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1 Summary

EXene is a multi-threaded X window system toolkit that we have been developing on top of

Concurrent ML[Rep91a, Rep90] (CML). This paper describes a snapshot of eXene’s development, as

presented in two talks at the ML workshop at CMU.

2 CML overview

Both the implementation and the user’s view of eXene rely heavily on the concurrency model

provided by CML1. CML is based on the sequential language SML[MTH90, MT91] and inherits the

following good features of SML: functions as first-class values, strong static typing, polymorphism,

datatypes and pattern matching, lexical scoping, exception handling and a state-of-the-art module

facility. The sequential performance of CML benefits from the quality of the SML/NJ compiler.

In addition CML has the following properties:

� CML provides a high-level model of concurrency with dynamic creation of threads and
typed channels, and rendezvous-style communication. This distributed-memory model fits
well with the mostly applicative style of SML.

� CML is a higher-order concurrent language. Just as SML supports functions as first-class
values, CML supports synchronous operations as first-class values. These values, called
events, provide the tools for building new synchronization abstractions, which are tailored to
the application.

�This work was done while the author was at Cornell University. It was supported, in part, by the NSF and ONR
under NSF grant CCR-85-14862, and by the NSF under NSF grant CCR-89-18233.

1Conversely, the development of CML was strongly motivated by the desire to be able to support user interface
systems comparable to eXene.



� CML provides integrated I/O support. Potentially blocking I/O operations, such as reading
from an input stream, are full-fledged synchronous operations. Low-level support is also
provided, from which distributed communication abstractions can be constructed.

� CML provides automatic reclamation of threads and channels, once they become inaccessible.
This permits a technique of speculative communication, which is not possible in other threads
packages.

� CML uses pre-emptive scheduling. To guarantee interactive responsiveness, a single thread
cannot be allowed to monopolize the processor. Pre-emption insures that a context switch
will occur at regular intervals, which allows “off-the-shelf” code to be incorporated in a
concurrent thread without destroying interactive responsiveness.

� CML is efficient. Thread creation, thread switching and message passing are very efficient
(performance numbers are given in [Rep91a]). Experience with CML has shown that it is a
viable language for implementing usable interactive systems.

� CML is portable. It is written in SML and runs on essentially every system supported by
SML/NJ (currently four different architectures and many different operating systems).

� CML has a formal semantics. In the tradition of the definition of SML[MTH90, MT91],
there is a formal definition of the core primitives of CML (see [Rep91b] and [Rep92]).

To make this more concrete, Figure 1 gives the signature of some of the CML concurrency

operations. CML programs consist of a collection of threads, which communicate via typed

type �a chan

type �a event

val spawn � �unit �� unit� �� thread�id

val channel � unit �� ��a chan

val always � �a �� �a event

val receive � �a chan �� �a event

val transmit � ��a chan 	 �a� �� unit event

val choose � �a event list �� �a event

val guard � �unit �� �a event� �� �a event

val wrap � ��a event 	 ��a �� �b�� �� �b event

val wrapAbort � ��a event 	 �unit �� unit�� �� �a event

val sync � �a event �� �a

val poll � �a event �� �a option

Figure 1: Basic CML Concurrency Operations

channels. Both threads and channels are created dynamically, using the functions spawn and
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channel, respectively. Rather than provide operations for communication, as is done in languages

such as CSP[Hoa78], occam[Bur88] and amber[Car86], CML provides first-class values, called events,

to represent synchronous operations. For example, the functions receive and transmit build

event values to describe channel I/O operations. The function always builds an event value that

supplies an infinite stream of its argument. The function sync is used by threads to actually

synchronize on the operations described by event values. And the operation poll is a non-blocking

form of sync; in a situation in which sync would block, it will return NONE instead of blocking.

There are also event combinators to build more complex synchronous operations:

choose. This constructs an event value that represents the non-deterministic choice of its arguments

(note that this choice is made when sync is applied). A choice may involve multiple commu-

nications (both receive and transmit) on the same channel, but a thread cannot communicate

with itself.

guard. This constructs an event out of an event valued function. When sync is applied, the

function is called first, and the result is used for synchronization.

wrap. This wraps a function around an event value. If the event is chosen in a synchronization,

then the function is applied to the result of the event.

wrapAbort. This associates an action to be taken if an event is not chosen in a synchronization. A

new thread is spawned to execute the action.

