
Abstract Value Constructors

Symbolic Constants for Standard ML

William E. Aitken∗

John H. Reppy†

TR 92-1290
June 1992

Department of Computer Science
Cornell University
Ithaca, NY 14853

∗This work supported, in part, by the ONR under contract N00014-88-K-0409.
†Supported, in part, by the NSF and ONR under NSF grant CCR-85-14862, and by the NSF

under NSF grant CCR-89-18233.



Abstract Value Constructors

Symbolic Constants for Standard ML
∗

William E. Aitken†

Cornell University
aitken@cs.cornell.edu

John H. Reppy‡

Cornell University§

jhr@research.att.com

June 2992

Abstract

Standard ML (SML) has been used to implement a wide variety of large systems,
such as compilers, theorem provers, graphics libraries, and even operating systems.
While SML provides a convenient, high-level notation for programming large applica-
tions, it does have certain deficiencies. One such deficiency is the lack of a general
mechanism for assigning symbolic names to constant values. In this paper, we present
a simple extension of SML that corrects this deficiency in a way that fits naturally with
the semantics of SML. Our proposal is a generalization of SML’s datatype construc-
tors: we introduce constants that generalize nullary datatype constructors (like nil),
and templates that generalize non-nullary datatype constructors (like ::). Constants
are identifiers bound to fixed values, and templates are identifiers bound to structured
values with labeled holes. Templates are useful because they allow users to treat the
representation of structured data abstractly without having to give up pattern match-
ing.

1 Introduction

Standard ML (SML) is a modern high-level language with both a formal definition ([MTH90,

MT91]) and good implementations (e.g., [AM87]). SML is being widely used to implement

substantial systems; including compilers, theorem provers, graphics libraries, and even oper-

ating systems. Although SML is generally well designed, there are certain language features

that are known to be useful for system programming, but are not included in SML. One of

the more glaring omissions is the lack of a general purpose mechanism for assigning symbolic

names to constant values.

∗A shorter version of this paper was presented at the ACM SIGPLAN Workshop on ML and its Appli-
cations [AR92].
†This work was supported, in part, by the ONR under contract N00014-88-K-0409.
‡This work was supported, in part, by the NSF and ONR under NSF grant CCR-85-14862, and by the

NSF under NSF grant CCR-89-18233.
§Current address: AT&T Bell Laboratories, Murray Hill, NJ, 07974.



The use of symbolic identifiers for constant quantities is an essential tool for writing

understandable and maintainable software. Every systems programming language provides

support for symbolic constants, from the very powerful #define mechanism in the C pre-

processor ([KR88]), to the constant declarations of Modula-3 ([Nel91]). For example, an

elevator control program that uses the values 0 and 1 to represent direction is harder to

read than one that uses the symbolic constants UP and DOWN. In C we might write:

typedef int direction_t;

#define UP 0

#define DOWN 1

SML provides no mechanism that allows users to specify names for constant values and to

use these names in pattern matching. This problem is significant because pattern matching

is the principal mechanism used for case analysis and the decomposition of structured

values. The lack of a general symbolic constant mechanism limits pattern matching to

concrete representations (unlike expressions, which can involve abstract symbolic values).

This sharply limits the programmer’s ability to define abstract objects, since there is a

trade-off between abstraction and programmer convenience.

This paper presents data templates, a powerful new mechanism for defining symbolic

constants. Templates are a generalization of SML’s data constructors, and can be used

in both expressions and patterns. Furthermore, they work in the presence of separate

compilation and parameterized modules. Our mechanism is type-safe and fits naturally

into the semantics of SML ([MTH90]).

Our implementation technology has the added benefit of solving an outstanding problem

with datatype representation and abstraction. Furthermore, our semantic framework and

implementation technology admit a number of extensions, which make the language and

semantics more uniform. Although we set our presentation in the context of SML, our

mechanism and techniques are applicable to other languages with datatypes and pattern

matching.

In the remainder of the paper, we give examples of the utility of our mechanism, describe

the interaction between our mechanism and the module system, explain its semantics, sketch

its implementation, and discuss related work.

