequence of increasingly complex grammars, each of which decreases

the plog (=information content) of the data.

• A complex system is one whose entropy, given a zero-order model, is very high, and whose

entropy continues to steadily decline over a long sequence of increasingly complex gram-
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mars. In a complex system, the complexity does not drop very fast, like a stone – it continues

to drop gradually as we strip away more and more regularities within the data.

• Review of evaluating results = Precision, Recall. In both cases, the numerator is the number

of correct items your algorithm detected. For precision, the denominator is how many your

algorithm detected, whether they were right or wrong. For Recall, the denominator is how

many your algorithm should have detected (the number of correct items, according to the

Gold Standard).

• Bayes’ rule: simple manipulations of the definition of conditional probability. By definition,

p(A|B) =
p(A & B)

p(B)

so

p(A & B) = p(A|B)p(B).

and for the very same reason

p(A & B) = p(B|A)p(A).

Hence

p(A|B)p(B) = p(B|A)p(A)

or

p(A|B) =
p(B|A)p(A)

p(B)
.

Things start to get tricky when we think of one of the “events” as a hypothesis, because we

have to ask what we mean by saying that a hypothesis has a particular probability. That is

the heart of bayesian reasoning: a willingness to go there.

3.17 Chunking: th

Improvement in probability if we start chunking a corpus. State 1: we compute a unigram proba-

bility. State 2: we take all occurrences of th to form an elementary unit.
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pr1(S) =
∏

l

(
[l]

N

)[l]

(3.25)

pr2(S) =
∏

l∈Σ,l 6=t,h

(
[l]

N − [th]

)[l] (
[t] − [th]

N − [th]

)[t]−[th] (
[h] − [th]

N − [th]

)[h]−[th] (
[th]

N − [th]

)[th]

(3.26)

=
∏

l∈Σ,l 6=t,h

N [l]

(N − [th])[l]

(
fr2(t)

fr1(t)

)[t]−[th] (
fr2(h)

fr1(h)

)[h]−[th]

(fr2(th))
[th]

(3.27)

=

(
N1

N2

)|S|−[t]−[h] (
fr2(t)

fr1(t)

)[t] (
1

fr2(t)

)[th] (
fr2(h)

fr1(h)

)[h] (
1

fr2(h)

)[th]

(fr2(th))
[th]

(3.28)

=

(
N1

N2

)|S|−[t]−[h] (
fr2(t)

fr1(t)

)[t] (
fr2(h)

fr1(h)

)[h] (
fr2(th)

fr2(t)fr2(h)

)[th]

(3.29)

(3.30)

Taking logs, and using ∆F = F2

F1

:

∆S = −(|S| − [t] − [h])∆N + [t]∆fr(t) + [h]∆fr(h) + [th]log
fr2(th)

fr2(t)fr2(h)
(3.31)

3.17.0.1 Prose

We will assume throughout our discussion that there is an alphabet Σ in which all raw data is

expressed; we could take it to be some version of Unicode, for concreteness’s sake. By the term

corpus we mean a subset of Σ∗; we may refer to it as data as well. There is a distinguished symbol

in Σ, which we call “space,” and represent it either as “ ” or as “#”. Some corpora contain “#”

while others do not; we say that the first kind indicate word-boundaries, while the second do

not. If we obtain S2 from S1 by removing all instances of # in S1, then we say that S2 has been

obtained by stripping # from S1. We can also speak of the natural lexicon of any corpus that

indicates word boundaries in the natural way: after affixing a “#” to the beginning and end of

each string in the corpus, we define the lexicon as the set of strings consisting of the maximal

substrings of the corpus that do not contain “#”.

Information theory is closely related to probability theory and to the theory of encoding. The

theory of encoding describes properties of mappings from some universe of formal representations
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L (that might be, for example, the set of sentences of a particular language) to a set E of strings

with very restricted properties: E might be {0, 1}∗, for example.32

Most of the time, we will want to restrict our attention to cases where E has the prefix property.

We say that a set of strings has the prefix property iff there are no pairs of strings S,T in the set

such that S is a proper prefix of T. (A string S is a prefix of T if T = S + X, where “+” is the

concatenation operator.)

The reason for this is that it is especially easy to assign probability distributions over such sets.

It is also easy to see (or it will be easy to see) that sets of strings S with the prefix property can

be associated with a tree, where each s ∈ S is associated with a terminal element of T .

We will define the information content of an s ∈ S, where p(s) > 0, as − log p(s) = log 1
p(s) .

Terminology: please bear in mind the difference between counts, frequency, and probability.

Counts are numbers (initially, integers) that count the number of occurrences of something. Fre-

quencies are counts which have been normalized, so that the sum of frequencies from an appro-

priate set will sum to 1.0. Probabilities are parameters of a model. A human being creates a

model, and has the privilege if she chooses, to set the parameters however she likes. She may set

them to be the same as frequencies, or related in some other fashion to frequencies, but that is a

choice.

3.17.1 Important distributions

3.17.1.1 Normal

3.17.2 Bayesian analysis

Bayesian analysis may be defined as the probabilistic analysis of a set of data D (that is, an

anaysis which assigns a probability to D) by virtue of selecting a probabilistic model M from a

set of possible models M over which a probability distribution has been defined. That is, we have

two entirely different probability distributions at work: we have a distribution over models; we

select a specific model m in M, and ask what probability m assigns to our data D.

(Actually, that is a special case, a simple case, of what most real bayesians would expect from a

bayesian analysis. They would expect us to consider not a single model m, but rather a distribu-

tion d over models. We’ll come back to this. For now, we will stick with the special case.)

32If you are familiar with probability theory, you might want to know what our measurable sets are. We will restrict our
attention to enumerable sets, so all subsets are measurable.
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4Words

4.1 What is a word?

4.2 Word frequencies and Zipf’s Law

‘

The earliest work on word frequencies is known as Zipf’s Law, named after George Zipf. Assume

a text composed of words, in the everyday sense. The set of words is the vocabulary V . Some

words occur often; others rarely. Let us count the frequency of each word in the text, and then

rank the words by their count. Each word w occurs Count(w) times; we will also write this [w]

for brevity’s sake. Each word w has a rank rw in the list; if w1 is more frequent than w2, then its

rank is lower (rw1
< rw2

).

The rate at which the frequencies drop off is rather regular, and Zipf’s law describes this. A simple

version is:

freq(w) × rw ≈ Zlanguage

where Zlanguage is fixed for a given language (though will vary over different languages) and w

is a word in the sample from the language. Unless it’s important, I will not write the subscript on

Z.

This approximation can be rewritten for a particular corpus C:

freq(w) =
Count(w)

|C| ≈ Z

rw

and so we would expect

1 =
∑

w∈V

freq(w) ≈
∑

w∈V

Z

rw

= Z

i=|V |
∑

i=1

1

i

But we know1 that this sum does not converge as i → ∞, which has made a number of people

uncomfortable with this formulation.

1and have known since Nicole Oresme, one of the greatest minds of the 14th century, and perhaps of all time, proved it.
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To put the point another way, this formula works badly as the size of V gets large. But it also

works poorly, from an empirical point of view, when we look at the most frequently words—the

most frequent 4 or 5 words. Back in the 1950s, Benoît Mandelbrot proposed a relaxed version of

Zipf’s law with two additional parameters. One way it which it can be expressed is this, where

we clarity things by separating out the normalizing factor:

f(k; N, q, s) =
1

HN,q,s

1

(k + q)s

where

HN,q,s =

N∑

i=1

1

(k + q)s

The reality behind this formula is simpler than it looks at first glance. You can see that if q = 0

and s = 1 then we are back with the old Zipf’s law. So q and s can be looked at as parameters we

adjust in order to deal with the problem of the two ends (low rank, high rank) of the curve. Do

you see which parameter deals with which end?

http://www.nslij-genetics.org/wli/zipf/

http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

4.3 Rich get richer

Ijiri and Simon 1975: Explores Bose-Einstein statistics. Suppose we have r (indistinguishable)

items in a sequence. They are divided up into n groups, say of adjacent items. We describe this

as (r1, r2, . . . , rn), and
∑n

k=1 rk = r. Each such description is equiprobable. The main meaning

to that is that items within each group are indistinguishable (so they’re not multiply counted by

permutations), but the groups are distinguishable by order. Thus (0,2), (1,1), and (2,0) each have

probability 1/3. If the groups were not distinguishable by order, (1,1) would have probability 1/2.

But it doesn’t (by the assumption of Bose-Einstein statistics).

Ijiri and Simon show that if consider a process whereby we add an item to this group, and add it

to group k with probability rk/r, then the distribution of groups continues to satisfy Bose-Einstein

statistics (though the group is growing, obviously).

They write, roughly, “Let p(i,s) be the probability that a cell will have size i when the aggregate

size of all cells is s. Also let p(i) be the steady state probability that a cell will have size i, i.e.,

p(i) is the limit as s grows to infinity, of p(i,s). Under certain conditions, Gibrat’s Law is known

to produce as its limiting distribution the Pareto Law, given by p(i) = Ki−ρ in which K and ρ

are constant parameters. Under other boundary conditions . . . p(i) = Mρ−i in which M, ρ are

constants, with ρ > 1.”
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These two conditions are the following. Under both, the process increases the number of cate-

gories by a constant probability (for them, the probability of a ‘bar’), and puts a unit in it. Under

one assumption, the new category has exactly one member. Under the other assumption, the new

category is created out of an old category, which is split into two parts by the process (and one

new unit is added to one or the other). The former leads to a Pareto distribution, the latter to a

geometric distribution.

4.4 Yule’s characteristics

In Type-Token Mathematics: A textbook of mathematical linguistics (1960), Gustav Herdan makes

the following point:

Yule’s characteristic is defined as

K =
S2 − N

N2

where N =
∑s

1 rnr (by the definition of nr: it is the number of distinct words occuring with

count r) and S2 =
∑s

r2nr.

He then defines K∗ as S2

N2 , a quantity close to K. Plugging in the definition of S2, and defining

s as the frequency of the highest frequency word and pr as the frequency of a word occurring r

times (i.e., r
N

), we find that

K∗ =
∑ r2

N2
nr =

r=s∑

r=1

p2
rnr. (4.1)

Now we do the same trick we did before of changing the way we sum over all cases, this time by

summing over the individual words in the lexicon. That is, think of each term in the sum in (4.1)

as being of the form pr[1 + 1 + 1 · · · + 1
︸ ︷︷ ︸

nr times

], where there is one 1 for each word in the lexicon. So

this turns the sum into:

K∗ =
∑

w∈lexicon

p2
w. (4.2)

And what is interesting is that we can independently see that this sum is the repeat rate for words:

it is the probability that if you pick two words from a corpus, they will be the same word.

Herdan also points out that
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K∗ − 1

n
=

S2

n2
− 1

n
=

n
∑

r r2nr − [
∑

r rnr]2

n[
∑

r rnr]2
(4.3)

We can change this to frequencies by judicious division by n3, and define π(r) as nr

n
, that is, the

empirical probability that a word has is of count r:

=

∑
r2π(r) − (

∑
rπ(r))2

n[
∑

r nπ(r)]2
=

∑

r σ2
r

∑

r nM2
r

(4.4)

described as “the coefficient of variation of the mean of the variable r.” (88) (and Herdan leaves

out the summations in the last expression).

p1 p2 p3p3 p4 p5

p2
1

4.4.1 Yule’s characteristic K

Herdan thus thinks of K as the variance of the mean number of occurrences per word.

4.4.2 Zipf and Zeta

The zeta (ζ) function just might be the most amazing and beautiful function in all of creation.

ζ(s) =
∞∑

n=1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ . . . (4.5)

We will look at the value of ζ at 1 for a moment. Now, recall that by the prime factorization of

integers, any integer has a unique and finite prime factorization. In this section, whenever we

use the symbol p, or a slight variant, we mean a prime. We use the notation by which pi is the

ith prime number: p1 = 2, p2 = 3, p3 = 5, and so on. Then we can talk about the canonical

representation of any integer in terms of the ri:
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n = pr1

q1
pr2

q2
...prm

qm

for some m, where all the ri’s are > 0, and the qi’s are strictly increasing.

Let’s go one step further and write this expansion for any arbitrary n as an infinite product of

prime powers, but with the understanding that for a particular n, all but a finite number of the

ri’s will be 0 (hence the corresponding prime powers will contribute a factor of 1, which does not

matter).

Thus:

1

n
=

∞∏

i=1

1

pri

i

,

where the ri’s are all non-negative. So:

ζ(1) =

∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . . (4.6)

=

∞∑ ∞∏

i=1

1

pri

i

, (4.7)

Here is where it gets tricky. We will change our original equation (1) from an infinite sum to an

infinite product. Every element in the sum can be obtained by picking one power of each of the

factors. Once we realize that, then we see we can rewrite this as follows—when you think about

the product, think of it as the sum of products made by choosing one element from parenthesized

sum:

ζ(1) =

∞∑ ∞∏

i=1

1

pri

i

, (4.8)

=

(

1 +
1

2
+

1

22
+

1

23
+ . . .

) (

1 +
1

3
+

1

32
+

1

33
+ . . .

)

(

1 +
1

5
+

1

52
+

1

53
+ . . .

)

. . .

Remember that 1 + q + q2 + q3 + · · · = 1
1−q

. Here, the 1
p
’s ’s are the q’s. So this product becomes

ζ(1) =
∏

all pi

1

(1 − p−1
i )

=
∏

all pi

pi

pi − 1
.
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This does not converge (too bad for Zipf’s Law): how could it? It’s the product of a lot of numbers

all of which are greater than 1. But the zeta (ζ) function (of Euler, and extended to the complex

numbers by Riemann) more generally does converge—for example, for real s > 1.

ζ(s) =

∞∑

n=1

1

ns
=

∏

all pi

1

1 − 1
ps

i

(4.9)

And (lo! And behold), empirical work on Zipf’s law suggests that the best approximation to

reality requires a value for s just slightly greater than 1, because the frequencies of all the words

has to converge (to 1.0) when we sum up over all the distinct words (i.e., summing over rank

position, starting at 1 and going up indefinitely); and Mandelbrot’s proposal is that the frequency

of the word ranked r in a word list is constant
r+b)s . I don’t know what kind of a role the b term plays

empirically. But it’s clear that it cannot save the sum from diverging when s = 1. We need s to be

greater than 1 for the sum to converge.

I think it is very cool that there is some kind of link between linguistics and the most beautiful

equation in mathematics. (The Riemann Hypothesis is that the positive zeroes of ζ all have a real

part equal to 1
2 .)

4.4.3 Zipf and Pareto

See Zipf, Power-laws, and Pareto–a ranking tutorial.

http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html, from which this section is

largely drawn.

Zipf’s Law: Size of the rth largest word count ∝ r−b, with b close to 1. Here we take rank to be the

independent variable, and its count to be the dependent variable. Bear in mind that saying that a

word is of rank n means that there are exactly n words whose count is of that much [whatever it

happens to be] or greater.

Pareto considered what today we would call the cumulative distribution function: in the case of

income, the number of people whose income exceeds a value x. P [X > x] is proportional to x−k.

So he is reversing the variables, so to speak: the independent variable (x) is the income, much

like the count in Zipf’s case; while the dependent variable is much like the rank of Zipf’s case.

If we instead consider the probability distribution function (pdf) rather than the cumulative dis-

tribution function for Pareto’s case of income, we get P [X = x] ∝ x−(k+1).

So, back to Zipf: n ∝ r−b. To flip the axes means essentially to solve this equation for r, i.e.,

r ∝ n− 1

b
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Figure 4.4.1 Many Zipf-type relationships (find source)

Given a Zipfian distribution, the expected count of the rth word is proportional to r−b, i.e.,

E[count(wr)] ∝ C1r−b. Paraphrasing this, P [count(x) ≥ C1r−b] is proportional to r: P [count(x) ≥
C1r−b] ∝ r, so P [count(x) ≥ C1r−b] = C2r.

On the internet, it is sometimes observed that the number of sites visited by x users ∝ Cx−a Using

the cumulative function is sometimes clearer graphically, and can avoid the need for binning

data.

4.5 Maximize ( word-probability/phoneme frequency )

over the corpus

Replace this section.

What is the relationship between word probability and phoneme probability in a natural lan-

guage? How can we ask that question in a coherent or meaningful way?

Let’s assume the simple unigram model for the phonemes of a language, and the unigram model

for the words as well (but over words, not phonemes, of course), and let’s ask how the ratio of

these two kinds of information content

Q =

|Corpus|
∏

n=1

prsyntax(wn)
∏|wn|

i=1 prphono(wn[i])
(4.10)

4.6 Word discovery

There are two broad families of ways in which we analyze the structure of strings, as we find in

data: probabilistic (markov) models, which tell us about the probabilities of selection of elements

from Σ in the future, given the past; and segmentation models, whose purpose is to allow for

the restructuring of a string of elements from a fine-grained alphabet (such as Σ) to a coarser

alphabet L which is typically called a lexicon; each element w ∈ L is associated with an element

of Σ∗, its “spell-out”—“associated with” rather than “is,” because w may be decorated with other

information, including meaning, syntactic category, and so on; but to keep things simple, we may

assume that no two elements in a lexicon are associated with the same spell-out. We will always

assume that each member of Σ is also a member of L (roughly speaking, each member of the

alphabet is a word). If there is an element w of L associated with the string the, we will write w
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as (the), and indicate its associated string as h((the)) or, when it will not cause confusion, simply

as the. In short, (the) is a member of the lexicon, and it is spelled out as h((the)), or the.

Thus any string s of words formed from our lexicon L is naturally associated with a string in Σ∗

in one of two ways: it is associated in a natural way with a string containing word-boundaries

(we call that association h#); and it is also associated with a string that does not contain word-

boundaries (by hø). For example, if our lexicon contains the words that we write as (the) and

(dog), then h#((the)(dog)) = the#dog, while hø((the)(dog)) = thedog. We have defined things

in this way so that we can be sure that h# has a well-defined and unique inverse: any string

that indicates word-boundaries is associated with a unique string of words. On the other hand,

a string that does not indicate word-boundaries will typically be associated with several different

strings of words. For example, the is associated with (t)(he), (the), and (t)(h)(e), under usual

assumptions regarding the lexicon of English.

The first problem of word-segmentation, then, is to find a method to undo the stripping of #, the

following sense. Given any corpus C containing #s, we construct its natural lexicon L and C ’s

stripped version C ′. We wish to find a completely general algorithm S1(L, C ′) that can reconstruct

C, given the natural lexicon L, and possibly some statistical information available in the original

corpus, such as word-frequency and word-sequence information. Needless to say, perhaps, there

is no guarantee that such an algorithm exists or that if it exists, it can be found algorithmically.

In general, we may wish to develop an algorithm that assigns a probability distribution over

possible analyses, allowing for ranking of analyses: given a string anicecream, we may develop an

algorithm that prefers an ice cream to a nice cream.

The second problem of word-segmentation assumes that the first problem has been solved; the

second problem is to find a general algorithm S2(C ′) which takes as input a corpus C ′, which is

created by stripping boundaries from a corpus C, and which gives as output a lexicon L which

will satisfy the conditions for L established for S1 in the preceding paragraph. Since there are an

astronomical number of different boundary-marked corpora, most with distinct natural lexicons,

it goes without saying that if we can solve this problem for naturally occurring corpora, we do

not expect it to be extendable to any randomly generable corpus: to put it another way, to the

extent that we can solve this problem, it will be by inferring something about the nature of the

device that generated the data in the first place.

strippedcorpus, lexicon // device // originalcorpus

strippedcorpus // device // lexicon

The problem of word breaking, or word segmentation, may seem artificial from the point of view

of someone familiar with reading Western languages: it is the problem of locating the breaks

between words in a corpus. In written English, as in many other written languages, the problem

is trivial: we mark those breaks with white space. But the problem is not at all trivial in the

case of a number of Asian languages, including Chinese and Japanese, where the white space

convention is not followed, and the problem is not at all trivial from the point of view continuous

speech recognition, or that of the scientific problem of understanding how infants, still incapable

of reading, are able to infer the existence of words in the speech they hear around them.
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Another computational perspective from which the problem of word breaking is interesting is this:

to what extent do methods of analysis that have worked well in non-linguistic domains work well

to solve this particular problem? This question is of general interest to the computer scientist,

who is interested in a general way regarding the range of problems for which an approach is

suitable, and of considerable interest to the linguist, for the following reason. The most impor-

tant contribution to linguistics of the work of Noam Chomsky since the mid 1950s has been his

insistence that some aspects of the structure of natural language are unlearnable, or at the very

least unlearned, and that therefore the specification of a human’s knowledge of language prior to

any exposure to linguistic data is a valid and an important task for linguistics. But knowledge of

the lexicon of a given language, or the analysis of the words of the lexicon into morphemes, is

a most unlikely candidate for any kind of innate knowledge. Few would seriously entertain the

idea that our knowledge of the words of this paper, or any other, are matters of innate knowledge

or linguistic theory; at best—and this is plausible—the linguist must attempt to shed light on

the process by which the language learner infers the lexicon, given sufficient data. To say that

the ability to derive the lexicon from the data is something that few if any would disagree with,

and to the extent that a careful study of what it takes to infer a lexicon or a morphology from

data provides evidence of an effective statistically-based method of language learning, such work

sheds important light on quite general questions of linguistic theory.