The power of this approach is that it allows the user to implement new communication and syn-

chronization abstractions. For example, we have found uses for widely varying abstractions, such

as remote procedure call, multicast channels and buffered channels.

3 An eXene overview

The motivation for eXene comes from the need for an adequate foundation for building interactive

systems. Strong arguments can be made for basing the foundation on a high-level concurrent

system[RG86, GR92]. This allows the programmer to avoid a variety of complications in dealing with

the user interface, especially concerning such aspects as type safety, extensibility, component reuse

and the balance between the user interface and other parts of the program.

EXene is based on the following collection of design points.

� Concurrency. Concurrency is necessary to support multiple interface contexts in a clean
fashion while avoiding a program architecture biased towards the user interface. From a
positive viewpoint, threads provide a useful programming abstraction for structuring software,
comparable to functions in their utility. CML provides the concurrency model for eXene.
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� Applicative. The complexity of user interface systems magnifies the usual problems with
mutable values. EXene hides state wherever possible.

� Widget threads encapsulate state. Since graphical user interfaces consist largely of side
effects, the previous item begs the question of where does the state hide. Following the
stylistic lead of CML, we use threads and channels to encapsulate state. In eXene, as in
other systems[Pik89, Haa90], concurrency and delegation replace the object-oriented approach
adopted by most standard user interface systems.

� Separate event streams. Input naturally divides into three classes: keyboard, mouse and
control. EXene delivers these events as three separate streams, as this makes it is simpler to
handle them in most applications.

� Hierarchical event distribution. Instead of a central distribution of events, they should flow
down the window hierarchy. This allows the programmer to have more control over how
events are processed. Functions can be interposed to create new interactions.

� Limited scope. There are certain aspects of the X window system that eXene does not
try to handle. These include support for writing window managers as well as low-level
color map hooks to support various animation tricks. By avoiding this small collection of
special-purpose functions, eXene can be a much cleaner system.

4 The eXene library

The eXene library is composed of eight modules. Four (Geometry� Font� StdCursor� ICCC)

provide various utility services, handling points, rectangles, fonts, cursors and interclient protocols.

The EXeneBase module provides the fundamental types, such as displays, screens, windows,

pixmaps and color maps, as well as functions for making and releasing a connection to an X server.

The EXeneWin module fleshes out the window functionality, supplying functions for the creation,

deletion and manipulationof windows. EXene provides four types of windows: top-level windows,

whose parent is (essentially) the screen; pop-up top-level windows; subwindows, whose parents

are other eXene windows; and input only subwindows. Graphics operations on drawables2 are

supplied by the Drawing module. Unlike the mutable, heavyweight graphics contexts used in X

to specify drawing characteristics, eXene uses immutable, lightweight pens. This helps maintain

an applicative style and makes the components more modular by removing the programmer’s need

to manage graphics contexts as a scarce resource. Finally, the Interact module provides the

mechanisms for handling events. Components communicate through environments, with output

environments providing the parent component’s view and input environments providing the child’s

view. An environment is basically a tuple of events. One event corresponds to keyboard events,

such as key press and release; another event provides mouse events, such as button down and up,

mouse motion, entering or leaving a window, plus the current mouse state. There are two control

2Drawables include windows and off-screen pixmaps.
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events: one allows the parent to inform the child that it should redraw part of its display or that

its window size has been changed; the other allows the child to request various services, such as

changing its window’s size, from its parent.

Although providing most of the features offered by the X protocol and exposing the underlying

graphics model, eXene provides a qualitatively different feel to the programmer building a user

interface, with many of the rough edges found in standard X libraries and toolkits gone. Much of this

is due to eXene’s reliance on concurrency and the environment connection between components;

aspects of this will be discussed more fully in the following section. Some of the differences arise

from using SML as the base language; features such as garbage collection, datatypes, and the

reliance on immutable values assist the programmer significantly. In addition, eXene provides a

number of small features that ease the programmer’s job by providing a higher-level approach than

Xlib. These features include using lightweight, immutable pens that are not tied to a particular

class of drawables; having redraw events return the entire list of damaged regions; queueing draw

events until the first expose event is received; making the display and screen arguments implicit for

any graphics operation on a drawable; and, providing an efficient mechanism for handling window

repairs related to copying areas in a natural, synchronous fashion. This last feature provides a

particular good example of the value of CML events, and is discussed further in Section 6.