The idea of segmentation of a string S ∈ Σ∗ into words is based on a simple intuition: that

between two extreme analyses, there must be a happy medium that is optimal. The two extremes

here are the two “trivial” ways to slice S into pieces: the first is to not slice it at all, and to leave

it as exactly one piece, identical to the original S, while the second is to slice it into many, many

pieces, each of which is one symbol in length. The first is too coarse, and the second is too fine,

for most strings that are symbolic in any sense at all. The intuition is that there is an intermediate

level of “chunking” at which interesting structure emerges, and at which the average length of

the chunks is greater than 1, but not enormously greater than 1. The goal is to find the right

intermediate level—and to understand what “right” means in such a context.

Another important distinction to bear in mind is that when trying to decide whether a word-break

should be placed in a given spot in the string, we can either use current hypotheses about what

chunks (i.e., words) exist in the language, or we can use our current hypotheses about what

sequences of letters (phonemes) appear most likely inside a word and what sequences occur most

likely across different words, i.e., separated by a word-boundary. These two methods are not

incompatible, but they are conceptually quite different.

4.6.1 Non-probabilistically: Sequitur

Craig Nevill-Manning, along with Ian Witten (see [?, ?]) developed an intriguing non-probabilistic

approach to the discovery of hierarchical structure, dubbed Sequitur. They propose a style of

analysis for a string S, employing context-free phrase-structure rules {Ri} that are subject to two

very strong restrictions demanding a strong form of non-redundancy: (1) no pair of symbols S, T ,

in a given order, may appear twice in the set of rules, and (2) every rule is used more than once.
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Figure 4.6.1 The two problems of word segmentation

Device 1

Stripped corpus

Lexicon

Original corpus

Stripped corpus Device 2 Lexicon

Such sets of rules can be viewed as compressions of the original data which reveal redundancies

in the data. An example, taken from [?] will make this clear.

Suppose the data is abcdbcabcd. The algorithm will begin with a single rule expanding the root

symbol S as the first symbol, here a: S → a. As we scan the next letter, we extend the rule to

S → ab, and then to S → abc, to S → abcd, to S → abcdb, and finally to S → abcdbc. Now

a violation of the first principle has occurred, because bc occurs twice, and the repair strategy

invoked is the creating of a non-terminal symbol (we choose to label it ‘A’) which expands to the

twice-used string: A → bc, which allows us to rewrite our top rule as S → aAdA, which no longer

violates the principles. We continue scanning and extended the top rule, now to: S → aAdAa,

still maintaining the second rule, A → bc. Scanning the next symbol, b, the top rule becomes

S → aAdAab; and the next, c, the rule becomes S → aAdAabc. The bc just found is replaced by

A, so we have S → aAdAaA, but this rewrite creates a new violation, since aA appears twice.

This leads to the creation of a new non-terminal symbol ‘B’ and the rule B → aA, and the top rule

is shortened to S → BdAB. Not surprisingly, the highest level rule is quickly losing its terminal

symbols in favor of non-terminal symbols. As the next symbol, d, is scanned, the top rule becomes

S → BdABd, and this triggers a cascade of changes. A new symbol C is created which expands

C → Bd, and the top rule becomes S → CAC. The rule expanding B (which is B → aA) is

no longer licit, because its only application is to expand the node B which occurs only once in

the grammar, in the expansion of the new C. A rule must appear at least twice to survive, so we

remove the rule B → aA by expanding C in this way: C → aAd. All the conditions are satisfied,

and we have a small hierarchical compression of the original string of symbolic data.

Where are the words, now?

4.6.2 Finding words: Olivier
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4.6.3 Minimum Description Length

4.6.3.1 Brent, de Marcken

A good deal of work beginning in the late 1960s. Two widely-cited MIT dissertations in the mid

1990s on this, by Michael Brent and Carl de Marcken.

Let’s take the Brown Corpus as our corpus, and following some parts of what de Marcken pro-

posed, establish a simple lexicon consisting of exactly the symbols found in it, and assign each

symbol its empirical frequency. We calculate the plog for each sentence, and sum these com-

pressed lengths: we find that there are approximately 16,274,000 bits of information in the

Brown Corpus.

140 Chapter 4 Words



Let us gradually add some longer words

to the lexicon, by keeping track of which

pairs of lexicon members occurred most fre-

quently next to each other. The top 25 most

frequent candidates are:

piece count status

th 127,717

he 119,592

in 86,893

er 81,899

an 72,154

re 67,753

on 61,275

es 59,943

en 55,763

at 54,216

ed 52,893

nt 52,761

st 52,307

nd 50,504

ti 50,253

to 48,233

or 47,391

te 44,280

ea 41,913

is 41,159

ar 40,402

of 40,296

ha 39,922

it 39,304

ng 39,018

Now, in each iteration, we find the

Viterbi parse (the highest probability pars-

ing, based on a unigram model) and use it.

In the second iteration, two words, the and

and are discovered, and an important suffix

ing, as well as ic and ly; most of the rest are

just small parts of words:

piece count status

the 54,598

ou 35,771

al 34,471

and 29,127

ing 26,520

as 25,194

ll 24,681

ro 22,592

om 21,070

ec 20,726

le 20,269

ic 20,258

el 19,661

me 19,100

se 17,819

ly 17,604

tion 17,339

em 16,639

li 16,548

il 16,523

co 16,495

ac 16,072

wa 14,940

be 14,907

ent 14,895

4.6 Word discovery 141



On the third iteration, some other mor-

phemes and words are proposed; here are

about half of the suggestions made on the

third iteration:

piece count status

for 14,390 word

ofthe 9,899 too large

was 9,455 word

The 9,360 word

no 9,331 word

that 9,273 word

ation 9,188 morpheme

ith 9,164

ra 9,097

su 8,813

lo 8,799

ol 8,594

ri 8,561

On the sixth:

piece count status

we 5,598 word

ke 4,330

you 4,328 word

tothe 4,309 too large

pl 4,243

man 4,242 word

,the 4,230 too large

not 4,206 word

pre 4,165 morpheme

from 4,146 word

if 4,097 word

ity 4,080 morpheme

ment 3,973 morpheme

them 3,967 word

ate 3,963 word

up 3,916 word

ted 3,854

so 3,794 word

um 3,776

mo 3,757

di 3,723

ak 3,720

ard 3,716

have 3,713 word

edto 3,686 too large

On the 50th :

piece count status

result 326 word

erial 321

inwhich 300 too large

understand 297 word

done 296 word

spect 296 morpheme

ger 295

All 295 word

pract 295 morpheme

close 295 word

complete 295 word

cell 295 word

Nor 294 word

subject 294 word

ionof 294 too large

wind 294 word

edtothe 294 too large

train 294 word

board 293 word

thathe 293

increas 292 morpheme

ofs 292 too large
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The F ult on County Gr and Ju ry said Fri day an investig ationof Atlan ta ’s recent primary election

produc ed no evidence that any ir regular ities took place.

A lexicon L is a pair of objects (L, pL):

• a set L ∈ A∗, and

• a probability distribution pL that is defined on A∗ for which L is the support of pL. We call

L the words.

• We insist that A ∈ L: all individual letters are words;

• We define a language as a subset of L∗; its members are sentences.

• Each sentence can be uniquely associated with an utterance (an element in A∗) by a map-

ping F:

Select the lexicon L which minimizes the description length of the corpus C. A lexicon L is a

distribution prL over a subset of Σ∗. L’s length is the length in bits in some specified format (the

format matters!) and encoding. Any such distribution assigns a minimal encoding (up to trivial

variants) to the corpus, and this encoding requires precisely −logp(C) bits. The description length

of a corpus given lexicon L is defined as |L| − logprLC: select the lexicon that minimizes this

quantity (as best you can). |L| comes into the picture because if we assume L is expressed in

a binary-encoded format in which no morphology is a prefix of another, this encoding induces a

natural probability distribution, with p(l) proportional to 2|l|

4.6.3.2 Other MDL approaches

Minimum Description Length (or MDL) is an approach to data analysis developed by Jorma Ris-

sanen, [?, ?] developing ideas of algorithmic complexity discussed by a range of scholars, notably

Solomonoff, Chaitin, Wallace, and notably Kolmogorov. At its heart is the notion that the funda-

mental challenge of analyzing data is the correct division of a set of observations into information,

complexity, and noise, in Rissanen’s terminology, each of which can be measured in (Shannon’s)

bits. This terminology is not ideal in the context of applying MDL to the problem of unsupervised

language acquisition, because Rissanen’s information corresponds to the grammar that generated

the data, the complexity is a measure related to the message that is encoded by the data, and noise

is, well, noise.

4.6 Word discovery 143



An MDL approach to the analysis of a set of data D, where D ⊂ Σ∗, with Σ an alphabet, begins

with an assumption about the class of models M that will be taken into consideration, and a

background assumption about how much encoding, in bits, is required to make any particular

grammar completely explicit, typically given in terms of a universal Turing machine. However

we choose to define that class of models, each member will be a grammar capable of generating

(or accepting) the data D. If we have chosen a model class that contains the grammar g1(see 1)

(generate all strings), then obviously it accepts the data D, but it imposes little structure, and it

accepts not only D, but a very, very large and infinite superset of D; this account posits very little

information (in our terms, very little grammar) in the data. We are not obliged to choose so large

a model class. Indeed, the artistry that we call science includes the judgment of just what that

model class should be.

To repeat: one makes a background assumption about how algorithms will be encoded, and

then that assumption allows us to measure the information contained in a grammatical model

g that we are entertaining (again, the information is very closely related to the length of the

encoding of the grammatical model, or grammar, which we indicate as |g|). In addition, we make

the assumption that all algorithms are probabilistic. This assumption can be interpreted in two

equivalent ways. From the point of view of string accepting, the grammar generates a positive

number (< 1) associated with any string in Σ∗; that number is the string’s probability; and these

probabilities sum to 1.0. From the point of view of generation, any real finite binary sequences

of 0’s and 1’s will be interpreted as a binary fraction beginning “0.” (and hence as a rational

number between 0 and 1), and a probabilistic grammar can always be interpreted as a device

that takes such finite binary expansions, and produces a string; the length of the shortest such

binary expansion that generates D is the complexity of the message D (written |D|g), and is closely

related to the inverse binary logarithm of the probability assigned to the string by an accepting

model.

Thus we see that given a model/data pair g/D, we generate two numbers, the information of the

model g and the complexity of the data D given the model g. We say that the model/pair then

has the description length µg,D = |g| + |D|m, and we choose a particular model ĝ:

ĝ = arg min
g

µg,D = arg min
g

|g| + |D|g (4.11)

Since a lexicon typically includes its alphabet as a subset (which is to say, each individual letters is

also a word, in actual practice), any given model will typically be able to generate a given string

D in many different ways (remember the case of anicecream), each with its own probability. In

practice, we typically define the probability of a string D as the probability associated with one

particular parse of D.

Putting these threads together, we can see that an MDL approach to word-breaking consists of two

things: a suitable definition of a class of lexicon models, where each model assigns a probability

distribution over the strings which it generates; and second, a probability distribution over that

class of lexicon models. In addition, a model of word-breaking may be linked with a theory of
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acquisition, which takes a string, its corpus (and hence immediate access to the alphabet Σ in

which it is inscribed, so to speak) and proposes a lexicon for it.

Work by Brent [?]; [?]; [?] [?]

4.6.4 Problems with this approach to word discovery

The first set of problems that one encounters in looking at the results of this approach are these:

(i) the approach makes pieces that are too large, like of the, to the, of course, etc. (ii) the approach

also makes pieces that are too small when the word is relatively infrequent but is composed of

pieces that are relatively frequent, like finding manage ment as two words, rather than one.

When we put it that way, the problem is obvious. The word-unigram model of language is simply

way too simple and simplistic for dealing with natural language. Natural language has an enor-

mous amount of structure, at many different levels, and all that structure is on display in samples

of any size from any language. If we expect a model as simple as the word-unigram model to

work, we are going to be as sadly disappointed. We need a model as complex as the reality that

in fact lies behind the data from the natural languages we look at. We need a model that includes

an explicit play for word-internal structure, and an explicit place for word-external structure. We

call the first morphology, and the second syntax.

4.6.5 String edit distance

Goal: find an alignment between two strings which minimizes the “distance” between them. It is

possible to customize the definition of “distance” between two strings, but we will consider the

default case, which is also called the Levenshtein distance.

With two words X and Y of length m and n, we set up an m+1 by n+1 array.

Initialization:

for all i and all j, D(i,0) = i and D(0,j) = j.

for i in (1,m):

for j in (1,n):

Consider three candidates, and choose the one with the smallest value (“argmin”):

D(i-1,j) + 1 (add a letter from X that will not be aligned)

D(i,j-1) + 1 (add a letter from Y that will not be aligned)

if X[i] = Y[j]: (add a letter from X and one from Y that will be aligned)

D(i-1,j-1)

else

D(i-1,j-1) + 2.

Fill in the entire array, and the minimal distance is D(m,n).
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Comparison of strings, both exact and inexact comparison, is an important problem in many

computational problems, and it is often useful to be able to give a number which in some sense

describes how different two strings are. The best known way to do this involves the string edit

distance, which asks essentially the following question. Suppose we set up two strings, S1 and S2,

in parallel. The letters in these strings form a set, and imagine all the ways in which these two

strings could form a bipartite graph over S1 and S2: that is, a graph in which each edge has one

end in S1 and the other in S2—with the further condition that the edges do not cross. A natural

term to describe such a graph is as an alignment between the two strings. Some pairs of letters

are aligned (with the elements of the pair in opposing strings), and any letter not in such a pair

is simply unaligned.

Now the crucial step is this: we want to measure how good or bad any alignment is—and typically,

we measure how bad an alignment is, by providing a measure that gets bigger as fewer pairs of

letters are aligned. We will set up the following condition on the formula we use to measure

such an alignment. We will say that each unaligned element costs a certain amount, u, and each

aligned pair of letters (m,n) costs an amount that is dependent only on what letters m and n are.

In a wide range of cases, the choice is made that if m==n, then that cost is 0, and if m != n, the

cost is 1. But it is certainly reasonable to have more complicated formula. For example, if our

letters are divided into vowels and consonants, then we could establish that the cost of aligning

two different vowels or two different consonants was 0.5, but the cost of aligning a vowel and a

consonant was 1.

We think about our alignment in two different ways, each of which helps the other. The first way

involves a grid:

# p o t a t o

p

a

o

s

#
start

String edit

end

The familiar symbol # is being used here to mark a null string; we use these rows to indicate

the alignment of some letters on one row with nothing at all on the others. Thus the box labeled

“start” has the null alignment of nothing with nothing.
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It is traditional to start the words in the lower left-hand corner and work up and to the right.

Each box (i,j) should be thought of as being the home of an alignment of a substring of S1 and

S2: it is an alignment of S1[1:i] and S2[1:j].

We will build it up, and the upper right box will contain the best alignment for the strings S1 and

S2. What is surprising is that to find the best alignment for box (i,j), we only need to consider

three other boxes: (i-1,j), (i,j-1), and (i-1,j-1). The best alignment for box (i,j) will be a slight

modification of one of those three boxes.

To make things really explicit, we will keep two parallel grids of this sort — one for the alignments,

and a second one for the cost associated with each alignment.

The second way to represent an alignment involves the planar graph we just mentioned:

s o a p

p o t a t o

Now we begin with a simple initialization. The best alignments of the lowest row and the left-

most column are all “trivial,” in the sense that each corresponds to representations with letters

on one row but not the other. Box(2,1) corresponds to a null string on the upper string, and the

string p on the lower string, and for this the best alignment is the only possible alignment: one in

which the t is aligned with nothing. This costs 2 points. [give table of costs].

Box(3,1) corresponds to a null string on the upper string, and the string po on the lower string,

and the only possible alignment is with neither letter aligned to anything; the cost is thus 4 points.

After carrying out the first 10 initializations, we have two grids like this:
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# p o t a t o

p

a

o

s

#
p po pot pota potat potato

soap

soa

so

s

# p o t a t o

p

a

o

s

# 0 2 4 6 8 10 12

8

6

4

2

Now we will fill the chart by rows, proceeding from below to above. For each box (i,j), we

consider only three alignments of it:

(i) the alignment in box (i-1,j), to which we add one letter S1[i] but we do not align it with any

letters in S2;

(ii) the alignment in box (i,j-1), to which we add one letter S2[j] but we do not align it with any

letters in S1; and (iii) the alignment in box (i-1,j-1), to which we add both letters S1[i] and S2[j]

and we align them with each other.

4.6.6 Box(1,1)

For box (1,1), there are three options:
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# p o t a t o

p

a

o

s

#
p po pot pota potat potato

soap

soa

so

s s

p

Fig. 4.1: Box (1,1): best alignment

(i) we take the alignment

{

s

-

}

and add the letter p but without aligning them:

{

s

p

}

, and

this will cost 4 points;

(ii) we take the alignment

{

-

p

}

and add the letter s but without aligning them:

{

s

p

}

, and

this will cost 4 points;

(iii) we take the alignment

{

-

-

}

and add the letters p and s and align them with each other:

{

s

p

}

, and this will cost 2 points.

The third option wins (it costs the least), and so we pick it, and to make it clear which option

won, I am going to put an arrow in the picture.

4.6.7 Box(2,1)

Let’s do this for box (2,1):
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# p o t a t o

p

a

o

s

# 0 2 4 6 8 10 12

8

6

4

2 2

Fig. 4.2: Box (1,1): costs

(i) we take the alignment







s

|

p







in box(1,1) and add the letter o but without aligning it:







s

|

po







, and this will cost 4 points (2 from the alignment on the left in box(1,1), and 2 points

for the new unaligned o);

(ii) we take the alignment

{

-

po

}

and add the letter p but without aligning them:

{

s

po

}

,

and this will cost 6 points (4 from box(2,0) and 2 for the new unanaligned p).

(iii) we take the alignment

{

-

p

}

and add the letters p and s and align them with each other:







s

|

po







, and this will cost 4 points (2 from box (1,0) and 2 for the new aligned pair).

The first and third options receive the same score (they tie), and we have to arbitrarily chose one

of them. We will pick the first. This is an arbitrary choice.

Exactly the same reasoning applies for the next four boxes, going to the right, leaving us as we

see in the figure for Box (6,1).

150 Chapter 4 Words



# p o t a t o

p

a

o

s

#
p po pot pota potat potato

soap

soa

so

s s

p

s

po

Fig. 4.3: Box (2,1): best alignment

# p o t a t o

p

a

o

s

# 0 2 4 6 8 10 12

8

6

4

2 2 4

Fig. 4.4: Box (2,1): costs
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# p o t a t o

p

a

o

s

#
p po pot pota potat potato

soap

soa

so

s s

p

s

po

s

po t

s

po t a

s

po t a t

s

pota to

Fig. 4.5: Box (6,1): best alignment

# p o t a t o

p

a

o

s

# 0 2 4 6 8 10 12

8

6

4

2 2 4 6 8 10 12

Fig. 4.6: Box (6,1): costs
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# p o t a t o

p

a

o

s

#
p po pot pota potat potato

soap

soa

so

s s

p

s

po

s

po t

s

po t a

s

po t a t

s

pota to

s

pota to

so

p

# p o t a t o

p

a

o

s

# 0 2 4 6 8 10 12

8

6

4

2 2 4 6 8 10 12

4

Fig. 4.7: Box (1,2): best alignment and cost

4.6.8 Box (1,2)

Similarly, the analysis for box (1,2) is this; the shift up on the diagonal, aligning the letters p and

o, is the winner.

4.6.9 General condition on diagonal arrows in the Box

Any valid alignment is a set of alignments between letters on opposite rows, and any such align-

ment (i,j) (between S1[i] and S2[j]) corresponds to an arrow pointing diagonally from (i-1,j-1) to

(i,j). The non-crossing condition corresponds to the statement that if there is an arrow pointing

to (i,j), then if m> i and there is an arrow pointing to (m,n), then n > j.
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The string edit distance algorithm constructs arrows pointing into each box entry in the way which

we have seen. Since there is exactly one arrow pointing into each box, it is possible to uniquely

walk back from the end box to the beginning box by going against the sense of the arrows, and

this path represents the optimal, least expensive path from start to end.

4.6.10 How do we know it is optimal?

How do we know the path A constructed by the algorithm is optimal? The short answer is: the

final arbiter of which path is the best is chosen by the box marked end. There is no way that the

algorithm can get its path to be chosen by the end box if there is an alternative path B making its

way to the end whose total cost is less. It is a mistake to think that the algorithm is working its

way from bottom-left to upper-right; what is happening is that multiple paths are being created,

but the final option is made by the end box.

Let us look at the situation for the end box (m,n)—but what we say about the end box will be

repeated for all the other boxes as well. The algorithm picks the best path for arriving at (m,n)

by looking at the cost of the best path to its three neighbors (m-1,n), (m-1,n-1), and (m,n-1) and

incrementing the costs in the relevant ways. If the algorithm can be sure that those three close

neighbors really are aware of the least costly path to them, then (m,n) can be sure that there is

no other path to get to it: because all paths to (m,n) come from one of those three neighbors.

So we are applying an extension of the familar argument by induction, like this. We easily estab-

lish the best path for boxes (0,j) and (i,0) for all values of i and j. And we have just shown that if

we know the best path to (m-1,n) and to (m-1,n-1) and to (m,n-1), then the algorithm will nec-

essarily find the best path to (m,n) by chosing the best of the three possible ways of approaching

(from below, from the left, or on the diagonal).

And that is all that we need to show, given an appropriate 2-dimensional principle of induction.

We want to prove that the cost of the least costly path from start to end is equal to the value

computed by the algorithm as indicated. We’ll call this statement f(i, j) for the subbox stretching

from start up to position (i,j). f(i, j) is trivially true if i=0 or j=0 (that was our initialization

step). And we have already shown that if f(i − 1, j) is true, and f(i, j) is true and f(i, j − 1) is

true, then f(i, j) is true. And those are the conditions that need to hold for the 2-dimensional

principle of induction that allows us to conclude that f(i, j) holds for all i, j for which the strings

are defined.

If you are still not convinced, then you must worry that there is a best-alignment for a box (i,j)

which is not the result of getting there by stepping from (i-1,j) or (i-1,j-1) or (i,j-1). Imagine

there is such a best-alignment, which is actually better than the one we have placed in the chart

at (i,j). Then look at the alignments of the rightmost letters on each string. If the two rightmost

letters are aligned to each other, then remove that pair; if only one of the rightmost letters is

aligned, then remove just it. This slightly reduced alignment corresponds to one of those three

neighboring spots ((i-1,j) or (i-1,j-1) or (i,j-1)). And it cannot be a better alignment than the one
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start

end

start

end

start

end

Fig. 4.8: Two sets of alignments that do not violate crossing and one that does
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that is already there, by the induction assumption. Therefore, there is no better alignment than

the one that can be obtained by arriving at (i,j) from one of the three neighboring boxes.

[Exercise: Show how to reduce the 2-dimensional principle of induction from the regular principle

of induction.]

@ t h e n a m e o f t h e g a m e

@ @:@

t t:t

h h:h

e e:e *:n *:a

r r:m

e e:e *:o

s s:f

m m:t

y y:h *:e

n n:g

a a:a

m m:m

e e:e

@ t h e n a m e o f t h e g a m e

@ 0

t 0

h 0

e 0 2 4

r 4.6

e 4.6 6.6

s 7.2

m 7.8

y 8.4 10.4

n 11.0

a 11.0

m 11.0

e 11.0
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5Morphology: Making a lexicon

5.1 General remarks on morphology

The field of morphology has as its domain the study of internal word structure, and in practice that

has meant the study of three relatively autonomous aspects of natural language, which one can

identify as morphophonology, morphosyntax, and morphological decomposition. To explain what

each covers, we must introduce the notion of morph—a natural, but not entirely uncontroversial

notion. If we consider the written English words jump, jumps, jumped, and jumping, we note that

they all begin with the string jump, and three of them are formed by following jump by s, ed, or

ing. When words can be decomposed directly into such pieces, and when the pieces recur in a

functionally regular way, we call those pieces morphs.

• Morphophonology. It is often the case that two (or more) morphs are similar in form, play

a nearly identical role in the language, and each can be analytically understood as the

realization of a single abstract element—abstract merely in the sense that it characterizes a

particular grammatical function, and abstracts away from one or more changes in spelling

or pronunciation. For example, the regular way in which nouns form a plural in English

is with a suffixal -s, but words ending in s, sh, and ch form their plurals with a suffixal -es.

Both -s and -es are thus morphs in English, and we may consider them as forming a class

which we call a morpheme: s, -es whose grammatical function is to mark plural nouns. The

principles that are involved in determining which morph is used as the correct realization of

a morpheme in any given case is the responsibility of morphophonology. Morphophonology

is, in a real sense, the shared responsibility of the disciplines of phonology and morphology.

• Morphosyntax. Syntax is the domain of language analysis responsible for the analysis of sen-

tence formation, given an account of the words of a language. In the very simplest case, the

syntactic structure of a well-formed sentence could conceivably be described as noun-verb-

noun, where the first noun is the subject and the second the object, but grammar is never

that simple; in reality, the morphs that appear in one word (for example, verbal suffixes)

may also specify information about the subject or the object (for example, the verbal suffix

-s in Sincerity frightens John specifies that the subject of the verb is grammatically singular).

Morphosyntax is the shared responsibility of the disciplines of syntax and morphology.

• Morphological decomposition. While English has many words which contain only a single

morpheme (e.g., while, class, change), it also has many words that are decomposable into

morphs, with one or more suffixes (help-ful, thought-less-ness), one or more prefixes (out-

last, ) or combinations (un-help-ful). But English is rather on the tame side as natural
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languages go; many languages regularly have several affixes in their nouns, adjectives, and

even more often, their verbs. (e.g., Spanish bon-it-a-s).

Three interrelated questions:

• Word segmentation: How can we develop a language-independent algorithm that takes as

input a large sequence of symbols representing letters or phonemes and provides as output

that same sequence with an indication of how the sequence is divided into words?

• How can we develop a language-independent algorithm that takes as input a list of words

and provides as output a segmentation of the words into morphemes, appropriately labeled

as prefix, stem, or suffix—in sum, a morphology of the language that produced the word

list?

• How can we implement our knowledge of morphology in computational systems in order

to improve performance in natural language processing?

General comments here.

Morphological decomposition. Conversion; compounding.

Inflectional and derivational morphology. A useful distinction is generally made between deriva-

tional and inflectional morphology. The distinction falls squarely on whether the phenomenon

one is considering is relevant to morphosyntax or not. If it is relevant, then it is considered

inflectional morphology, and otherwise it is considered derivational morphology.

Users of natural languages (which is to say, all of us) need no persuasion that words are naturally

occurring units. We may quibble as to whether expressions like “of course” should be treated as

one word or two, but there is no disagreement about the notion that sentences can be analytically

broken down into component words.

In all, or virtually all, languages, it is appropriate to analytically break words down into compo-

nent pieces, called morphemes; such an analysis is called a morphology, and is the central subject

of this chapter. Morphologies are motivated by three considerations: (1) the discovery of regu-

larities and redundancies in the lexicon of a language (such as the pattern in walk:walks:walking

:: jump:jumps:jumping); (2) the need to predict the occurrences of words not found in a train-

ing corpus (e.g.); and (3) the usefulness of breaking words into parts in order to achieve better

models for statistical translation and other models particularly sensitive to the meaning of a mes-

sage.(explain).

Thus morphological models offer a level of segmentation that is typically larger than the individ-

ual letter, and typically smaller than the word. For example, the English word unhelpful can be

analyzed as a single word, as a sequence of nine letters, or from a morphological point of view as

a sequence of the prefix un, the stem help, and the suffix ful.
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5.2 Big Picture question

1

Can we build a picture of linguistics in which the goal is to specify a function mapping from the

spaces of corpora × space of grammars such that for a fixed corpus, the optimal value of the

function identifies the grammar that is in some linguistic sense correct? g∗ = arg max −g F (C, g),

where C is a given set of observations (“corpus”), and g ∈ G: how much is gained by restricting

the set G? Such restrictions amount to an assumption about innate knowledge/Univeral Grammar.

An alternative strategy is (following Rissanen) to choose a Universal Turing Machine (UTM), and

assign a probability to a grammar equal to 2−|l(g)|, where |l(g)| is the length of the shortest

implementation of grammar g on this particular UTM. Does it matter that (1) this statement does

not offer any hope that we can recognize the shortest implementation when we see it, or (2) we

have no way to choose among UTMs: how do we determine whether UTM-choice matters, in a

world of finite data and in which limits may not be taken?

2 If we want to tackle the problem of discovering linguistic structure, both phonology and syntax

have the problem that their structure is heavily influenced by the nature of sound and perception

(in the case of phonology) and of meaning and logical structure, in the case of syntax. Morphology

is less influenced by such matters, and it is possible to emphasize both cross-linguistic variation

and formal simplicity. It is a good test case for language-learning from a computational point of

view.

3 The design of an appropriate objective function—explicating what the description length of a

morphology is—is half the project; the other half is designing appropriate and workable discovery

heuristics.

4 The goal is not to provide a morphology of English: it is to develop a language-independent

morphology learner. Standard orthography (when it departs from phonemic representations) has

rules that are similar to (and of the same type, in general) as the rules we find in phonology.
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proud, loud
ly

∅

lord, hard, friend

buddh, special, capital
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Figure 5.3.1 English morphology: morphemes associated with nodes of an FSA
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Figure 5.3.2 French

nouns: chien, lit, homme, femme
s

∅

dirige, sav, suiv

rond, espagnol, grand

ant e

∅

ment

s

∅

adverbs

amic, norm, génér-
ale
ales
al

aux

développ, regroup, exerc

a
aient

ait

ant

and many more

5.3 Morph discovery: breaking words into pieces, and

description length of grammar

book

books

States Edges Labels

number ‘pointer number states encoding ‘pointer edge label

to me’ of states to me’ ptr.

0 0 0 (0,1) 0 1 0 0 book#

1 1 1 (0,1) 0 1 1 1 books#

2 4 2 2 55

sum 65 bits

1g∗ = arg max −g F (C, g), where C is a given set of observations (“corpus”). Classical MDL offers the joint probability
of the data and model as its candidate for F.

2Why morphology?
32 goals: objective function and learning heuristics
4Why conventional orthography? Why not phonemes?5.3 Morph discovery: breaking words into pieces, and description length of grammar 161



book

∅

s

States Edges Labels

number ‘pointer number states encoding ‘pointer edge label

to me’ of states to me’ ptr.

0 0 0 (0,1) 0 10 0 0 book#

1 10 1 (1,2) 10 11 10 10 #

2 11 2 (1,2) 10 11 11 11 s#

5 11 5 5 40

sum 66 bits

book

dog

dogs

books

States Edges Labels

number ‘pointer number states encoding ‘pointer edge label

to me’ of states to me’ ptr.

0 0 0 (0,1) 0 1 00 00 dog#

1 1 1 (0,1) 0 1 01 10 dogs#

2 (0,1) 0 1 10 10 book#

3 (0,1) 0 1 11 11 books#

2 8 8 8 100

sum 126 bits
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Figure 5.3.3 Swahili verbal morphology

ni I

u you

a s/he

tu we

wa they

ji. . . it. . .

li past

ka conseq.

ta fut.

na pres.

me perf.

ni me

ku you

m him

tu us

wa them

ji. . . it. . .

imb

pend

fik

sem

on

l

∅

w

a

book

dog

∅

s

States Edges Labels

number ‘pointer number states encoding ‘pointer edge label

to me’ of states to me’ ptr.

0 0 0 (0,1) 0 10 00 00 dog#

1 10 1 (0,1) 0 10 01 01 book#

2 11 2 (1,2) 10 11 10 10 #

3 (1,2) 10 11 11 11 s#

5 14 8 8 60

sum 95 bits

• How do we choose a morphology (algorithmically)? We want one that endows the data

with structure, but not too much. We want to extract redundancy in the data, but not

spurious redundancy. In short: how do we find the boundary between real and spurious

generalizations regarding word-internal structure?
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Figure 5.3.4 Bit cost of signature-based morphology: one particular way to do it (not the only
way!)

List of stems: ∑

−t ∈ Stems
∑

−i = 1|t|+1 − log p(t − i|t − i − 1)

List of affixes: ∑

−f ∈ Affixes
∑

−i = 1|f |+1 − log p(f − i|f − i − 1)

Signatures:

∑

−σ ∈ Signatures
(∑

−stem t ∈ σ − log p(t) +
∑

−suffix f ∈ σ − log p(f)
)

Figure 5.3.5 Word probability model: w is word, t stem, f suffix

p(word) = pr(σ − W ) ∗ pr(t|σ − w) ∗ p(f |σ),
where word w = stem t + suffix f ; each stem belongs to a single signature.
.

Figure 5.3.6 More generally, an acyclic FSA. Natural identity between words and paths through
the FSA: w ≈ path − w. There are various natural, and not so natural, ways to assign these
distributions.
PFSA (V, E , L), with 4 distributions:
(a) pr − 1( )over E s.t.

∑ −jpr − 1(e − i, j) = 1; (b) pr − 2() over V;
(c) pr − 3() over L (labels, i.e., morphemes), and
(d) pr − 4() over Σ, i.e., the alphabet used for L.
Then p(w) = p(path − w) =

∏ −e ∈ path − wpr − 1(e).;
|FSA| = |V| + |E| + |L| .
|V| =

∑ −v ∈ V|v|, where |v| = −logpr − 2(v) .
|E| =

∑ −e ∈ E|e|, where |e − ij| = |v − i| + |v − j| + |ptr(label − e)|, and |ptr(label − e)| =
−logpr − 3(label − e).
|L| =

∑ −l ∈ L|l|; |l| = − ∑ −ilogpr − 4(l − i).

• The ideal solution would be one in which we could specify a general function LT (“linguistic

theory”)from pairs of grammar and data to the real numbers: G is the set of all grammars,

and D the set of all data. LT (G, D) → Reals with the property that

if LT (g − 1, d) < LT (g − 2, d), then g − 1 is a better grammar than g − 2 for the data

d (whatever “better” means to you—this is just a way of saying that it would be ideal if

we could write an explicit function to the reals which expresses our grammatical theory’s

preferences); here, smaller is better, and we are looking for a minimum.

• Probability allows an elegant and natural solution. We may elect to choose the grammar

which is the most probable, given the data (and the technical term here is maximum likeli-

hood: roughly speaking, probabilities for theories are really likelihoods)

Find g∗ such that g* = arg max −g pr(g|d) = arg max −gpr(d|g)pr(g)
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Figure 5.3.7 MDL optimization

Interpreting this graph: The x-axis and y-axis
both quantities measured in bits. The x-axis
marks how many bits we are allowed to use to
write a grammar to describe the data: the more
bits we are allowed, the better our description
will be, until the point where we are over-fitting
the data. Thus each point along the x-axis
represents a possible grammar-length; but for
any given length l, we care only about the
grammar g that assigns the highest probability
to the data, i.e., the best grammar. The red line
indicates how many bits of data are left
unexplained by the grammar, a quantity which
is equal to -1 * log probability of the data as
assigned by the grammar. The blue line shows
the sum of these two qunantities (which is the
conditional description length of the data). The
black line gives the length of the grammar.

bits

x Capacity (bits)

|g(x)| = length of g(x)

−logpr(d|g(x))

minimum

b

|g| − logpr(d|g(x))

So to use this, we need to

1. specify that our grammars (which generate data) are probabilistic, i.e., every form that

is output is assigned a probability, which sums to 1.0 over the infinite class of outputs;

and part of our test is what the probability that it assigns to the actual data;

2. we need to specify what pr(g) means. It needs to be a function that maps all possible

grammars to reals between 0 and 1, and the (infinite) sum of these probabilities is 1.0.

The most natural way to do this is to require the grammars to be expressed in binary

format, and then take the probability of a particular grammar to be 2−1∗length(g).

If we do this, then we can replace the argmax with an argmin:

Find g∗ such that g* = arg min −g [ length of g - log probability − g of (d) ]

This is the proposal of minimum description length (MDL) analysis.

• An MDL solution thus involves (a) a statement of what possible grammars are, how to

compute their probabilities and the probabilities that each assigns to any set of data) and

(b) a proposal for search: how to we find the best (or nearly the best) grammar g*, given a

set of data?

Bear in mind that we can imagine lots of solutions to problem (b), all associated with the

same solution to (a).
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• Turning this into a linguistic project

Some details first on the MDL model, followed by some time to talk about the search meth-

ods.

We can use the term length (of something) to mean the number of bits = amount of informa-

tion needed to specify it. Except where indicated, the probability distribution(s) involved

are from maximum likelihood models. The length of an FSA is the number of bits needed to

specify it, and it equals the sum of these things:

1. List of morphemes: assigning the phonological cost of establishing a lean class of mor-

phemes. Avoid redundancy; minimize multiple use identical strings. The probability

distribution here is over phonemes (letters).

∑

−t ∈ morphemes
∑

−i = 1|t|+1 − log pr − phono(t − i|t − i − 1)

2. List of nodes v: the cost of morpheme classes

∑

−v ∈ V ertices − log pr(v)

3. List of edges e: the cost of morphological structure: avoid morphological analysis

except where it is helpful.

∑

−e(v − 1, v − 2, m) ∈ Edges − log pr(v − 1) − log pr(v − 2) − log pr(m)

(I leave off the specification of the probabilities on the FSA itself, which is also a cost that is

specified in bits.)

In addition, a word generated by the morphology is the same as a path through the FSA.

Pr(w) = product of the choice probabilities of for w’s path.

So: for a given corpus, Linguistica seeks the FSA for which the description length of

the corpus given the FSA is minimized, which is something that can be done in an entirely

language-independent and unsupervised fashion.
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A B C

walk

jump

∅

s

ed

ing

• English suffixes:

NULL - s - ed - ing - es- er - ’s - e - ly - y - al - ers - in - ic - tion - ation - en - ies - ion - able -

ity - ness - ous - ate - ent - ment - t (burnt) - ism - man - est - ant - ence - ated - ical - ance

- tive - ating - less - d (agreed) - ted - men - a (Americana, formul-a/-ate) - n (blow/blown) -

ful - or - ive - on - ian - age - ial - o (command-o, concert-o) ...

5.4 Linguistica 4 and Linguistica 5

Linguistica 4 and 5 are the two most recent generations of software I have developed with stu-

dents here to identify morphology automatically. The transition from Lxa 4 to 5 is the biggest

transition of any of the changes so far. Let’s consider some of the differences.

1. Lxa 4 is written in a superset of C++ called Qt. It can be compiled to run on Windows, Mac

OS, and Linux.

Lxa 5 is written in Python. The older but more developed version 5.0 runs under Python

2.7; the more recent version 5.1 [?] runs under Python 3.4.