5 The eXene widgets

The base eXene library provides sufficient functionality to construct any user interface. However,

the architecture of the library does not directly support a general framework in which pieces of

the interface can be built by various people at various times and then integrated into a single user

interface. For this, we introduce a widget3 layer on top of the base library. This layer provides the

additional protocols necessary for cooperation among widgets, as well as their reuse and extension.

A widget in eXene is essentially an instance of the following type:

datatype widget�t 
 Widget of �

attrs � unit �� window�attr�t list� �	 attributes 	�

bounds�of � unit �� bounds�t� �	 size data 	�

realize � �

env � in�env�t�

win � window�t�

sz � size�t

 �� unit



The program creates widget values and inserts them into some widget hierarchy, the root of which

3For want of a better term, we borrow the X term for a graphical object composed of a window and its interface
semantics.
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corresponds to a top-level window. In eXene, a parent widget controls the external view and

resources of a child; the child makes requests for services from its parent. For example, the

bounds of and attrs functions allow the widget to specify how big it would like its window to be

and what specific window attributes (e.g., background color, foreground color) it desires. For the

sake of efficiency, a programmer can construct a complete widget hierarchy before having any of it

appear on the screen. During the process of making a widget hierarchy visible, called realization,

a parent widget creates a window and an input/output environment pair for each child, and passes

this information to the child using the child’s realize function. The child uses the window for

display; the input environment provides its only built-in connection to the rest of the widgets.

Thebounds t type mentioned above provides a fairly general mechanismfor a widget to specify

its geometry requirements.

datatype dim�t 
 DIM of �

base � int�

incr � int�

min � int�

nat � int�

max � int option



type bounds�t 
 � x�dim � dim�t� y�dim � dim�t 

The fields in a dim�t value correspond to the following semantics.

� The size in the specified dimension is given by base � d � incr for some value of d subject
to min �� d �� max, where max � NONE corresponds to no upper bound.

� The preferred or natural value for d is given by nat.

The use of bounds t does not preclude the use of more general constraint systems.

In addition to specifying how widgets communicate, a widget system should provide mecha-

nisms by which widgets can be tailored. EXene currently provides four such mechanisms. The

simplest consists of value parameterization, in which the widget is written to adapt to additional

specifications supplied later, such as the font to use or a callback function to invoke. Graphical

composition is another mechanism. The programmer uses the widget hierarchy to construct a new

widget abstraction from the set of available widgets. An example of this would be a labeled slider

widget, in which a slider and label widget are combined, with the slider’s value configured to affect

the value displayed by the label. Many widgets in eXene have been written to conform to the

model-view-controller architecture, in which the control and view of a widget are separated by

a specific protocol. For example, the standard collections of buttons in eXene are nothing more

than combinations of certain views (textual, arrow, toggle switch, check mark, etc.) with certain

control semantics (discrete, continuous, two-state, etc.). Both the views and the controllers are
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available to the programmer, to be used in whatever combinations seem appropriate. Finally, the

widget architecture promotes interposition, in which one widget is wrapped in a function that alters

its behavior. The wrapping function might do nothing more than translate keystrokes, or alter the

desired bounds or window attributes. As an example more indicative of the power of this approach,

a menu can be attached to a widget by wrapping it with a function that responds to mouse presses

on the widget by putting up a pop-up menu.

The current version of eXene provides versions of most of the typical widgets found in other

toolkits. The simple widgets, i.e., those not having children of their own, include scrollbars, sliders,

labels, buttons, lists, canvases, text widgets and menus. For composite widgets, i.e., those that

support the layout of children, eXene provides frames (to add borders), shapes (to constrain a

widget’s bounds) and layouts (for maintaining its children in a two-dimensional layout of non-

overlapping boxes). Particular to eXene is the shell widget, which serves as the root of a widget

hierarchy and provides the connection between the X notion of windows and events, and those of

eXene.

6 The internals of the eXene library

The X window system is a distributed program with the application clients communicating with the

X server process. The core X protocol consists of 211 different messages, divided into 119 request

messages, of which 42 have replies, 33 event messages and 17 error messages. Each request to the

server has an implicit sequence number (i.e., the first message sent is number 1, etc.). Messages

from the server to the client are tagged with the sequence number of the last request processed by

the server; this is used to match replies with requests.