2. GUI? Lxa 4 is heavily GUI-centric, which makes it very easy to use. Jackson Lee has written

a GUI for Lxa 5.1, but it does not cover all aspects of the program yet.

3. Speed and bulk: Lxa 4 is enormous, just in terms of lines of code, and difficult to hold in a

single person’s head. It is not well documented. The code does not make a clean distinction

between the underlying computations and the GUI, due simply to lack of forethought. Lxa

5 Python is quite small, involving 3 python files, none of which is very large.

4. Lxa 4 uses MDL computation to direct the computation in many ways. This makes it neces-

sary to keep up to date a large number of calculations for each object. This is very messy.

Lxa 5 barely uses MDL at all, though it uses robustness as a heuristic, which is a simple

calculation that imitates MDL-style analysis.

5.4 Linguistica 4 and Linguistica 5 167



5. Lxa 4 begins with the assumption that a word may be divided into 2 pieces in only one

way. Its initial heuristic uses a very restricted subcase of the Harris-criterion. This leads to

a frequent inability to deal appropriately with the common cases like NULL-ped-ping-s, as

with skip, and the other parallel cases with consonant doubling. This assumption is deeply

embedded in the architecture, which centers around 4 classes of objects: words, stems,

affixes, and signatures. (In the code, the class of words is derived from the class of stems,

but still.) Each word is associated with a one of each kind of element, with pointers back

and forth among them.

Lxa 5 does not assume that words can be divided in only one way. Its central data structure

is a finite state automaton (FSA) which is not deterministic.

5.4.1 Linguistica 4

5.4.2 Screenshots

English

English
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English
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Spanish
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Spanish
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French
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French

English layers
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Raw data D

Bootstrap heuristic

M = morphology

If C, then stop.
M∗ ⇐ Modify M

DL(M∗,D) < DL(M,D)?

YesNo

M ⇐ M∗

Lxa 4 as a hill-climbing strategist.

5.4.2.1 Typical output

Lxa 4 can output text files as well. Let’s look at the results that it finds as we start with a very

small corpus of 1,000 word (types), and double that input several times.

{\Large First 1,000 words (distinct words) from the Brown Corpus. }

Stem Count

------------

38

Index | Stem | Confidence | Corpus Count | Affix Count | Affixes

------------------------------------------------------------------------------------------

1 elect SF-1 18 2 ed ion

2 department From-sigs-find-stems 11 2 ’s NULL

3 georgia SF-1 8 2 ’s NULL

4 vot SF-1 8 3 e ed ing

5 atlanta SF-1 7 2 ’s NULL

6 mayor SF-1 7 2 ’s NULL

7 mill SF-1 7 1 ion

8 new From-sigs-find-stems 7 2 NULL ly

9 work From-sigs-find-stems 7 2 NULL ed

10 ask From-sigs-find-stems 5 3 NULL ed ing

11 court From-sigs-find-stems 5 2 ’s NULL
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12 daniel SF-1 5 2 ’s NULL

13 operat From-sigs-find-stems 5 3 ed ing ion

14 pass From-sigs-find-stems 5 2 NULL ed

15 recommend SF-1 5 2 NULL ed

16 year From-sigs-find-stems 5 3 ’s NULL ly

17 attend SF-1 4 2 NULL ed

18 berry SF-1 4 2 ’s NULL

19 ordinary SF-1 4 2 ’s NULL

20 term SF-1 4 2 NULL ed

21 caldwell SF-1 3 2 ’s NULL

22 general SF-1 3 2 NULL ly

23 governor SF-1 3 2 ’s NULL

24 like SF-1 3 2 NULL ly

25 offer SF-1 3 2 NULL ed

26 order SF-1 3 2 NULL ly

27 personal SF-1 3 2 NULL ly

28 reject SF-1 3 2 ed ion

29 wife SF-1 3 2 ’s NULL

30 administrat SF-1 2 1 ion

31 allow From-sigs-find-stems 2 2 NULL ed

32 byrd SF-1 2 2 ’s NULL

33 distribut SF-1 2 2 e ion

34 effect SF-1 2 2 NULL ed

35 investigat SF-1 2 2 e ion

36 protect SF-1 2 2 NULL ed

37 unanimous SF-1 2 2 NULL ly

38 consider SF-1 1 1 ing

’s.NULL 12 62

SF1

atlanta berry byrd caldwell court daniel department georgia governor mayor

ordinary wife

NULL.ed 9 34

SF1

allow attend effect offer pass protect recommend term work

NULL.ly 6 21

SF1

general like new order personal unanimous
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ed.ion 2 21

SF1

elect reject

ion 2 9

SF1

administrat mill

e.ed.ing 1 8

Known stems to suffixes

vot

NULL.ed.ing 1 5

Known stems to suffixes

ask

’s.NULL.ly 1 5

From known stem and suffix

year

ed.ing.ion 1 5

From known stem and suffix

operat

e.ion 2 4

SF1

distribut investigat

ing 1 1

SF1

consider

And here is the output from the first 2K words of the Brown Cor-
pus:

Stem Count

------------

460

Index | Stem | Confidence | Corpus Count | Affix Count | Affixes
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------------------------------------------------------------------------------------------

1 state SF-1 43 3 NULL ment s

2 year From-sigs-find-stems 34 4 ’s NULL ly s

3 school SF-1 33 4 ’s NULL ing s

4 will From-sigs-find-stems 33 2 NULL ing

5 bill SF-1 31 4 ’s NULL ion s

6 not From-sigs-find-stems 27 2 NULL ed

7 hous From-sigs-find-stems 22 2 e ing

8 elect SF-1 21 2 ed ion

9 million SF-1 21 2 NULL s

10 plan From-sigs-find-stems 20 2 NULL s

11 president SF-1 20 2 ’s NULL

12 election SF-1 18 2 NULL s

13 one From-sigs-find-stems 18 2 NULL s

14 pay From-sigs-find-stems 18 3 NULL ing ment

15 case SF-1 17 2 NULL s

16 committee SF-1 17 2 NULL s

17 other SF-1 17 2 NULL s

18 court From-sigs-find-stems 16 3 ’s NULL s

19 new From-sigs-find-stems 16 2 NULL ly

20 care From-sigs-find-stems 15 2 NULL er

21 cost SF-1 14 3 NULL ly s

22 day From-sigs-find-stems 14 2 NULL s

23 department From-sigs-find-stems 14 3 ’s NULL s

24 grant From-sigs-find-stems 14 3 NULL ed s

25 program SF-1 14 2 NULL s

26 home SF-1 13 2 NULL s

27 vot From-sigs-find-stems 13 3 e ed ing

28 act From-sigs-find-stems 12 4 NULL ing ion s

29 ask From-sigs-find-stems 12 4 NULL ed ing s

30 bond SF-1 12 2 NULL s

31 dollar SF-1 12 2 NULL s

32 fund From-sigs-find-stems 12 2 NULL s

33 vote From-sigs-find-stems 12 2 NULL s

34 work From-sigs-find-stems 12 4 NULL ed er ing

35 general SF-1 11 2 NULL ly

36 hospital SF-1 11 2 NULL s

37 increas SF-1 11 3 e ed ing

38 may From-sigs-find-stems 11 3 NULL er or

39 pass From-sigs-find-stems 11 3 NULL ed ing

40 depart NONE 10 1 ment

41 educat Check-sigs 10 2 ion ional

42 judge SF-1 10 2 NULL s

43 proposal SF-1 10 2 NULL s

44 receiv SF-1 10 3 e ed ing
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45 report SF-1 10 3 NULL ed s

46 unit From-sigs-find-stems 10 2 NULL ed

47 highway SF-1 9 2 NULL s

48 kennedy SF-1 9 2 ’s NULL

49 law From-sigs-find-stems 9 2 NULL s

50 legislator SF-1 9 2 NULL s

51 mak From-sigs-find-stems 9 2 e ing

52 meet SF-1 9 2 NULL ing

53 most SF-1 9 2 NULL ly

54 need From-sigs-find-stems 9 3 NULL ed s

55 person From-sigs-find-stems 9 2 NULL s

56 precinct SF-1 9 2 NULL s

57 rep From-sigs-find-stems 9 2 NULL s

58 teach SF-1 9 3 NULL er ing

59 ward From-sigs-find-stems 9 2 NULL s

60 administrat SF-1 8 2 ion or

61 georgia SF-1 8 2 ’s NULL

62 provid SF-1 8 3 e ed ing

63 recommend SF-1 8 3 NULL ation ed

64 ** tak From-sigs-find-stems 8 2 e ing

65 ** take From-sigs-find-stems 8 2 NULL s

66 time SF-1 8 2 NULL ly

67 again SF-1 7 2 NULL st

68 atlanta From-sigs-find-stems 7 2 ’s NULL

69 candidate SF-1 7 2 NULL s

70 constitut SF-1 7 3 ed ion ional

71 expect NONE 7 1 ed

72 involv SF-1 7 2 ed ing

73 legislature SF-1 7 2 NULL s

74 mayor SF-1 7 2 ’s NULL

75 nurs SF-1 7 2 e ing

76 place From-sigs-find-stems 7 2 NULL s

77 problem SF-1 7 2 NULL s

78 republican SF-1 7 2 NULL s

79 statement SF-1 7 2 NULL s

80 teacher From-sigs-find-stems 7 2 NULL s

81 water SF-1 7 3 NULL ed s

82 william SF-1 7 2 NULL s

83 action SF-1 6 2 NULL s

84 aid From-sigs-find-stems 6 2 NULL s

85 another SF-1 6 2 ’s NULL

86 attorney SF-1 6 2 NULL s

87 bank SF-1 6 2 NULL s

88 direct SF-1 6 4 NULL ed ions

89 district SF-1 6 2 NULL s
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90 employ SF-1 6 3 ed er ment

91 govern SF-1 6 2 ment or

92 high From-sigs-find-stems 6 3 NULL er ly

93 lao From-sigs-find-stems 6 2 NULL s

94 like SF-1 6 2 NULL ly

95 mean From-sigs-find-stems 6 2 NULL s

96 meeting SF-1 6 2 NULL s

97 petition SF-1 6 2 NULL s

98 plac From-sigs-find-stems 6 2 e ing

99 propos NONE 6 1 ed

100 secretary SF-1 6 2 ’s NULL

101 system SF-1 6 2 NULL s

102 approv NONE 5 1 ed

103 attend From-sigs-find-stems 5 3 NULL ed ing

104 call NONE 5 1 ed

105 children SF-1 5 2 ’s NULL

106 cotten SF-1 5 2 ’s NULL

107 daniel SF-1 5 2 ’s NULL

108 doctor SF-1 5 2 NULL s

109 establish SF-1 5 2 NULL ment

110 force From-sigs-find-stems 5 2 NULL s

111 governor SF-1 5 2 ’s NULL

112 hear From-sigs-find-stems 5 2 NULL ing

113 official SF-1 5 2 NULL s

114 operat From-sigs-find-stems 5 3 ed ing ion

115 order SF-1 5 2 NULL ly

116 poll From-sigs-find-stems 5 2 NULL s

117 receive From-sigs-find-stems 5 2 NULL s

118 recommendation SF-1 5 2 NULL s

119 reduc SF-1 5 3 e ed ing

120 requir SF-1 5 3 e ed ing

121 road SF-1 5 2 NULL s

122 robert SF-1 5 2 NULL s

123 scholarship SF-1 5 2 NULL s

124 senator SF-1 5 2 NULL s

125 service SF-1 5 2 NULL s

126 session SF-1 5 2 NULL s

127 term SF-1 5 2 NULL ed

128 add From-sigs-find-stems 4 2 NULL ed

129 addit Check-sigs 4 2 ion ional

130 alliance SF-1 4 2 ’s NULL

131 amend SF-1 4 2 ed ment

132 amount SF-1 4 2 NULL s

133 apparent SF-1 4 2 NULL ly

134 back From-sigs-find-stems 4 2 NULL ed

5.4 Linguistica 4 and Linguistica 5 179



135 berry SF-1 4 2 ’s NULL

136 boost SF-1 4 3 NULL ing s

137 build SF-1 4 2 NULL ing

138 charg NONE 4 1 ed

139 enforc SF-1 4 3 e ed ing

140 except SF-1 4 2 NULL ion

141 firm From-sigs-find-stems 4 3 NULL ly s

142 hearing SF-1 4 2 NULL s

143 hour From-sigs-find-stems 4 2 NULL s

144 investigat SF-1 4 2 e ion

145 large SF-1 4 2 NULL st

146 legislat From-sigs-find-stems 4 2 ion or

147 list NONE 4 1 ed

148 obtain SF-1 4 2 NULL ed

149 ordinary SF-1 4 2 ’s NULL

150 personal SF-1 4 2 NULL ly

[snip]

455 unchang NONE 1 1 ed

456 view NONE 1 1 ed

457 validat NONE 1 1 ed

458 want NONE 1 1 ed

459 writ NONE 1 1 ing

460 whipp NONE 1 1 ed

Signature Count

---------------

46

Signature Stem Count Corpus Count

--------------------------------------

Remark

------

Stems

-----

NULL.s 108 634

SF1

action administrator affair aid american amount appointment area attack attorney

bank believe benefit bond candidate case change committee communist day

demand dissent district doctor dollar election element event face fee

force fund gift government hearing highway hold home hospital hour

individual item judge lao law legislator legislature line matter mean
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meeting method million office official one oppose other outlay part

permit person petition place plan poll portion precinct price principal

problem procedure program project proposal receive recommendation rep republican requirement

right road robert rule saving say scholarship scholastic senator service

session setback site spring statement stay step student system take

teacher texan trouble vote ward week william worker

’s.NULL 19 107

SF1

alliance another atlanta berry byrd caldwell children cotten daniel formby

georgia governor kennedy master mayor ordinary president secretary wife

NULL.ed 21 92

SF1

accept add back cover dismiss effect enact end insist interest

nam not obtain offer protect return sound sponsor succeed term

unit

NULL.ly 19 90

SF1

absolute apparent effective final general immediate like main mental most

new order personal previous repeated reported strong time unanimous

e.ed.ing 12 73

Known-stems-to-suffixes

enforc enlarg fac increas liv provid receiv reduc requir rul

serv vot

e.ing 14 72

SF1

authoriz com discharg eliminat handl hous improv licens mak nurs

plac pric ris tak

NULL.ing 11 68

SF1

build enter follow hear lack meet read regard visit will

word

NULL.ed.s 5 43

SF1

grant need report subject water

NULL.ment.s 1 43
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SF1

state

’s.NULL.ly.s 1 34

From-known-stem-and-suffix

year

’s.NULL.ing.s 1 33

SF1

school

’s.NULL.ion.s 1 31

SF1

bill

’s.NULL.s 2 30

From-known-stem-and-suffix

court department

ed.ion 3 26

SF1

elect reject revis

NULL.er 5 24

SF1

care few frank off old

ment 11 23

SF1

adjourn advise attach depart develop disappoint ele encourage manage prepay

settle

NULL.ed.ing 4 22

SF1

allow attend learn pass

NULL.ly.s 3 21

SF1

cost firm relative

NULL.ing.ment 1 18

From-known-stem-and-suffix

pay

ed.ing 6 18
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SF1

admitt extend indicat involv permitt warn

NULL.ed.ing.s 2 16

SF1

ask question

NULL.ment 4 16

SF1

achieve establish require retire

ion.ional 2 14

Check-sigs

addit educat

ion.or 3 14

SF1

administrat legislat prosecut

NULL.ed.er.ing 1 12

From-known-stem-and-suffix

work

NULL.ing.ion.s 1 12

From-known-stem-and-suffix

act

e.ion 4 12

SF1

associat distribut investigat violat

NULL.er.or 1 11

Known-stems-to-suffixes

may

NULL.st 2 11

SF1

again large

NULL.ion 3 10

SF1

except port prevent

NULL.er.ing 1 9

From-known-stem-and-suffix
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teach

NULL.ation.ed 1 8

SF1

recommend

NULL.ing.s 2 7

SF1

boost request

ed.ion.ional 1 7

Check-sigs

constitut

ed.ment 2 7

SF1

amend appoint

NULL.ed.ions.or 1 6

SF1

direct

NULL.er.ly 1 6

From-known-stem-and-suffix

high

ed.er.ment 1 6

Known-stems-to-suffixes

employ

ment.or 1 6

SF1

govern

ation.ed 2 6

SF1

inform resign

ed.ing.ion 1 5

From-known-stem-and-suffix

operat

ed.ions 2 4

SF1

discuss select
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ation.ed.ing 1 3

SF1

consult

ation.e 1 2

SF1

realiz

5.4.2.2 8K words

# Stem Count

# ------------

2404

# Index | Stem | Confidence | Corpus Count | Affix Count | Affixes

# ------------------------------------------------------------------------------------------

1 that From_sigs_find_stems 402 2 ’s NULL

2 was From_sigs_find_stems 391 2 NULL n’t

3 will From_sigs_find_stems 264 2 NULL ing

4 state From_sigs_find_stems 186 5 ’s NULL d ment

5 would SF_1 173 2 NULL n’t

6 year SF_1 158 4 ’s NULL ly s

7 hav From_sigs_find_stems 134 2 e ing

8 not From_sigs_find_stems 130 7 NULL e ed es ing

9 new From_sigs_find_stems 125 4 NULL ly man s

10 fir From_sigs_find_stems 124 6 e ed es ing m

11 had From_sigs_find_stems 123 2 NULL n’t

12 ** sta From_sigs_find_stems 121 3 r te y

13 one From_sigs_find_stems 109 2 NULL s

14 hom Check_sigs 102 3 e er es

15 aft NONE 98 1 er

16 there From_sigs_find_stems 95 3 ’s NULL by

17 ?? cit From_sigs_find_stems 92 5 ation ed es ies

18 other SF_1 92 3 ’s NULL s

19 city From_sigs_find_stems 84 2 ’s NULL

20 oth NONE 80 1 er

21 school SF_1 79 4 ’s NULL ing s

22 all From_sigs_find_stems 76 4 NULL an ies y

23 bill From_sigs_find_stems 75 5 ’s NULL ion s

24 may From_sigs_find_stems 74 4 NULL er or s

25 work From_sigs_find_stems 74 7 NULL able ed er
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26 day From_sigs_find_stems 72 3 ’s NULL s

27 play From_sigs_find_stems 71 7 NULL able ed

28 president SF_1 71 3 ’s NULL ial

29 again SF_1 70 2 NULL st

30 over From_sigs_find_stems 70 2 NULL ly

31 game From_sigs_find_stems 68 3 ’s NULL s

32 hous From_sigs_find_stems 66 4 e ed es ing

33 man From_sigs_find_stems 66 5 ’s NULL or ville

34 nation SF_1 66 4 ’s NULL al s

35 some From_sigs_find_stems 65 2 NULL time

36 tim From_sigs_find_stems 64 6 NULL e ed es

37 count From_sigs_find_stems 63 4 NULL ies s y

38 part From_sigs_find_stems 63 4 NULL ies s y

39 unit From_sigs_find_stems 61 5 NULL e ed s y

40 member SF_1 60 2 NULL s

41 week SF_1 60 3 ’s NULL s

42 govern SF_1 59 4 ing ment or s

43 administrat From_sigs_find_stems 57 3 ion ive or

44 night SF_1 57 4 ’s NULL ly s

45 polic From_sigs_find_stems 56 3 e ies y

46 high SF_1 55 4 NULL er ly way

47 plan From_sigs_find_stems 55 5 NULL e es s t

48 administration SF_1 53 2 ’s NULL

49 committee SF_1 53 2 NULL s

50 house From_sigs_find_stems 52 2 ’s NULL

51 meet From_sigs_find_stems 50 3 NULL ing s

52 miss From_sigs_find_stems 50 5 NULL ed es ing

53 car From_sigs_find_stems 49 6 ’s NULL e r s

54 cent SF_1 49 2 NULL er

55 county From_sigs_find_stems 49 2 ’s NULL

56 off From_sigs_find_stems 49 3 NULL er ers

57 program SF_1 49 2 NULL s

58 board SF_1 48 5 ’s NULL ed ing

59 call From_sigs_find_stems 47 5 NULL an ed ing

60 club From_sigs_find_stems 47 3 ’s NULL s

61 national SF_1 47 3 NULL ism ly

62 back From_sigs_find_stems 46 3 NULL ed s

63 tax From_sigs_find_stems 46 4 NULL ation es

64 time From_sigs_find_stems 46 2 NULL ly

65 monday SF_1 45 2 ’s NULL

66 report SF_1 45 5 NULL ed ers ing

67 should SF_1 45 3 NULL er n’t

68 ** elec Check_sigs 44 3 t ted tion

69 could From_sigs_find_stems 43 2 NULL n’t

70 government SF_1 43 4 ’s NULL al s
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71 most From_sigs_find_stems 43 2 NULL ly

72 per From_sigs_find_stems 43 3 NULL son t

73 run From_sigs_find_stems 43 2 NULL s

74 start From_sigs_find_stems 43 5 NULL ed er ing

75 did From_sigs_find_stems 42 2 NULL n’t

76 form From_sigs_find_stems 42 6 NULL ally by ed

77 john From_sigs_find_stems 42 3 NULL s son

78 tak From_sigs_find_stems 42 3 e es ing

79 direct SF_1 41 6 NULL ed ing ion

80 even From_sigs_find_stems 41 3 NULL ing t

81 month From_sigs_find_stems 41 4 ’s NULL ly s

82 open From_sigs_find_stems 41 5 NULL ed er ing

83 ?? und NONE 41 1 er

84 court From_sigs_find_stems 40 3 ’s NULL s

85 dur NONE 40 1 ing

86 public From_sigs_find_stems 40 4 NULL ity ized

87 republican From_sigs_find_stems 40 3 NULL ism s

88 com From_sigs_find_stems 39 5 e es ic ing ment

89 council SF_1 39 3 ’s NULL man

90 university From_sigs_find_stems 39 2 ’s NULL

91 american From_sigs_find_stems 38 2 NULL s

92 ask From_sigs_find_stems 38 4 NULL ed ing s

93 election SF_1 38 2 NULL s

94 party From_sigs_find_stems 38 2 ’s NULL

95 pass From_sigs_find_stems 38 4 NULL ed es ing

96 vot From_sigs_find_stems 38 5 e ed er es ing

97 william SF_1 38 2 NULL s

98 democrat From_sigs_find_stems 37 3 NULL ic s

99 general From_sigs_find_stems 37 3 ’s NULL ly

100 jur From_sigs_find_stems 37 4 ies ist ors y

101 mill From_sigs_find_stems 37 4 NULL er ion s

102 sunday SF_1 37 2 ’s NULL

103 case From_sigs_find_stems 36 4 ’s NULL s y

104 expect SF_1 36 4 NULL ations ed

105 get From_sigs_find_stems 36 2 NULL s

106 league SF_1 36 4 ’s NULL r s

107 rul From_sigs_find_stems 36 5 e ed ers es ing

108 universit From_sigs_find_stems 36 2 ies y

109 yesterday SF_1 36 2 ’s NULL

110 ball From_sigs_find_stems 35 2 NULL s

[snip]

2399 wip NONE 1 1 ed

2400 wistful NONE 1 1 ly

2401 wrapp NONE 1 1 ing
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2402 yield NONE 1 1 ing

2403 zeis NONE 1 1 ing

2404 zombi NONE 1 1 es

# Signature Count

# ---------------

350

# Signature Stem Count Corpus Count

# --------------------------------------

# Remark

# ------

# Stems

# -----

NULL.s 398 3518

SF1

achievement acre action administrator adult adviser aerial afternoon agent agreement

allowance alternative amendment american ankle ant apartment appearance application appointment

apprentice area argument arise arrangement assessment athletic attorney aunt average

ball ballot banker bassi bat begin belief benefit bid billiken

bird blow blue bridge brook brother builder building bundle burke

burst butler camera camp candidate cardinal career catcher celebrate center

chain champion championship chance charge choice clerk client cocktail college

commitment committee communist compensation completion conservative consultation contractor contribution

corp corporation correspondent course criminal cuban cut dancer daughter decade

decide decision defendant delegation detective development dick dinner direction director

disappointment disclosure discussion dissent district doctor dodger dog doing dollar

door dot drawing duffer edward effort election employment error estimate

event expense expert expire expressway eye fan farm father feat

female figure fine fit folk food frame freeze fund fur

get gift girl goal god golfer graduate group grover guest

guy harvey hearing heart highway hill hit hitter holiday homer

horse hotel hour human hundred hurler husband idea independent indictment

individual influence inning inspection instance institution intention interview investigation invitation

island issue item jail job junior justice kid knight kroger

lao laotian law lawyer leaguer lefthander legislator legislature level liberal

lie lighter loan longhorn lot loyalist machine maid major matter

meeting member mile million minute misunderstanding model moral mortgage motel

motion motorist movie mustang narcotic nerve neusteter neutralist newspaper obligation
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observer obstacle offense officer official one operation opinion oppose oriole

our outlay pain paper path peddler pedestrian pension people performance

permit petition phone pirate pledge poll pop porter portion position

precinct prince princes privilege problem procedure professional professor profit program

project proposal quarterback queen race radio rain rate reactor rebel

recipient recommendation red reform relieve representation representative requirement response restaurant

retirement revenue revision rhode ribbon rifle road robert role rookie

rose rostagno run saving scholarship selection senator service session set

setback sheet shelter shooting shot shrine signal signature silver single

slipper slogan sometime son song source speaker spectator spirit spot

squad stand standard statement station stock stop store storm street

string stroke structure struggle student sub submarine suggestion supervisor surprise

sweet system talent task taste test texan thank theater thing

third thousand threat ticket touchdown tournament toward towel track traveler

tree trend trial tribunal trim trip triumph trooper trouble truck

truth twin type uncle uniform vehicle violation voter wacker wage

walter ward warden way wendell william writer yankee

’s.NULL 131 1873

SF1

adair administration alliance allison alusik anderson anne another army arnold

association atlanta authority baltimore barnard baylor berger berlin berry blanchard

body boston bride bridegroom britain brocklin broglio brooklyn brooks byrd

caldwell canada carreon castro chicago children christine city conference cotten

country county daniel danny denomination denver eisenhower else flock football

formby friday fuhrmann gannon gardner gee georgia gerosa gladden gordon

governor hall hansen house howsam hyde jenkins jersey kennedy kowalski

kunkel latter lonsdale lowe mantle marr maryland mc*connell meyner mickey

mills milwaukee mississippi molly monday navy nixon nobody nugent ordinary

organization palmer party phouma player portland railroad rayburn russell russia

ruth saturday secretary shaw she shea skipjack smith spahn stengel

stram sunday tech that throneberry thursday tomorrow tonight tuttle university

wagner wednesday weinstein wert wife willie woman women world yesterday

york

NULL.n’t 6 788

SF1

could did does had was would

’s.NULL.s 24 654

SF1

baseball chapter club commissioner controller court day department dresbach fall

force game geraghty leader mother other panel physician season shop
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sister team union week

NULL.ly 58 526

SF1

absolute annual app apparent bad belated certain complete constant current

definite different entire equal exact former generous halting honest identical

immediate increasing intellectual like loose love main mental most narrow

over particular poor potential previous private prominent proper quick rapid

real recent repeated reported serious severe sharp short sore successful

sudden sure time ultimate unanimous unlike unusual usual

NULL.ing 41 467

SF1

approach beat boast border brief bring campaign carry clock combat

comfort debut deny draw fly fullback gather heat inn jockey

link load march picket rejoin respond sell send skylark staff

strengthen study supply switch thrill trust try undergo understand vacation

will

NULL.ed.s 40 397

SF1

account amount appeal arrest attempt back book bound check comment

concern condition defeat demand detail draft explain fear grant happen

insist intend mail mark mention merit plead rank repair result

seat seem sponsor stay subject succeed survey term want water

NULL.ed.ing.s 18 321

SF1

add ask assault attack award claim cover end help kick

look point question record talk total train word

e.ed.es.ing 14 316

Known_stems_to_suffixes

believ chang doubl emphasiz handl hous includ increas liv plac

promis provid receiv schedul

NULL.ing.s 19 279

SF1

bond boost break crowd feel guard keep know meet neighbor

plow request ring room say spend sport think throw

’s.NULL.ly.s 3 256
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SF1

month night year

e.ed 48 245

Check_sigs

advanc arous assur balanc celebrat challeng charg collaps combin damag

decid declin devot divorc estimat experienc expir fet forc hop

locat necessitat oppos pledg prais privileg prov recogniz releas reliev

reviv rout scrimmag shap singl slat slic solv squeez subdu

surpris telephon terminat tripl voic wag wav welcom

NULL.er 19 241

SF1

best bunt cent command fast few frank lay long must

nev old outfield palm prop roll roof tough young

ies.y 27 235

SF1

academ activit agenc authorit bod charit communit compan countr deput

dut famil lad majorit propert qualit safet societ suppl tall

territor testif traged universit utilit vacanc victor

NULL.ed 49 233

SF1

absorb acclaim accomplish affect avoid belt black block cloud coast

contact contend contest delay discredit display down earn enjoy furlough

infest jump knock land limit list mount murder mutter outclass

pardon protect push register rest restrain retain reveal romp rumor

smash smooth sound support suspect veil warm well widow

[snip...followed by these minimal cases at the very bottom:]

ations.ing.s 1 3

From_known_stem_and_suffix

confront

ations.er.ing 1 3

From_known_stem_and_suffix

observ

ary.ers 1 3

SF1

custom
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ern.ernal 1 2

Check_sigs

ext

ers.ing 1 2

SF1

manufactur

ent.ing 1 2

SF1

correspond

NULL.ized 1 2

SF1

organ

ation.ent 1 2

SF1

magnific

ance.ing 1 2

SF1

disturb

ment.ors 1 2

SF1

assess

ies 1 1

From_known_stem_and_suffix

repl

0pt47K words

# Signature Count

# ---------------

3139

# Signature Stem Count Corpus Count

# --------------------------------------

# Remark

# ------

192 Chapter 5 Morphology: Making a lexicon



# Stems

# -----

NULL.s 2222 56559

SF1

abbreviation abernathy aberration abolitionist aborigine abortion absence absorption acceleration

accelerometer accolade accommodation accompaniment accompanist accomplice accomplishment accountant

achievement acknowledgment acquisition acrobatic action adagio adaptation additive adherent adhesive

adirondack adjective adjunct adjustment administrator admission admonition advancement advertisement

aesthetic affiliation affirmation affliction afghan african afterward aggie agglutinin aggregation

aggression agitator agreement ailment ainu airfield airplane airport airstrip alabama

albanian alia alibi alignment alkali allegiance alley allocation allotment allowance

alloy allusion almond alpert alsatian alteration amazon ambition ambulance amis

amplifier amulet amusement anabaptist anachronism analogue ancestor andrena andrew anecdote

anglo-*american anglo-*saxon anionic ankle announcement annoyance anode antagonism antagonist antecedent

anterior anthem anthropologist anti-*communist antibiotic anticipation antiquarian antique anyway

apartment apostle appalachian appearance appetite appliance applicant application appointee appointment

apportionment appraisal appreciation apprehension appropriation approximation apron aptitude archangel

arena arhat arianist armament armchair armpit arrangement arrival arrowhead article

articulation artisan arylesterase asian aspect aspencade aspirant aspiration ass’n assailant

assemblage assertion assessment asset assignment assumption assurance athenian attachment attainment

attention attitude attraction audience authentication authorization auto automobile avenue aviator

avocado axe axle aye azalea babe babylonian bachelor backbend background

backward backyard badge bag balkan ballad ballard ballerina ballet ballistic

ballot ballplayer banana bandit banister banshee bantu barbarian bard barnyard

barrack barrel barricade barrier basement basic basket bassi bathroom bathtub

bathyran battalion batten battlefield bauble bawh bayonet bazaar beadle beaker

bean bearden bearing beating beatnik beep beer begin beginning behold

belgian belief bellboy belonging bemoan bentley bequest bereavement beside bespeak

beverage bicep bicycle bidder bifocal billboard billet billiken billing billion

binder biographer biologist biscuit blade bleeding blessing blizzard bloke blouse

blower blueprint boasting boatel boatload bodybuilder boite bombing bonfire bookcase

booking booklet boomerang booth bootlegger borden borough bosom bostonian bottleneck

bough boulder boulevard bouquet bourbon bovine bowl boxcar bracket brake

breakdown breaker breakthrough breakup breakwater breeze brigade briton broadcasting brochure

bronc bronchiole brothel bucket buddhist buena buffoon bulkhead bull’s-eye bum

bumblebee bunkmate bunter bureau burlesque burning bushel butler byproduct cabana

cabinet cadillac cafe cafeteria calculation calendar caliber calibration caliper camel

cameo campground canal cancer candidate canister canoe canyon capacitor capsule

captive carbine cardinal cares carriage carrot carryover cartoonist cartridge carving

cask castle castorbean catalyst caterpillar cathedral catkin catskill ceiling celebration

cellar cellulose centimeter ceramic cereal cetera chairmanship chambermaid championship chandelier

chapel chaplain characterization charting chartist cheek cheekbone cherokee chestnut cheyenne

chicken chiefdom chieftain chimney chip chive chloride choctaw chord chowder
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christopher chromatic cigarette cinder cipher circonscription circumstance citation civilian claimant

clap claret classification classmate classroom cleft cliche cliff climate clip

clique clod closeup clothesline clue clump coating cobblestone cockpit cocktail

coconut coed coefficient coincidence coke collaborator colleague collection collision colman

colored columnist combatant combination combine comedian comic coming commencement commentator

commitment commonplace commonwealth commune communist comparison compartment compatriot compel compensation

competitor compilation complaint completion complication component composite compulsion computer

conception concessionaire conclude conclusion concur confabulation confederation confessional confidence

confinement conformist confrontation confusion congratulation conjunction connection connoisseur

conquest conscience consequence conservative consideration constantino constituent constriction

consultation contention context contingent contraceptive contradiction contribution control convenience

conviction convocation cookie cooperative coping corduroy core corinthian correction correlation

correspondent corridor cosmetic cosmo cossack cottage counselor counterpart coupon courtier

courtyard covenant covering cowbird coyote crackpot cramp creation creator creature

creek creeper crevice crib cricket criticism critter crop crossing crystal

crystallite cuban cubist cuff culprit culver cupboard curd currant curriculum

curry curtis cutter cutting deacon deadline deadlines dealing debt decide

decimal declaration decoration decorator deductible deduction deed deferent deferment deficit

definition degree dejeuner delaware delegation deliberation delimit delinquent delta deltoid

demonstration denial denunciation departure dependent deposition depot depression deprivation depth

derivation descendant description designation desk desolation dessert detector detergent determinant

determination detractor deviation device diagram dialogue diameter diamond diehard difference

dilemma dinosaur dip dipole directive disadvantage disagreement disappointment disaster disbursement

disc discipline disclosure discussion dislocation disposition disruption dissatisfaction dissension

distance distinction distortion distraction distribution district disturbance ditmar divan dividend

doctrine doe doing dolphin domain donation donor dooley doorway dosage

douglas dozen draftee dragon drama dramatic dramatist drawer drawing dressing

drier drinker drip driveway drone drop dropping drought drugstore drum

dud duet duffer dumbbell dupont duration dweller dwelling earning earthquake

easement eatable eating eccentric echelon ecumenist edition effluent egyptian election

electroshock elegance elimination elizabethan elk ellipsoid eluate emanation embodiment emerald

empire employment encyclopedia endearment endeavour ending endowment engagement englander engraving

enlargement enrollment ensemble entail entertainment enthusiasm entrepreneur epidemic episode epithet

eqn equation equilibrium equine equivalent error escapade escutcheon eskimo essence

establishment estate esthetic ether ethicist evade evaluation evasion evil evocation

ex-*president exacerbation exaggeration exaltation examination example excavation excel excellence

exclamation exclude exclusion excursion executor exemption exertion exhibition exit expectation

expedition expenditure expense experimentation explanation explode exploration exposition exposure

extension exterior extractor extrapolation eyeball eyebrow eyelid facet faction failure

fairway falcon falsehood farce farmhouse farmland farnese farrell fascist fastening

fathom favorite feat fed feeding feeling fella fellowship femme fender

fermentation fern ferraro fertilizer fervor festival fiat fiber fighter filament

filbert filibuster filipino filling finalist finder finding fingering firecracker fireplace

fitting five fixture flag flake flannagan flannel flavoring flea fledgling

fleming flight flip floe flop floridian flotilla flyer foal foe
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food footfall foothill footnote footstep foray ford forearm forefinger forehead

foreigner forerunner format formation formulation forum fosterite fragrance franchise franciscan

freeholder freeway freighter french-*canadian friar friendship frieze frog frolic frontier

frustration fugitive funeral furnishing galley gallstone gambit gangster gardenia garment

gassing gateway gathering gaucherie gazette gelding gender generalist generalization generator

genre gentian gentile geologist georgian gershwin get ghazal ghetto ghoul

giant gibe gingham giveaway glacier globe globulin glycol goal going

goitrogen golfer grab gradient gram grandfather grandson grape grapevine gras

grassland graveyard graybeard greek greenhouse greeting grenade grievance grinding grouping

grower growth grub guarantee guerrilla guest guise gunner gym gymnastic

gynecologist gyration gyro haircut halfback halfway hallelujah hallmark hallway halo

ham hamburger hamiltonian handbook handful handgun handicap handkerchief handstand hangar

hangover happening harding hardship harvey haven haystack haze headache heading

headland headquarter headstand hearing hebrew heinze helmet hemorrhage herb heretic

heritage heroic heron herpetologist hessian highland his hitter holding holdup

holiday hollyhock homecoming homemaker homeward homosexual honeybee hoodlum hoof hookup

hoosegow horizon hormone horror hose hostage hound householder hub hugging

huntington hurray hutment hydride hydrocarbon hydrogen hymen hymn idea identification

illumination illustration illustrator imagination imagine imagining imbalance imitation immigrant

implication improvement improvisation impulse inboard incentive incitement inclination include inclusion

incompatible incompetent incumbent indication indicator indictment indoor inducement induction indulgence

inference infestation inflection informant infringement ingredient inhibition injunction injustice

inlet inmate inning innovation inoculation inscription insect insecticide insertion inset

insight insignificance insinuation inspection installation installment instance insulator insurgent

intangible integer integral intendant intensifier interaction interface interferometer interior interlude

intermediate intermission internationalist interpenetrate interpolation interpretation interrelationship

investigator investment investor involution involvement irritation isle israelite italian item

jab jake jar jaw jaycee jean jeffersonian jerebohm jerking jeroboam

jesuit jowl judgement judgment judson juice julep juncture jungle jurist

juror justification katangan kenning kernel keynote kidney kilometer kilowatt kingdom

knee knob kochanek korean kraut laban lagoon lamb lamechian lamentation

landing landmark landslide lane language lantern lao laotian lap lapel

las lashing latitude launching laundering laurel lawn lawsuit leading leaflet

leaving lefthander legion legislator lemma lemon lesson lexicostatistic liaison libertarian

libertine lien lifeboat ligand lilac limitation limousine lindemann lineage liniment

liquidation listing literature lithograph litigant loading lobule location locomotive lodging

logarithm loin longhorn longing longitude loophole lotion loudspeaker loyalist lui

luncheon machinist magistrate magnate magnetism magnitude magnum magpie maguire maiden

mailing maitre makeshift making maladjustment mamma mana manifestation manikin manipulation

mannerism manor manuscript maple marble mardi marketing marking marriage martian

martini masterpiece matisse maverick maximum meadow measurement meat mechanism medal

medici medicine meditation meeting megaton membership memoir menarche mennonite menu

merchant message messenger metabolite metal metaphysical methuselah mexican meyer micelle

micrometer microorganism microwave midst mig migrant milestone millidegree milligram millionaire

milquetoast miniature mink minor minstrel miracle miscalculation misconception misconstruction miscreant
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misfortune misrepresentation mission misunderstanding mixture mme moccasin modification modifier

molecule monkey monograph monomer monosyllable monster mop morphophonemic morsel mortal

mortgage mosaic moslem mosque motel motet motif motivation motorist moulton

mountainside mounting mouthpiece movement movie mug mule multitude museum musical