Unlike some non-C language bindings for X, eXene is implemented directly on top of the X pro-

tocol. The only non-ML code involved is the run-time system’s support for socket communication.

This approach of a complete implementation has the advantage of avoiding the C language biases

of Xlib. Furthermore, it provides a demonstration that SML and CML can be used to implement

low-level systems programs without significant loss of performance.

A connection to an X server is called a display. In eXene a display consists of seven threads;

Figure 2 gives the message-passing architecture of these threads. The input and output threads

provide buffering of the communication with the server. The sequencer thread generates sequence

numbers and matches replies with requests. All error messages are logged with the error handler;

in addition, errors on requests that expect a reply are forwarded to the requesting thread. The

sequencer sends X events to the event buffer, which decodes and buffers them. The top-level

window registry is a thread that keeps track of the top-level windows in the application and their

descendants. It manages a stream of events for each top-level window in the application. The
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Figure 2: The display message-passing architecture
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other two display threads manage global resources: the keymap server provides translations from

keycodes to keysyms; the font server keeps track of the open fonts used by the application.

A display has one or more screens, each of which can support different visuals and depths

(e.g., black and white or 8-bit color). Each visual and depth combination of a screen is supported

by two threads; Figure 3 shows the message architecture for these. The draw master is a thread

Display

Request/
Reply

Font
Requests

Draw
Master

GC
Server

Screen

�

�

�

�

�

�

Pixmap
Draw Requests

�

�
GC Requests

Figure 3: The screen message-passing architecture

that encodes and batches drawing requests for a particular visual and depth combination; the draw

masters at the screen level are used for operations on pixmaps (off screen rectangles of pixels). The

GC server handles the mapping of eXene’s immutable pens to X’s mutable graphics contexts4.

Windows are displayed with a particular visual and depth on a screen. Internally, windows are

organized into a tree hierarchy with a top-level window at the root. Figure 4 gives the message-

passing architecture for the top-level window threads. As described above, each top-level window

in an application has a dedicated stream of X events from the display. This stream is monitored by

the top-level window router thread. This thread provides the transition from the X view of events

4It is an unpleasant artifact of X that pixmaps and graphics contexts must be associated with a particular screen, visual
and depth.
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to the eXene view (i.e., a window environment). There is a draw master thread for each window

tree as well.

6.1 Example: CopyArea

An interesting example of the use of CML’s features in eXene is the CopyArea operation, which

can be used to copy a rectangle of pixels from one place on the screen to another. A complication

arises if a portion of the source rectangle is obscured by another window. For example, Figure 5

shows a use of CopyArea to translate a rectangle on the screen; here the cross-hatched region of the

destination corresponds to the obscured region of the source. While some window system maintain
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Figure 5: The CopyArea operation

a backing store (or virtual bitmap) to handle these situations, the standard X policy is to notify the

client that the CopyArea operation was not able to completely fill in the destination 5. This policy

is called damage control, since it is up to the client to repair the damage.

A typical use of CopyArea is in inserting a line of text. In this case the client thread might issue

the following sequence of operations: a CopyArea to create space for the new text, followed by a

ClearArea to erase the old text and lastly a DrawText to insert the new line. The following picture

5Some X servers do support backing store as an option, but applications must be designed to function correctly when
it is not available.
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illustrates these steps:

THIS IS
TEXT ��

CopyArea THIS IS
TEXT
TEXT

��

ClearArea THIS IS

TEXT

��

DrawText THIS IS
SOME
TEXT

It is important that the user of the system see this sequence as a single smooth transition, which has

implications for the implementation of operations using CopyArea.

If CopyArea is treated as a normal X RPC that returns a list of damaged rectangles, then the

user will be subjugated to screen flicker6. To understand the reasons for this, examine Figure 6,

which shows the timing information for the client doing the text scrolling, the thread handling

the buffering of communication with the server (really two threads in eXene), and the X server.

Because the other drawing operations are postponed until an acknowledgement of the copyArea is

Client

�

Buffer

�

X Server

�

�CopyArea

XXXXXXXXXXXXXXXz
															
� CopyAck

�ClearArea

�DrawText
XXXXXXXXXXXXXXXz

�

Display in
transition

�

Figure 6: Synchronous text scrolling

received, the period of time the display is in transition can be quite lengthy.