musing musket muslim mustang muzzle mysticism nap napkin narcotic narrative

nationalism native navel navigator necklace negociant negotiation neighborhood nephew neusteter

newcomer newlywed newsletter newt nickel niece nightingale nikolai nip nitrate

nomia non-*catholic nonconformist normal northerner nostril notebook notion noun nozzle

nuance nude nuf nuisance numeral nut nutrient nymph nymphomaniac o’*dwyer

obedience objector observance obsession obstacle occupant occur occurrence octave odor

offense offering oilseed olympic omission onion onlooker onset onslaught onward

opening operand operator oracle orange oration orchard orchestration ordering ordinance

ore orgasm orientation oriole orthodontic orthophosphate ounce our outboard outbreak

outburst outcast outcome outdoor outfielder outlay outlet outpost outrigger oval

oven overall overcoat overhang overlap overture owen ownership oxygen oyster

packard packet pad paean pagoda pail painting pajama pakistani palazzo

pamphlet panorama panther paperback parable parachute parade parameter parapet parasol

parlor participant particle parting partisan partition passenger pastel pastime pasture

patina pavement pavilion payment peacock peanut pebble pecan pedal pedestrian

peg pegboard pennant peptide percentage perception performance persian personage perspective

persuasion perturbation phase pheasant phi philippine phillip philosopher phonemic phonetic

phonograph phosphate photo photocathode phrasing physicist piano piazza pickoff picnic

pigeon pilgrimage pillow pinnacle pinning pirate pistol piston pitfall plaid

planetoid plantation planting plaque platform platoon platter playback playhouse playmate

playwright plaza pleasure plug pocketbook poem poetic politician politico polybutene

polyester polyether polyisocyanate polymerization polynomial polyphosphate populaire population

positivist possession postcard posture potboiler poultice practitioner pram prank preamble

precedent precept precinct predecessor prediction predisposition prefecture preference prelude premise

premium premonition preoccupation preparation prerogative prescription presence pressure presumption

pretense pretext prevision primate princes principle prisoner probing procedure proceeding

processor proclamation proctor production profile progression projectile projection prolusion promenade

pronouncement proponent proposal proprietorship propulsion prosecutor prostitute protease protein

psychiatrist psychologist pub publication puddle pulley pulling pulpit pulsation punishment

punk pup pupil pursuit purveyor put pyrometer qualification quarterback questionnaire

quintet quota quotation rabbit racketeer radiation radiator railway rambling ramification

rapture rascal rathbone rating ratio rationalization rattlesnake ravine ray reaction

reactor reading reagent realm reappraisal reb rebel rebellion receipt recherche

recipe recipient recital reckoning recognize recollection recommendation recording recrimination

reduction redwood reef reference referral refinement reflection reflector refreshment refrigerator

registration regret regulation rehabilitation rehearsal reimbursement reinforcement rejection relationship

reminiscence remnant rendering rendition rental renunciation reorganization repetition replacement

repression reprisal reproduction repulsion requirement reservation reservoir residence residue resignation

resistance resistor resolution resonance response restaurant restriction resultant retailer retirement

reunion revelation revelling reverberation rheumatic rhode ribbon rican ringing rite

riverbank roadway robertson rodent rodeo roger rogue role rolls-*royce rooftop
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rookie roommate rostagno roundup ruffian rumanian runner runway rupee rutabaga

sabina sable safeguard sailboat salad salon saloon salvo samuel sap

sarcasm satellite satisfaction sausage sauterne saving saying scaffolding scandal scandinavian

scapegoat scenario scenic scholarship schoolboy schoolmate schweitzer scientist scimitar scion

scoreboard scoundrel scraping screening scripture searchlight secant secessionist secretion section

sector sedan seedcoat seeker seismograph selection senior sentinel separation sergeant

sermon servant serving session setback setting settlement shading shaft shareholder

shaving shawl shibboleth shim shipmate shipment shirt shoelace shoestring shooter

shooting shore shoreline shortage shortcut shot shotgun shred shrine shrub

shrug shun shut shutdown sideboard sideline sidewalk siecle sierra signature

signpost silicate silo siren sitting situation skeleton skid skip skit

skull skylight skyscraper slap sleeve slicker slip slitter slogan slug

slum smelt snack snag snowball sociologist socket soiree sojourner solitude

soloist solution solvent sometime somewhere sonata sonnet soothsayer sop sophomore

soprano sorrow source souvenir soybean spacesuit spacing spade spasm specialist

specie specification specimen speck spectacle spectator specter speculation speculator spewing

spire spotlight spouse sputnik squadron squall staccato staircase stairway stalling

stance standard statement statute steak steelmaker steeple steiner stem stepmother

steroid stetson stimulant stimulation stir stockholder stocking stomach stop stopover

stoppage storehouse storyline stove strait strap stratagem straw streetcar striving

stubblefield studio stunt subdivision subjectivist submission subpoena subroutine subsection subspace

substance substrate subsystem subtype suburbanite subversive subway suffering suggestion suicide

suitcase suitor super-*set superlative supermarket superstition supper supplier surcliffe surfactant

surgeon surrealist surrounding survivalist survivor suspension suspicion sweeney sweetheart swelling

swivel syllable synagogue synthetic syrian szold tabernacle tablespoonful tablet taboo

tabulation tackle tag takeoff taking tango tanker tantrum tappet tarpaulin

task tavern teaching teahouse teamster teaspoonful technician technique teen tektite

telegram teletype teller temperature tempo temptation tenement tenor tentacle tenth

terminal terrain terrier testament testimonial testing texan textbook thaxter theater

theatergoer theologian thermocouple thermometer these thicket thigh thing thoroughfare thousandth

throne thruway thug thynne ticket tidbit tide timetable tip tissue

titer titter toe toilet tombstone tong topcoat topping torrent torso

tortoise touchdown touchstone tournament township tracing tractor trademark trance tranquilizer

transaction transducer transient transistor translation transmit transom trap trapdoor trapping

travelogue tray treatment trend trestle trial triangle tribunal tribute trim

trimming trinitarian trinket triplet tripod trooper troopship trough trouser trunk

tulip tumor turbine turkey turning turnout turnpike turret turtle twinge

typewriter tyrant ukrainian umbrella undergraduate underlie undertaking unification unknown upland

uprising upshot upward urethane urging urn usage user utterance vagabond

valuation valve variable variation vase vector vegetable vehicle velour vendor

ventricle veranda verge version vertebrate vessel veterinarian viewpoint village villager

vine vineyard violation violet violinist virtue vision visitation visitor vista

visualize vitamin void volcano voltage volume vowel wacker wagon wallpaper

walnut wandering warden warrior wart wary watching watercolorist waterfall watershed

waterway wavelength wedding weekend wendell westerner westward wherefore whig whim
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whispering whore wicket winning withstand wohaw woodward wop workout workshop

wrap wrestling wring wrist writing yachtel yankee yarn yeast yokel

your zombie

NULL.y 62 29522 ** LOTS OF FUNNY ONES

SF1

abbe alla and astra ** bets blake ** buckle burl ** carne ** carve

conciliator cone connall connell copper crank creamer dever dicke dirt

dishonest donna donnell dusk filth flesh fluff fog grubb handle

hire immodest joss kentuck loft lund lura orthodox pals paunch

photomicrograph pith pose potter prior quyne rall rand regulator scrutin

slipper soma spider stale swank syrup tartar teens thrift tips

tweed velvet

’s.NULL 924 20424

SF1

a*a*u abbas acheson adair adams adenauer admassy administration aeschbacher agamemnon

agriculture ahmad ailey aircraft alex alexander alix allen allison alusik

amadee anderson andrei andy angelo anniston announcer another anthony antoine

anyone apollo arbuckle aristotle arlene armory army arnold artery arthur

askington athlete atlanta attacker auctioneer augusta augustine austin authority b’dikkat

b*b*c balaguer bancroft bang-*jensen banks barber barco bari barnard barton

basil batista baylor beauty beckett beebe beethoven beige benefactor benson

beowulf berger berman bernini berra berry betty blanchard blanche blatz

blonde bob bobbie body bolingbroke bomber bondsman boniface bootle borromini

brace bradley brandon brandt brannon brenner bridegroom bridget britain broadway

brocklin broglio brooklyn brooks bruckner brumidi brush-off bryan buell bultmann

burch burlington burnham burns burton byrd cabot caldwell calhoun california

caltech cambodia canada cane capone cappy carla carmer carreon carwood

casey casino catcher catherine cathy celie chabrier chambre chandler channing

charley charlie charlotte chicago childhood children chiropractor choir chopin christine

chronicle chrysler cicero cimabue city clarke claude clayton clergyman cobb

colcord coleridge colmer colony colorado comedie commissioner communism community company

composer conant concetta congo congressman connecticut conrad consumer controller coroner

costaggini cotten cotter cotton coughlin county couple craig creston crombie

crosson cuba culture cunard cunningham curzon custer czarina daddy dade

dalton dana dandy danny dante darling dartmouth dave davidson davy

de*kalb deegan delphine denny denver deputy designer detroit devey diane

dickey dictionary digby diman django doaty dodge doolin doolittle dostoevsky

doyle drexel driver dronk drummer dufresne dulles dwyer earthmen edison

edythe egotist eichmann eileen eisenhower ekstrohm elaine elec else emerson

emile emma emmett employee en-lai enemy enright erikson ernie estella

eugene everybody everyone everything executioner faber faget family farmer favre

feathertop february felice felix ferguson fiedler fielder fink finney fisherman

flautist fleisher florida florist flotte floyd flynn forbes foreman formby

198 Chapter 5 Morphology: Making a lexicon



fosdick fox france francesca francie francisco franklin frayne fred freddy

freeman frelinghuysen frenchman fritzie fromm fudo fuhrmann gallery galtier game

gannett gannon gardner gargery garibaldi garth gavin gaylor geely georgetown

georgia germany gerosa getz giffen gilborn gladden gladdy glendora glimco

globocnik goat goethe gogol gordon gore gorham gosson grabski gracie

grafin grandma granite granny grant greece gregory greville griffin griffith

grigori groth guardino gulf guthrie hale hammarskjold hammett hampton hamrick

haney hangman hansen harburg hardy harlem harmony harriet harrington harris

harrison harry harvard haumd hausman havisham haydn hearst hector heidegger

heidenstam helion helva hemingway hemisphere henrietta henry herberet herford herman

herry hetman hetty hillman hilprecht hino hirey hirsch hogan hoijer

holden hollywood horace horne houghton housman howard howe howsam hrothgar

huckster hudson hugo hume hunter huxley hyde ike india indiana

industry ingleside inspector institute israel istiqlal italy izaak jackie jacoby

jane jannequin january jed jehovah jenkins jennie jenny jerry jersey

jessica jesus jeweler jim joan joel johnnie johnson jonathan journal-*bulletin

juanita jubal juet kahn kai-shek karipo kate katharine katherine katie

kayabashi keith kemble kennan kennedy keys killpath kipling kirby kirov

kitti kitty knowlton kornbluth koussevitzky kowalski kremlin kruger krutch kunkel

la*guardia larson latter lattimer lauchli lawman layman laymen leavitt leesona

lenin leningrad lenygon leonato lester letch lewis liberty lillian lilly

lincoln linda listener littlepage lizzie lloyd lockheed loesser lolotte longfellow

longshoremen lonsdale lovejoy lowe lowell lublin lucas lucifer lucille lucy

luke lumumba lyford lyricist mac*donald macaulay mack macklin madison madonna

mae maestro maggie magwitch mahler mahzeer maitland majesty mallory malraux

mama manchester manhattan mankind manley manufacturer marcel mare maris marlin

marlowe martha masu matsuo maude maxine maxwell mc*carthy mc*clellan mc*cloy

mc*cone mc*connell mc*kinley mc*pherson means medfield meeker meltzer mendelssohn mercer

meredith mexico meynell meyner miami michelangelo mickey mid- mijbil milhaud

militarist millay miller mills milwaukee minnesota miranda miriam mississippi missouri

mitchell moliere molly mommy mongolia monmouth montero montgomery moore morgan

morgenthau moriarty morse morton moscow mossberg mozart mulligan mundt munich

municipality murderer murphy murray musmanno mussorgsky myra n*c nadine nagrin

nassau nasser nate navy needham nehru newbiggin newport nicolas nixon

nugent o’*banion o’*connor o’*donnell oats observer oersted oldenburg oliver olson

ontario ordinary orlick ortega oso othon oxen oxford pagnol painter

palfrey palmer pam pamela pandora pantheon papa parker parry partlow

party pasadena patchen patrick patrolman patronne paula pauling pawtucket peabody

peale pedersen pendleton penny pentagon perier perrin petitioner pettigrew philadelphia

philip phouma picasso piepsam pietro pike pilate pimen player poetry

poitrine poland policeman policemen pollock pompeii pont pony pope pops

porter portland potemkin powell printer prokofieff providence ptolemy pumblechook quake

quasimodo quebec quiney rabbi rachel racine rameau ramey rangoni rankin

rayburn reavey receptionist rector remarque rembrandt rev rexroth rheinholdt richardson

rider rifleman riflemen ritter riverside robby romeo roofer roulette rourke
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ruger runyon rusk russell salter sanctuary sangallo santa santayana sarah

satan saud saxton schiele schonberg schoolmaster schopenhauer schubert schuman schuyler

scotty seaton secretary seebohm segovia seller semester senate sentry seward

sewer shaefer shafer sharpe shaw shayne shearing shelley sherman shirley

sibylla sidney sihanouk simon simpson singer skipjack skolman skolovsky slater

slocum slope sniper snyder society solomon somebody someone sorrentine sparling

sportsmen sprague springfield stallion stanley steele stengel stephens stevenson stewart

stone storyteller stram stranger stravinsky strindberg sturley suite sukarno sulky

sulzberger susan susie suvorov swadesh sweden symphony syndicate t*r tahse

tailin teacher tech telegrapher tennessee thayer thelma theology thet thomas

thompson thoreau throneberry thurber thursday tilghman tillie today todman tolley

tolstoy tommy tomorrow tonight toscanini trafton trapper treasury trevelyan tribune

truman tucker tuesday tuttle twain u*n u*s u*s*s*r udall undersecretary

underwood university uno varlaam vec*trol verloop vermont vernon victoria vidal

vienna virginia vivian voltaire wagner wally walsh warsaw washington washizu

watson watson-*watt weinstein welch wert wesker wheeler wheelock whipple whirlwind

whitehead whitman whittier williams willie winslow wisconsin wisman wolfe wolff

wolpe women woodbury woodcock woodruff woods worker wright writer wycoff

xavier yale yesterday zachrisson

NULL.ly 607 15941

SF1

absurd abundant accidental according accurate accusing acoustical active actual actuarial

acute adamant additional adequate administrative admiring admitted advantageous adverse advised

affecting affectionate affirmative agile agricultural aimless alarming alleged alternate amazing

ambitious amorphous amused amusing analogous analytical anhydrous annual anxious appalling

apparent appraising appreciative approving approximate arrogant assured astonishing astronomical

attractive aural auspicious austere authoritative axial bare beautiful behavioral belated

belligerent bewildered biblical biological bleak blissful blithe breathless brilliant broken

categorical causal cautious ceaseless ceremonial charming chronological classical clinical collective

comparative compassionate competent competitive comprehensive conceded conclusive concrete concurrent

consanguineous considerate consistent conspicuous constructive consummate contemptuous contented

continuous convenient converse convincing convulsive copious corresponding cortical courageous courteous

covert crucial cultural curious cynical dangerous decent deceptive decided defiant

definite deliberate delicate delicious delightful demanding denominational depressing despairing

determined devastating devoted devout dialectical diffuse diligent dimensional disconcerting discreet

dismal dispassionate disproportionate distal distant distasteful distinctive distracted disturbing

doctrinal dogged dominant doubtful doubting dour dramatical dreadful dreamless dynamical

economical efficacious efficient effortless elaborate electrical elegant eloquent embarrassing eminent

emotional empirical enchanting encouraging endless enduring engaging enormous enterprising envious

epicyclical equidistant erroneous ethical eventual everlasting exasperating exceeding excellent

excessive excited exhausting exhaustive expectant expected expeditious experiential extensive external

exuberant facetious faithful fascinating fearful fearless ferocious fervent feverish financial

fitful flagrant flamboyant flattering fluent focal former fortunate frenzied frightening

frightful frowning fruitless furtive gasping generous gentleman genuine geographical geometrical
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ginger girlish glaring gleeful glib global glorious glum gorgeous governmental

graceful gracious grammatical graphical grateful gratifying gratuitous habitual haggard halting

haphazard harmless harmonious heated hesitant hesitating hideous hilarious historical homogeneous

horizontal horrifying humane humiliating hurried identical illegal imaginative immediate immense

impassive impatient imperious implicit important imprecise improper impudent inadequate inadvertent

incessant incoherent inconspicuous inconvenient increasing indignant indolent industrious infinite

infrequent ingenious inherent insane insidious insolent instantaneous instinctive insufficient intelligent

intense intensive intentional interesting intermittent intimate intricate intriguing intuitive inverse

ironical isothermal jagged jocular joyful joyous jubilant judicious knowing laborious

laughing legitimate leisure lewd linear listless logical loving magical magnificent

malicious marked marvelous masterful mathematical mc*fee mechanical mental merciful merciless

methodical meticulous metrical microscopical militant minimal miraculous mistaken mocking moderate

morose most mountainous mournful moving mute mysterious nearsighted needless negative

nominal noncommittal nondescript notorious numbing numerical oblique obscure occasional ominous

ontological operational optical oral organizational ornate outstanding outward overwhelming painful

painless painstaking paradoxical partial passionate peaceful peculiar perennial perilous peripheral

permanent perpendicular perpetual persistent persuasive pervasive perverse philosophical physiological

pious pitiful pitiless poignant pointed political positive prayerful precarious precise

precocious predominant preferential premature previous private professed profuse progressive prominent

proportionate protective provocative prudential psychical psychological pungent purported purposeful

qualitative quantitative quarter querulous questioning racial rakish random raucous reassuring

rebellious recent recurrent refreshing reluctant repeated reported reputed residential resigned

resolute respectful respective restive reverent rhythmical ridiculous rightful rigorous rollicking

rugged satirical scarce scathing scornful scrupulous seasonal secure sedate seeking

seeming selective senseless serene severe shattering shining shocking shy significant

silent similar simultaneous skeptical skilful sleepless sluggish smiling smoldering snobbish

snug sobbing sociological sodden sole soothing soulful sparse spectacular spectral

speculative spontaneous staggering stark startling statistical stolid strenuous striking structural

studious stunning subconscious subjective subsequent substantial substantive successful successive

sufficient sullen superb supine supposed supreme sure surprising surreptitious suspicious

symbolical symmetrical syntactical tactical tactual tantalizing taunting technological tedious temperate

temporal tempting tenacious tense tentative tenuous terse theoretical thermal thoughtless

threatening tireless transverse tremendous triumphant trusting twirling ultimate unambiguous unanimous

unceasing uncommon unconcerned unconditional unconscious uncritical unerring unexpected unfailing

unhurried unilateral uninterrupted unknowing unlike unobtrusive unofficial unqualified unrestricted

unsmiling unsuccessful unusual unwise unwitting urgent usual vain valiant various

vehement vertical victorious vigorous violent virtual vocational waspish willful wise

wistful woeful wondering wondrous worried wry zealous

’s.NULL.s 199 13466

SF1

actor adolescent afternoon agent airline albright alliance ambassador amendment anaconda

analyst animal area assessor association attorney baseball bastard bedroom beginner

benet blackwell braque bride browning buckskin builder building burke burman

burnside buyer canadian captain caravan carolina carpenter cezanne chapter client
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club collector college colonel communicator concerto conductor conference constable contractor

coolidge corporation cousin cowboy crosby customer cylinder daniel daughter daylight

dealer defendant demon detective dreiser dresbach drunkard duke eagle economist

eddie educator emperor era evening executive fan female football foundation

frankfurter fraud freedom friday furnace gasket generation geraghty goulding gourmet

governor grandmother guy harper historian hitler hood injun instructor ireland

janitor junior justice kaiser khrushchev kid krim kroger lalaurie landlord

larkin lawyer legation legislature let liar librarian lieutenant magazine magician

management mansion mechanic missile mob monday morning mussolini nature network

nightclub novelist opponent orchestra orthodontist owl palace payne physician plaintiff

podger postmaster poussin pride prosecution pullman puppet queen raphael reader

realtor registrant reputation respondent river rooster ruling sandburg saturday science

sculptor shepherd sheriff shop sister sitter skiff sleeper snail sophia

southerner soviet squire student styrene sunday superintendent target taxpayer taylor

teammate textile their therapist tiger tourist transferor tribe trujillo union

valley veteran walter way wednesday whip william yorker youngster

NULL.ed.ing.s 174 11182

SF1

abound add administer affirm afford amount appeal arrest assault attempt

audit await awaken award beckon belong belt bevel blast blend

boast bolt border broaden burrow cancel carpet claw click climb

cluck cluster coil compound concern contact contrast crawl creak crown

curl decay deck discount display drill drown duck endeavor eschew

escort exceed exclaim explain extend fasten filter finger flavor flounder

frown gap gasp gather glow groom happen harrow haunt hoot

hover howl insult interest kick kneel knock lack lean leap

lessen litter loom loosen lurk maintain mention model mold monitor

mortar mount nail neglect number obey overlook patent peel pertain

picket pour proceed proclaim pump purport rasp recall reckon recount

reel regain register reign remain remember represent resort retreat return

reveal revolt reward roar scatter scream seem sheet shield shoulder

shout signal skirt slant smell sneer spell spray squeal stack

stamp stay steer straighten strand strengthen succeed suspect sustain swallow

swarm swell swoop taunt taxi thread threaten thumb tilt trust

unload unlock veer veil vein volunteer vow wail want weaken

whisper wound yelp yield

[big snip]

# Stem Count

# ------------

17260

# Index | Stem | Confidence | Corpus Count | Affix Count | Affixes
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# ------------------------------------------------------------------------------------------

1 ** the From_sigs_find_stems 75026 13 ’s NULL a e es

2 and From_sigs_find_stems 28856 2 NULL y

3 that From_sigs_find_stems 10779 3 ’d ’s NULL

4 ** was From_sigs_find_stems 9852 3 NULL son te

5 ** for From_sigs_find_stems 9718 9 NULL d e est k

6 ** with Check_sigs 7646 7 NULL al er ered

7 ** his From_sigs_find_stems 6994 2 NULL s

8 ** not From_sigs_find_stems 4963 8 NULL ation e ed

9 ** are From_sigs_find_stems 4718 3 NULL a s

10 ** but From_sigs_find_stems 4391 2 NULL ton

11 ?? you From_sigs_find_stems 4329 5 ’d ’s NULL r th

12 hav From_sigs_find_stems 4233 3 e en ing

13 ** her From_sigs_find_stems 3904 11 NULL d e etic

14 one From_sigs_find_stems 3476 5 ’s NULL ness s

15 ** all From_sigs_find_stems 3095 8 NULL a an en ied

16 ** she From_sigs_find_stems 3060 8 ’d ’s NULL a d

17 c Check_sigs 3044 20 NULL a age al

18 there From_sigs_find_stems 2851 5 ’d ’s NULL in

19 their From_sigs_find_stems 2689 3 ’s NULL s

20 thei From_sigs_find_stems 2668 2 NULL r

21 who From_sigs_find_stems 2591 6 ’d ’s NULL a e

22 bee From_sigs_find_stems 2535 7 ’s NULL hive n

23 has From_sigs_find_stems 2447 3 NULL te ty

24 man From_sigs_find_stems 2405 18 ’s NULL a do es

25 mor From_sigs_find_stems 2372 4 NULL al e ton

26 will From_sigs_find_stems 2333 7 NULL a ed ful

27 more From_sigs_find_stems 2245 4 ’s NULL land s

28 out From_sigs_find_stems 2143 7 NULL do er field

29 other From_sigs_find_stems 2119 4 ’s NULL s wise

30 eve From_sigs_find_stems 2104 5 NULL n nt r ry

31 what From_sigs_find_stems 1963 4 ’d ’s NULL man

32 tim From_sigs_find_stems 1953 11 ’s NULL e ed en

33 them From_sigs_find_stems 1853 5 ’s NULL atic e

34 new From_sigs_find_stems 1844 9 NULL er est ly

35 can From_sigs_find_stems 1797 6 NULL al e ine

36 oth NONE 1708 2 er on

37 year From_sigs_find_stems 1690 7 ’s NULL book d

38 some From_sigs_find_stems 1641 3 NULL day time

39 som From_sigs_find_stems 1628 4 a atic e ers

40 fir From_sigs_find_stems 1618 5 NULL e ed ing

41 time From_sigs_find_stems 1610 5 ’s NULL less ly

42 state From_sigs_find_stems 1596 7 ’s NULL less ly

43 these From_sigs_find_stems 1574 2 NULL s

44 like From_sigs_find_stems 1484 6 NULL e ly ness
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45 may From_sigs_find_stems 1422 6 NULL e er o s

46 two From_sigs_find_stems 1415 3 NULL s some

47 any From_sigs_find_stems 1386 4 NULL e time way

48 first SF_1 1362 2 NULL hand

49 lik From_sigs_find_stems 1361 3 e ed ing

50 use From_sigs_find_stems 1338 7 NULL able d ful

51 work From_sigs_find_stems 1311 13 ’s NULL able

52 even From_sigs_find_stems 1306 3 NULL ing ly

53 see Check_sigs 1284 7 NULL d in ing

54 too From_sigs_find_stems 1280 3 NULL k th

55 our From_sigs_find_stems 1279 2 NULL s

56 over From_sigs_find_stems 1269 7 NULL age hand

[huge snip]

17237 wust NONE 1 1 man

17238 wym NONE 1 1 an

17239 wynst NONE 1 1 on

17240 xavi NONE 1 1 er

17241 xen NONE 1 1 on

17242 xylophon NONE 1 1 es

17243 yali NONE 1 1 es

17244 yapp NONE 1 1 ing

17245 yardum NONE 1 1 ian

17246 yedis NONE 1 1 an

17247 ying NONE 1 1 er

17248 yond NONE 1 1 er

17249 yong NONE 1 1 st

17250 yonk NONE 1 1 ers

17251 yoshimoto NONE 1 1 ’s

17252 yucat NONE 1 1 an

17253 zachriss NONE 1 1 on

17254 zamiatin NONE 1 1 ’s

17255 zaporog NONE 1 1 ian

17256 zaroub NONE 1 1 in

17257 zeitge NONE 1 1 ist

17258 zenn NONE 1 1 ist

17259 zin NONE 1 1 man

17260 zomb NONE 1 1 ie

Linguistica 4 outputs a log file with a great deal of information in html.
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5.4.3 Linguistica 5

Linguistica 5 begins by making signatures, but with much more liberty than in Linguistica 4. It

then creates an FSA to hold them all. The FSA is too big to look at in one piece, but we can look

at parts of it.
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Brown Corpus:

--------------------------------------------------------------

Words and their signatures

--------------------------------------------------------------

Word Signatures

--------------------------------------------------------------
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’bout [’NULL-s’]

’bouts [’NULL-s’]

’long [’--NULL’]

’long- [’--NULL’]

’twould ["NULL-n’t"]

’twouldn’t ["NULL-n’t"]

abash [’NULL-ed’]

abashed [’NULL-ed’]

absent [’NULL-ly’]

absent-minded [’NULL-ness’]

absent-mindedness [’NULL-ness’]

absently [’NULL-ly’]

absorbed [’ed-ing’]

absorbing [’ed-ing’]

abuse [’NULL-d’]

abused [’NULL-d’]

accompany- [’--ing’]

accompanying [’--ing’]

accomplish [’NULL-ed-ing’]

accomplished [’NULL-ed-ing’]

accomplishing [’NULL-ed-ing’]

accord [’NULL-ing’]

according [’NULL-ing’]

account [’NULL-able’]

accountable [’NULL-able’]

accused [’ed-ing’]

accusing [’ed-ing’]

achieve [’--NULL’]

achieve- [’--NULL’]

acquire [’NULL-d-ment’]

acquired [’NULL-d-ment’]

acquirement [’NULL-d-ment’]

actual [’NULL-ly’]

actually [’NULL-ly’]

admirable [’able-ation-ed-ers-ing’]

admiration [’able-ation-ed-ers-ing’]

admired [’d-rs’, ’able-ation-ed-ers-ing’]

admirers [’d-rs’, ’able-ation-ed-ers-ing’]

admiring [’able-ation-ed-ers-ing’]

adorn [’NULL-ed’]

adorned [’NULL-ed’]

advance [’NULL-s’]

advances [’NULL-s’]

advantage [’NULL-s’]

advantages [’NULL-s’]
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adventure [’NULL-s’]

adventures [’NULL-s’]

affair [’NULL-s’]

affairs [’NULL-s’]

affected [’ed-ion’]

affection [’ed-ion’]

again [’NULL-st’]

against [’NULL-st’]

aggravate [’NULL-d’]

aggravated [’NULL-d’]

agree [’NULL-able-d’]

agreeable [’NULL-able-d’]

agreed [’NULL-able-d’]

aisle [’NULL-s’]

aisles [’NULL-s’]

alarm [’NULL-ed’]

alarmed [’NULL-ed’]

alley [’NULL-s’]

alleys [’NULL-s’]

allow [’NULL-ance-ed-ing’]

allowance [’NULL-ance-ed-ing’]

allowed [’NULL-ance-ed-ing’]

allowing [’NULL-ance-ed-ing’]

Analysis of each signature (for example:)

=============================================

NULL-ly

abrupt absolute according accurate adequate annual

anxious apparent approximate awful beautiful bitter

blind blunt brief brilliant careful casual

cautious certain chief common comparative conscious

consistent continuous curious definite deliberate desperate

different eager earnest economical effective efficient

emotional enormous entire essential eventual evident

exact exceptional exclusive experimental extensive financial

formal former fortunate frequent fundamental furious

generous genuine graceful gradual historical hopeful

immediate immense impatient important increasing independent

indirect initial instant intense literal local

logical loose mental mutual natural normal

obvious occasional original painful partial particular

peculiar permanent physical pleasant political positive
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practical precise previous principal private profound

prominent prompt proper proportionate proud quick

quiet radical rapid recent regular repeated

reported respective rigid rough seeming serious

severe sharp significant silent simultaneous slight

smooth solemn special spontaneous stiff strict

striking subsequent substantial successful sudden sufficient

superb supposed surprising swift technical thorough

thoughtful tight total traditional tremendous typical

ultimate unconscious unexpected unfortunate unique unlike

unusual usual utter vague vigorous violent

vivid wonderful

-------------------------

Phono Ordering Total

Information in words if unanalyzed: 11610 + 16187 = 27797

Information in words as analyzed: 6110 + 726 = 6836

Average count of top 5 stems: 357

-------------------------

High frequency possible affixes

Number of stems: 158

al weight: 74 count: 37

ous weight: 48 count: 16

l weight: 46 count: 46

ent weight: 45 count: 15

nt weight: 42 count: 21

ate weight: 33 count: 11

us weight: 32 count: 16

t weight: 31 count: 31

cal weight: 30 count: 10

e weight: 29 count: 29

te weight: 26 count: 13

=============================================

5.5 What is the question?

We identify morphemes due to frequency of occurrence: yes, but all of their sub-strings have

at least as high a frequency, so frequency is only a small part of the matter; and due to the

non-informativeness of their end with respect to what follows.
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But those are heuristics: the real answer lies in formulating an FSA (with post-editing) that is

simple, and generates the data.

5.5.1 Gibbs sampling

Word w is analyzed into morphemes {m − i}, indicated M.

M − ct(w): number of morphemes analyzed in word w (4 for board ing house s); this is the size

of M.

The length of morpheme m in symbols is indicated by |m|. The number of occurrences of mor-

pheme m in the whole lexicon is [m].

score = log(M − ct(w)) +
∑

−m ∈ M log(|m|!) + 5 × |m|
[m]

− log p(m)

morpheme random 1 cycle 10 cycles 100 cycles

s 1639 1681 1253 1151

e 996 982 544 429

d 823 800 458 360

t 640 618 355 282

r 655 618 358 257

n 671 637 315 208

a 558 539 300 253

g 545 544 324 240

c 533 522 316 230

l 459 433 264 212

i 494 473 271 202

p 452 431 293 240

ing 235 461 1029 1059

’s 159 180 292 332

er 208 245 306 315

ed 431 532 640 631

- 45 – 102 363

es 241 289 277 262

re 174 211 242 287

ation 33 60 145 190

ness 26 134 154 154

able 27 140 174
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random 1 cycle 10 cycles 100 cycles 200 cycles

board board board board board

board’s board’s board ’s board’s board ’s

boarded boarded board ed board ed board ed

bo ar der bo ar der board er board er board er

boarding boarding boar ding boar ding board ing

boardi nghouses boardi nghouses boar ding houses board ing houses board ing house s

bo ards bo ards board s board s board s

boast boast boast boast boast

boasted boasted boasted boast ed boast ed

bo as tfully bo as tfully boastfully boast fully boast fully

boasting boasting boasti ng boast ing boa sting

bo a stings bo a stings boastings boast ings boast ings

boasts boasts boasts boast s boast s

boat boat boat boat boat

boat-y ard boat-y ard boat-yard boat-year boat-yard

5.5.2 Putting phonology into the lexicon

5.5.3 Putting segmentation structure in the lexicon: morphology

1

5.5.4 Successor Frequency

Zellig Harris 1955

5.6 What works better?

A better heuristic with about the same degree of simplicity is to look at word-final sequences of

letters (if we are looking for suffixes), and evaluate them by multiplying their length times the

number of times they occur. We will refer to this as the string’s robustness. For a typical sample of

written English of 14,000 words, we find the suffix ing occurring 961 times, and since its length

is 3, that gives it a robustness score of 2,883. The second most robust word-final sequence in this

corpus is s, which occurs 2,778 times, and thus has a robustness score of 2,778.
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Figure 5.5.1 Successor frequency

19 9 6 3 1 3 1 1
a c c e p t i n g

able
ing

lerate: accelerate

ented: accented

ident: accident

laim: acclaim

Figure 5.5.2 Successor frequency 2

d

a

e

b debate, debuting

c decade, december, decide

d dedicate, deduce, deduct

e deep

f

SF=18

e defeat, defend, defer

i deficit, deficiency

r defraud

i

o

a

d dead

f deaf

l deal

n dean

t death

SF=5

SF=9
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5.7 adding layers of morphology

An initial morphology of the suffixes of English produces a very simple FSA. [example]

We ask each edge that is associated with a large set of stems to advance a set of candidates of

stem-final suffixes, based on the count and the length of these candidate strings. For the stems

that appear before NULL-ly, we obtain the following FSA:

Let us look at the morphemes associated with some of the edges. Edge 126, in the top left corner,

contains the following labels (stems). The ones in blue are surely correct; the shorter ones, like

eth- or com- are probably incorrect.

Edge number 126 To state: 67

method mag log ecolog ideolog psycholog

chronolog graph geograph philosoph eth com

anatom mechan clin cyn typ numer

categor rhetor histor class mathemat tact

theoret polit uncrit skept vert statist

analyt paradox

These are all analyzed as appearing before the suffix -c, and then -al, and then either followed by

nothing or by ly.

Edge 66 is associated are stems that do not end in -c, but are followed by -al, and then either

followed by nothing or by ly:

Edge number 66 To state: 36 Stem

unequivoc fisc judici unoffici artifici superfici

substanti exponenti quintessenti potenti sequenti dism

phenomen nomin occasion provision congression education

gravitation fraction addition condition uncondition intention

convention exception proportion unconstitution etern intern

cerebr bilater liter sever architectur structur

accident incident coincident increment horizont continu

usu factu contractu perpetu habitu conceptu

How does this get produced? Here is an ordered list of the first 10 morphemes that are pulled

out by this strategy:
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Order: From state: Edge number To state: morpheme

1 20 37 2 er

2 21 39 2 tion

3 22 41 2 ing

4 23 43 5 e

5 24 44 6 e

6 25 46 2 ment

7 26 48 7 s

8 27 49 2 ist

9 28 51 24 at

10 29 53 2 ian

Let’s look at the first morphemes that are specifically pulled out of the stems that precede NULL.s:

Order: From state: Edge number To state: morpheme

1 20 37 2 er

2 21 39 2 tion

3 22 41 2 ing

6 25 46 2 ment

8 27 49 2 ist

10 29 53 2 ian

11 30 55 2 tor

13 32 59 2 on

16 35 65 2 le

22 41 77 2 nce

23 42 79 2 nt

24 43 81 2 te

27 46 87 2 re

29 48 91 2 al

36 55 103 2 ne

37 56 105 2 et

39 58 109 2 ic

41 60 113 2 ship

42 61 115 2 out

44 63 119 2 de

45 64 121 2 ard

47 66 125 2 tive

The first set of stems has pulled off -er as a suffix on 540 words. In the following table, stems in

blue are correct, and stems in green are arguably correct, though the vast majority of them are

of the form noun-verb-er, where the noun is the object of the verb (as in bartender). Some cases

are less regular: a biographer is not someone who biographs, but rather someone who writes

biographies; but analyzing biograph-er seems perfectly reasonable.
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Edge number 66 To state: 36 Stem

scrubb limb climb bomb cucumb plumb

trac ulc danc announc enforc sauc

ringlead cheerlead load grad crusad invad

shredd feed breed raid spid provid

weld homebuild shipbuild guild fold cardhold

stakehold debthold unithold mold bould land

highland island salamand command bystand defend

gend spend contend bartend bind cind

remind grind transpond decod schrod forward

camcord intrud auctione conventione overse waf

coff counteroff lif aquif golf surf

villag teenag pag arbitrag voyag bridg

rodg dagg digg jogg mugg folg

rang strang messeng harbing gunsling ring

wing charg cheeseburg hamburg lug bleach

schoolteach ranch launch crunch dispatch watch

vouch biograph demograph photograph goph philosoph

wash dishwash finish extinguish push math

fanci pacifi amplifi clothi ski chandeli

fli highfli colli copi photocopi barri

couri hoosi dossi fronti courti sneak

break shak lak peacemak pacemak troublemak

dealmak filmmak carmak moneymak tak caretak

hack pack meatpack crack firecrack track

woodpeck traffick kick slick stick knickerbock

block rock suck seek bik hik

strik talk tank think drink bunk

onlook mark casework cowork york hawk

heal gambl assembl recycl peddl toddl

swindl feel jewel muffl juggl smuggl

mail trail fil oil sprinkl install

resell booksell bestsell tell dwell zell

kill painkill drill thrill roll stroll

school stapl sampl wrestl hustl settl

haul rul trawl bowl guzzl dream

fram ibm disclaim tim programm glimm

swimm somm drumm newcom monom astronom

inform perform transform polym clean afrikan

open sweeten fasten listen campaign sign

bargain complain train retain entertain din

berlin airlin jetlin marin bann scann

beginn spinn sinn forerunn parishion pension

practition petition question common soon earn

northern southern eastern western midwestern burn

vintn kindergartn down landown skyscrap beep

peacekeep housekeep gatekeep bookkeep innkeep shopkeep
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Edge number 66 To state: 36 (continued)

minesweep snip junip wip help camp

jump interlop troop paratroop rop handicapp

rapp wrapp shipp clipp flipp stripp

whopp stopp casp jasp bear wear

murder suffer gather cater adulter admir

labor scor explor reinsur lectur adventur

las rais fundrais apprais exercis merchandis

cruis cleans dispens endors pass hairdress

accus trous heat sweat skat float

floodwat backwat street cathet diet telemarket

paramet millimet centimet odomet kilomet thermomet

interpret raft draft freight fight firefight

granddaught stepdaught wait arbit typewrit songwrit

screenwrit sportswrit scriptwrit copywrit recruit smelt

supercent rent dissent point headhunt discount

scoot shoot adapt chapt helicopt start

comfort support transport frankfurt forecast postmast

roast toast disast mobst semest forest

harvest gangst youngst canist pollst hamst

rost dumpst bust dust adjust platt

gett sett hitt transmitt critt sitt

spott cutt gutt putt stutt pollut

telecommut minicomput microcomput supercomput rescu leagu

sav lifesav believ reliev nev waiv

sliv cabdriv solv revolv holdov changeov

hangov rollov mov turnov leftov layov

observ draw review interview skew widow

whistleblow wildflow sunflow follow mow superpow

mix box ballplay pay ratepay pray

moy destroy dry fry blaz freez

stabiliz fertiliz tranquiliz organiz appetiz bulldoz

analyz

The second set of stems is this, based on a suffix -tion:
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Edge number 66 To state: 36 Stem