Because of these performance concerns the X protocol does not use the standard reply mechanism

for CopyArea, but instead uses one of two X events, GraphicsExpose and NoExpose, to notify the

6Practical experience has demonstrated this effect.
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client of the result7. For single-threaded C clients (which make up the vast majority of X clients),

this means that the code using the CopyArea operation must also scan the event stream for the

acknowledgement. In eXene, where we have concurrency and events, we can solve this operation

in a much more elegant way. Our solution is to use an asynchronous RPC, also known as a promise

([LS88]), to support CopyArea calls. EXene provides an event-valued function with the type

val copyArea � arg-type �� rect�t list event

where arg-type is the type of the arguments that specify the actual operation. The event that is

returned is the promise of the results. This function is easily implemented:

fun copyArea arg 
 let

val replyCh 
 channel��

in

spawn �fn �� 
� request �COPY�AREA�reply�ch� arg����

guard �fn �� 
� �

case �poll �receive replyCh��

of �SOME rects� 
� always rects

� NONE 
� �flush��� receive replyCh�

�	 end case 	��

end

where request sends the operation to the buffer thread and flush tells the buffer thread to fluch

any buffered messages to the server. The guard is optimized to first check if the acknowledgement is

already available. The buffer code is more complicated, since it must match the acknowledgements

with outstanding CopyArea requests. The advantage of this approach can be seen by comparing its

timing diagram, given in Figure 7, with Figure 6.

7 Future work

Although quite usable in its current state, eXene is still very much a work in progress. We are

already planning various specific changes, some at the implementation level, others providing

enhancements to the user’s view.

� X11R5. The newest release of the X window system includes support for four significant
new features: standard, device-independent color models; internationalization; font servers
and scalable, machine-independent font representations; and PEX, the X implementation of
the PHIGS standard. Some aspects of these features will be incorporated in future versions
of eXene.

� Cages. The Trestle window system[Nel91] uses the notion of cages to specify mouse motion
events. Essentially, a cage is a region surrounding the cursor position; the system generates an

7Things are a little more complicated, since multiple GraphicsExposeevents can be generated for a single CopyArea
request.
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Figure 7: Asynchronous text scrolling

event when the cursor leaves the cage. This mechanism generalizes the X notions of mouse
motion (a 1 pixel square cage) and window enter and leave events (a cage corresponding
to a window or its screen complement). At present, eXene provides no facility by which a
widget can tell the X server to ignore unwanted mouse motion events, leading to unnecessary
network traffic. It is possible that cages may provide an elegant solution to this problem.

� Direct event routing. The hierarchical routing used in eXene provides the basis for program-
mer’s ability to wrap an old component in a function providing new behavior. Most of the
time, though, events are routed through most paths unchanged. We would like to explore
means of maintaining the semantics of hierarchical routing while providing more efficient
direct routing when possible.

� Shape extension. A fairly standard extension to the X protocol provides support for windows
of non-rectangular shape. We plan to incorporate this extension into eXene.

� Stub generation. Much of the code for marshalling and unmarshalling communication with
the X server is boiler plate code. Because of the many messages and the slight variations
between the classes of messages, producing the boiler plate is an error-prone process. We
would like to be able to generate this code from tables specifying the X protocol.

� Finalization of system resources. In the implementation of eXene, there is a correspondence
between various eXene resources, such as fonts and tiles, and their counterparts in the server.
Although eXene resources can, in general, be automatically reclaimed, this is not possible
with those tied to X resources, as we must guarantee that the X resource is also freed.
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We plan to attach finalization routines to these resources, which will automatically free the
corresponding X resources before reclaiming them in eXene.

� More widgets. There are obvious omissions from the current collection of eXene widgets.
In particular, we mention a widget for providing panning across a child widget, a composite
widget providing a panes mechanism, and a widget view for radially displayed values, for
use in clocks, meters, etc. In general, we prefer to implement a rich set of primitive widgets
and allow the programmer to extend them using the mechanisms provided by eXene.

� Different widgets. Widgets usually correspond to an X window. For certain applications, this
is too inefficient given the current limitations in X and hardware. We hope to explore means
by which eXene can support more primitive graphical components involving less overhead.
This could be viewed as giving widget views a more “first class” status in eXene.
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