perturba medica indica syndica specifica modifica

amplifica magnifica clarifica classifica identifica certifica

implica complica applica fabrica loca reloca

disloca provoca depreda consolida liquida recommenda

delega allega obliga interroga denuncia affilia

varia appropria negotia renegotia devia abbrevia

revela installa cancella viola transla specula

miscalcula circula regula simula formula manipula

popula congratula proclama exclama affirma confirma

transforma explana designa resigna combina vaccina

origina machina inclina examina elimina recrimina

denomina termina determina rumina assassina destina

incarna participa preoccupa declara prepara separa

vibra delibera reverbera considera exaggera altera

aspira expira collabora decora perfora explora

aberra arbitra concentra registra demonstra illustra

configura accusa expecta interpreta cita solicita

imita limita consulta planta presenta misrepresenta

connota quota adapta tempta flirta exhorta

manifesta infesta worksta muta reputa amputa

valua evalua devalua insinua equa fluctua

depriva ova renova innova observa reserva

nationaliza rationaliza liberaliza generaliza capitaliza hospitaliza

reorganiza immuniza characteriza authoriza dramatiza privatiza

infrac contrac abstrac distrac attrac defec

imperfec rejec injec projec selec reflec

recollec connec interconnec inspec intersec contradic

predic afflic depic restric evic convic

injunc concoc abduc deduc reduc reproduc

dele comple secre inhibi prohibi exhibi

edi rendi precondi defini admoni deposi

disposi exposi repeti supersti tui deten

absten atten inven lo no po

decep misconcep percep mispercep intercep subscrip

prescrip inscrip redemp exemp assump adop

interrup disrup asser exer por distor

sugges contribu distribu solu resolu substitu

Edge number 22 To state: 13 Stem

describ prescrib surfac outpac embrac balanc distanc experienc silenc sentenc influenc denounc persuad pervad conced
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5.8 Immediate issues: getting the morphology right

proud, loud
ly

∅

lord, hard, friend

buddh, special, capital

dog, boy, girl

ship

ist
fu

l/
le

ss
/i

ca
l

s

∅

cultiv,
calcul ate

jump, walk, love, move

m
en

t,
er

,
io

n
,
in

g
,
al

∅
ed

s

ing
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English morphology: morphemes associated with nodes of an FSA

enjoy
ed
ing
s

ation
inhibit

ion

represent

boy

ment

’s

s

thing
buddha

friend

able

ship

ist

hard ly

er

est

French

nouns: chien, lit, homme, femme
s

∅

dirige, sav, suiv

rond, espagnol, grand

ant e

∅

ment

s

∅

adverbs

amic, norm, génér-
ale
ales
al

aux

développ, regroup, exerc

a
aient

ait

ant

and many more
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5

1. Real versus accidental subcases: When should sub-signatures be subsumed by the “mother”

signature? When are two signatures two samples from the same multinomial distribution?

In some cases, this seems like a question with a clear meaning, as in case (a). Case (b) is

less clear. Case (e) is interestingly different.

2. NULL-s vs NULL.ed.ing.s;

3. NULL-s vs NULL-s-’s

4. NULL-ed-ing-s vs NULL-ed-ing-ment-s

5. NULL-ed-er-ers-ing-s: how do we treat this?

6. NULL-ed-ing-s (vs) NULL-ing-s (e.g., pull-pulling-pulls); similar question arises for all so-

called strong English verbs (this is a linguistically common situation).

7. The role of “post-editing”: phonology and morphophonology. 6

8. final e-deletion in English

9. C-doubling (cut/cutting, hit/hitting; bite/bitten)

10. i/y alternation: beauty-beatiful; fly/flies;

5English: NULL - s - ed - ing - es- er - ’s - e - ly - y - al - ers - in - ic - tion - ation - en - ies - ion - able - ity - ness - ous -
ate - ent - ment - t (burnt) - ism - man - est - ant - ence - ated - ical - ance - tive - ating - less - d (agreed) - ted - men -
a (Americana, formul-a/-ate) - n (blow/blown) - ful - or - ive - on - ian - age - ial - o (command-o, concert-o) ...

6French: s - es - e- er - ent - ant - a - ée - é - és - ie - re - ement - tion - ique - ait - èrent - on - ées - te - ation - is - aient -
al - ité - eur - aire - it - isme - en - age - ion - aux - ier - ale - iste - ien - t - eux - ance - ence - elle - iens - euse - ants -
ienne - sion ...
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A calculation regarding a conjectured “phonological process” that falls half-way between

heuristic and application of our DL-based objective function: Consider a process described

as mapping X → Y/context. 7 Rewrite the data as if that expressed an equivalence: we

“divide” the data by that relation (for simplicity’s sake, we ignore the context). 8 In this

case, the result is a corpus from which all e’s have been deleted. 9What is the impact on the

morphology that is induced from this new data? The lexical items are (of course) simpler

(shorter). But the new morphology is much simpler than before, because signatures now

collapse. NULL.ed.ing.s and e.ed.es.ing both map to NULL.d.ing.s. Each was of roughly the

same order of magnitude; hence the bit cost of a pointer to the new signature is 1 bit less

than that of the previous pointers, and that is a single bit of savings multiplied by thousands

of times in the description length of the new corpus (quite independent of the missing es).

11. Succession of affixes: Stems of the signature NULL-s end in ship, ist, ment, ing. We can

apply the analysis iteratively, re-analyzing all stems (and unanalyzed words), but this is not

an adequate solution.

12. NULL-ed-ing-s vs. t-ted-ts-ting (Faulty MDL assumption?)

13. Clustering when no stem samples all its possible suffixes, but a family of them does: verbs

in Romance languages.

Figure 5.8.1 What we would like to generate

proud, loud ly

∅

lord, hard, friend

buddh, special, capital

dog, boy, girl

ship

ist

fu
l/

le
ss

/i
ca

l

s

∅

cultive, calcul ate

jump, walk, love, move

m
en

t,
er

,
io

n
,
in

g
,
al

∅
ed

s
ing

7e → ∅/ − ed, −ing
8corpus ⇒ corpus/e ≈ ∅.
9creeps is now spelled crps, and creeping is crping.

222 Chapter 5 Morphology: Making a lexicon



Figure 5.8.2 Top signatures: First set

∅-ed-ing-s

∅-’s-s ∅-ed-s ∅-ing-s ∅-ed-ing ed-ing-s

ies.y ∅-ly ∅-’s ∅-s ed.s ∅-ed ∅-ing ing-s ed-ing

Figure 5.8.3 3 Top signatures: inverted

e-ed-ing-es

∅-ed-ing-s

e-ed-s e-ing-s e-ed-ing ed-ing-es

∅-’s-s ∅-ed-s ∅-ing-s ∅-ed-ing ed-ing-s

ies.y ∅-ly e-ed e.s e.ing ∅-’s ∅-s ed.s ∅-ed ∅-ing ing-s ed-ing
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Figure 5.8.4 Stage 4

∅-ed-ing-s

∅-ly-ness ∅-al-s ∅-’s-s ∅-al-s ∅-ed-s ∅-ing-s ∅-ed-ing ed-ing-s

ies.y ly-ness ∅-ly ∅-ness ∅-al ∅-’s ∅-s ed.s ∅-ed ∅-ing ing-s ed-ing

5.9 Swahili

Figure 5.9.1 Simplified Swahili verbal morphology
ni I

u you

a s/he

tu we

wa they

ji. . . it. . .

li past

ka conseq.

ta fut.

na pres.

me perf.

ni me

ku you

m him

tu us

wa them

ji. . . it. . .

imb

pend

fik

sem

on

l

∅

w

a

Typical case where morpheme frequency is more important than a count of the number of letters,

in determining description length. The following is a correct change that this DL computation

gets right:

ak + {a, i} + {stems} → a + {ka, ki} + {stems}

because ak occurs nowhere else, but ka and ki are common. What is important is global, rather

than local, parsimony.

5.9.1 String Edit Distance

5.9.2 Rich morphologies : morphology 2
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6Grammatical distribution

6.1 Week 8: From neighbors to categories

This chapter, which describes work I have done with Wang Xiuli, describes some explorations

of how words of a natural language are located in a high-dimensional space when the distance

between individual pairs of words is based, directly or indirectly, on the number of syntactic

contexts the two words share. From the point of view of the algorithms which we use, the work

is based on methods explored by Niyogi, Belkin, and quite a few others, methods that use graph-

theoretic notions in order to define and determine a manifold of relatively low-dimensionality

that lies reasonably closely to most of a large set of observed data points. From the point of

view of the linguistic question involved, the work is intended to develop a data-driven method

that can be used on virtually any language in order to create a geometrical object which can be

visualized by a human, and which can be used to give a rough account of the syntactic— or, more

specifically, distributional—properties of words.

6.1.1 Thought flow

The train of thought here involves a number of steps, and several independent decisions.

1. We begin with a corpus, and a decision to use information that we can get from it, which is

often called “distributional information”.

2. One way is to define properties by contexts. A context is a specification of the words occur-

ing in a particular relation to the word we care about. For example, we could define the

context “the —” as the context “occurring immediately after the word the.” Then any word

which appears there possesses that property.

3. We can define relational properties, which are possessed by pairs of words (word-types).

For example, we can define the common contexts of two words as the intersection of their

individual contexts.

4. We can measure the linkedness of two words by the size of the common contexts of the two

words. This is symmetrical, of course, and it is heavily influenced by the frequency of each

of the individual words.
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5. We can immediately visualize this linkedness as an undirected weighted graph, in which

each node corresponds to a word, where each edge connecting two nodes (words) corre-

sponds to a non-zero count of the number of contexts shared by the two words. Let’s assume

that we have a convenient way to number our words, so we can talk about “word1, word2, . . . word50,000,”

or “w1, . . .” for short. Let’s suppose that there are 50,000 distinct words in our corpus.

6. Whenever we think about an undirected graph, we also think of a symmetric matrix with

zeros down the major diagonal, with one row and column for each node, and a value mi,j

equal to the edge weight we just discussed. This is called the graph’s adjacency matrix.

The rows and columns of the matrix each correspond to a word, and we’ll use the same

numbering as above (for word w1, etc.).

7. The eigenvectors of a symmetric matrix M are all real, and when they’re all positive, it’s

natural to think of the matrix as defining an ellipsoid. There are two different, but not very

different, ways of visualizing this. You could imagine a sphere S in n-space, the set of points

exactly distance 1 from the origin, and then visualize the image of that sphere under the

effect of the matrix: the set of all points Mv where |v|=1. The other way is more common,

actually, and that is to visualize the set of vectors for which the so-called Rayleigh quotient

is 1. The Rayleigh quotient is the inner product of a vector and its image under the matrix

(divided by the norm of the vector, if you are not willing to restrict yourself to vectors of unit

norm): R(M, v) = (v,Mv)
|v| . It is often discussed in the case of vector spaces over the complex

numbers, and in that case we think about hermitian rather than symmetric matrices: mi,j

must be the complex conjugate of mj,i. These matrices have real eigenvalues.

8. The various axes of these ellipsoids point in the directions of the eigenvectors of the matrix

M.

9. Rather than look at M, however, we typically look at the closely related matrix L (for Lapla-

cian). We define first the diagonal matrix D, for which the (i,i)th element di,i =
∑

j mi,j .

Then the Laplacian is defined as D-M. Hence it is identical to D down the major diagonal,

and its rows and columns all sum to 0 (and it is symmetrical).

10. Since we care about properties of words that are largely indendent of frequency, we are

more interested in one of the normalized forms of the Laplacian. Chung has emphasized

the relevance of the normalized Laplacian L, which is obtained by pre- and post-multiplying

L by D− 1

2 . The major diagonal of the normalized Laplacian is all ‘1’, but the columns and

rows do not sum to zero.

11. It is quite amazing that when we minimize the Rayleigh quotient, we also minimize an

expression that we can interpret as a test for a good embedding of words in Rn that respects

the linkedness of the graph. Suppose we compute the first 10 eigenvectors of normalized

Laplacian (those with the lowest positive eigenvalues). Each of those eigenvectors assigns

a real number to each word; that real number is the coordinate of the eigenvector of the

coordinate corresponding to the word in question. (Got that?)
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12. Consider the eigenvector with the smallest positive eigenvalue. Its coordinates consist of

a real number that can be associated with each of the words wi. They can be thought of

as instructions for placing each word along a real number line. This eigenvector has the

property that it assigns the lowest possible “discrepancy” between the placement of words

on a real line and the linkedness of the same words in the original graph that started this

whole process going. The discrepancy is defined as the sum (over all of the words) of the

product of (vi − vj)2 × mi,j .

13. That lowest eigenvector spans a 1-dimensional space in our original space of 50,000 dimen-

sions. We look now at the orthogonal complement, which leaves us in a space of dimension-

ality 49,999. The next eigenvector (with the next smallest positive eigenvalue) will be the

one that assigns coordinates to the words in a way that minimizes the discrepancy (same

discrepancy as above), in a direction that is (as we have said) orthogonal to the previous

eigenvector. That gives us a second coordinate for each of the 50,000 words.

14. We can continue doing this until we decide we have enough coordinates —10, let’s say. This

gives us an embedding of our vocabulary in R10.

15. Unfortunately, there is no inherent meaning to distance or direction in this space. That is,

given word 1, we can say whether word 2 or word 3 is closer to it, and we can rank the k

closest words to a given word, but measurable closeness in one part of the space does not

naturally transform to closeness in some other part of the space.

16. For this reason, we only use this embedding for one purpose: to allow us to speak of the

k-nearest neighbors to any particular word. And then we construct graphs of this sort, and

look at them with Gephi, and various clustering techniques can be applied to it as well. We

discuss these in sections 6.2 and ??.

6.1.2 Initial similarity measure

Much recent work has been motivated by the relative ease with which a large amount of data

can be comfortably handled computationally, even when the scientist has the prior intuition that

only a small subpart of the data is likely to play an important role in answering the questions

he is interested in. If we take the notion of syntactic part of speech of a word w to be a rough

approximation to a set of categories describing the syntactic distributional properties of w, then

some subset of features such as the following should be useful.

6.1 Week 8: From neighbors to categories 227



Property

W(-1) = wj means the word to the immediately left of w is wj;

W(1) = wj means the word to the immediately right of w is wj;

W(-2) = wj means the word that is two words the of w is wj; etc.

W(-2,-1) = (wj ,wk) means W(-2)=wj and W(-1)=wk.

W(-1,1) = (wj ,wk) means W(-1)=wj and W(1)=wk.

With all of our experiments described below, we have used the three features W(-2,-1), W(-1,1),

and W(1,2). Thus, in a corpus consisting exactly of the first sentence of this paper, the word

explorations would be assigned three features: (describes, some); (some,of); and (of,how).

Let V be the number of distinct word types in the language. Then there are in principle V 2

features of the type W(-2,-1), and also of the type W(-1,1) and W(1,2). But the number of such

features that are actually used is a small subset of the total number.

We define f(wi, wj) as the number of distinct features (using the contextual features just defined)

shared by words wi and wj . It’s natural to think of a graph now in which the nodes are our words,

and the edges are weighted by f(wi, wj). The laplacian of that graph is defined as the matrixM

in which M(i, j) = f(wi, wj) when i 6= j; in the case of the diagonal elements, we define d(i) as
∑

k 6=i M(i, k), and then M(i, i) is defined as −1 × d(i). (In this case, d(i) measures the frequency

of the ith word.)

(We now have an initial similarity measure between words, but this similarity is not normalized

for frequency: high frequency words will be much more similarity to others words that low fre-

quency words will. Even if we normalize for frequency, though, the simplest ways of estimating

similarity of distribution between two words on the basis of this data—using the cosine of the an-

gle subtended by vectors pointing to each of the two words—is not as good as we might hope.)

6.1.3 Normalized laplacian

A number of researchers have explored the idea of taking a large set of data in a space of very high

dimensionality, and finding a subspace of much lower dimensionality which is almost everywhere

fairly close to the data. We’ve been especially influenced by the work of Partha Niyogi and Mikhael

Belkin in the discussion that follows.

In this case, this means finding the eigenvectors of a normalized version of the graph laplacian.

The normalized version of M , which we call N , is defined as follows: for all i, N(i, i) = 1, while

for (i, j), i 6= j, we use the d() function defined above to normalize, and say that N(i, j) =
M(i,j)√
d(i)d(j)

.

We computed the first 11 eigenvectors of this normalized laplacian—those with the lowest eigen-

vectors, and used the 2nd through the 11th to give us coordinates for each word. Each word is
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entreprises
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trouvent

poissons

pour

espagnols
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différence

réalité

femme

sir

progrès

six

animal
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titre

souvent

tension
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l'une
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jérusalem

rencontre
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classe
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l'État

symbole

publique

ordre

comme
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vivent

industries

le

lettres
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dispose

démocratie

vivant

eux

originaire

eut

hommes

industriel

l'aide

tribus

trouve

trouva

élections

front

importante

nationale
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l'union

destinée

rayonnement

tenta

traité

l'acide

motifs

romain

jésus

cause

sauf

réactions

nuit

anglaise

temps

belgique
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qui

printemps

1983

goût

route

david

dernière

qu'au

bibliothèque

fait

celui

permettre

arbres

températures

mai

l'activité

mondiale

bois

anciens

publication
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relations

européen
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fonctions
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constituent

années

riches
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trente
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reproduction

sculpture

modernes
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l'ensemble
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maintenir
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unies

pièce

difficultés
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concerne

étrangères

physique

contact
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mille

mit
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s'installa

l'université
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combat

centre

collaboration

contrôle
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face
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israël

l'École

noire

l'espagne

membres

charles
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passa

européens

connaître

durant
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varie

cuivre
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magnétique

piano

présidence

monuments

qu'elles
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contribua

trouver

directement
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l'atmosphère

circulation
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partie

présente

partir

partis

caoutchouc

Égypte

frontières

variations

national

pouvait

terrain

existe

latin

situées

utilisant

amérique

reprit

dramatique

chemin

parvint

lui

même

rouges

sociaux

proximité

menée

communistes

variétés

certaines

régime

prirent

tiers

centaines
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la

limite

rois
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soviétiques

estimation

réduire

vent

généralement

carrière

ce

rapidement

provinces

méridionale

quantité

cent
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l'opéra

bras
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d'europe

religieuses
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étrangers
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utilisent
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site
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sociales
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parti

représente
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genres

durée

moyen
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personnel

août

position

appelés

épousa

1952

xviesiècle

sources

appelée

paul

armée

danses

politique

janvier

monnaie

l'énergie

née

nos
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haut

ensuite

peintres

données

l'assemblée

ayant
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l'enseignement
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georges

l'inde
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crise
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socialiste
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transport
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est

québec
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avoir

active

mode

terre

journal
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peinture

simples
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théories

usines
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pourtant
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washington

champ

théorie

lune

milieu
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1987

1984
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1982

procédé
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1981

toutes

mourut

1988

1989
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chômage

européennes

connues

but

l'art

volume

construction

humain

eau
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naturelles

établit
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celle

sein

lieux

nouvel

synthèse

l'islam

l'étranger

hautes

économique

aujourd'hui

siège

programmes

fondé

seul

futur

révolution

fois

espèces

membre

qu'on

plutôt
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niveau

là
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noms de villes

passe simple
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adj. de pays

noms

feminins
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noms de pays

des les ses
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Fig. 6.1: 2,000 words French

thus associated with a point in R10. We then select, for each word, the k closest words to it in this

new space. These are the neighbors that we will explore below.
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