2 ML datatypes and patterns

The SML datatype mechanism provides a high-level notation for declaring new structured

types. For example, the declaration

datatype ’a list = nil | :: of (’a * ’a list)

2



defines the standard predefined polymorphic list type. This declaration defines two data

constructors: nil is a nullary constructor representing the empty list, and :: (which is an

infix operator) is the list constructor. The expression 1::2::3::nil evaluates to an integer

list of three elements (SML provides the derived notation [1, 2, 3] for this construction).

Datatypes can also be used to define enumerations; for example,

datatype direction_t = NORTH | SOUTH | EAST | WEST

The utility of datatypes is greatly enhanced by the use of pattern matching in function

definitions to do case analysis and value decomposition. For example, the following function

takes a list of strings and returns a list with commas inserted between adjacent elements:

fun commas [] = nil

| commas [s] = [s]

| commas (s::r) = s :: "," :: (commas r)

This function consists of three rules (or equations). The left side of a rule is a pattern,

the right side is an expression to be evaluated when the pattern is matched. The first rule

in commas matches the empty list. The second matches the singleton list and binds its

single element to s. Theoretically, the third matches any list of one or more elements, but,

since the order of equations defines their precedence, it can only match lists of two or more

elements; it binds s to the head of the list and r to the tail. Patterns in SML are linear;

i.e., a variable may occur at most once in a pattern.

The data constructors defined by datatypes have a dual nature; they are used both to

construct values (when they are used in expressions), and to destruct values (when they are

used in patterns). We use the term value constructors to refer to identifiers with this dual

nature. If no confusion with type constructors is possible, we abbreviate this to constructors.

Our extension of SML provides another mechanism through which identifiers with this dual

nature may be defined. Our mechanism allows the definition of constants, which are value

constructors that refer to fixed pre-existing values, and the definition of templates, which

are value constructors that refer to fixed, structured values with named holes. Templates

can be thought of as the constructors for families of pre-existing values in the same way

that non-nullary data constructors may be thought of as constructors for families of new

values.

3 Constants

The use of symbolic names to refer to constant values is an essential tool for the writing

of understandable, maintainable software. In SML, val bindings allow values to be given

symbolic names, but these names cannot be matched against in patterns. This is a serious

3



limitation because pattern matching is the principal mechanism for case analysis and the

decomposition of structured values. It is also possible, using the datatype declaration,

to declare identifiers that may be matched against in patterns, but these are not symbolic

names for existing values. While these two mechanisms are adequate for many applications,

sometimes what is required is a mechanism that allows identifiers both to be bound to

particular values and to be matched against in patterns.

For example, consider the implementation of an X Window System library. The X Win-

dow System uses a device independent representation of keyboard keys called keysyms. We

need to provide users with a symbolic name for each of them. Clearly, users need to be able

to pattern match against these names so that they can conveniently write programs that

respond to different keystrokes differently. Thus, val bindings are not suitable to provide

these names. Using a datatype to represent keysyms is also unsuitable. The wire represen-

tation of a keysym, that is, the representation used by the X server, is a 29 bit integer. If the

library uses a datatype to represent keysyms, it must also include a function to convert from

wire representations to library representations, and another to convert library representa-

tions back into wire representations. It is essential that these functions be mutually inverse.

Since there are literally thousands of keysyms defined — even minimum English language

support requires 512 — these functions present a maintenance nightmare. Furthermore,

the use of such huge functions adds significant run-time overhead to the marshaling and

unmarshaling of messages. Using our mechanism, we can write definitions such as

datatype keysym_t = KEYSYM of int

const KS_a = KEYSYM 97

const KS_b = KEYSYM 98

Here the representation of a keysym is the constructor KEYSYM wrapped around the wire

representation. (This is a standard idiom for creating new types isomorphic to existing ones.

Compilers can represent keysym_t and int identically, and treat the constructor KEYSYM

as a no-op.) The identifiers KS_a and KS_b are declared as constants that represent the

characters ‘a’ and ‘b’. They can be used both in patterns and in expressions. The identifier

KS_a stands for the structured value (KEYSYM 97). Note that this representation of keysyms

has a further advantage over the datatype representation in that it allows keysyms from

different keysets to be defined in different modules, enabling users to import only those

keysets they actually need.

This use of our mechanism is reminiscent of the #define mechanism of the C language

[KR88] (arguably, this is one area in which C provides a higher-level notation than SML).

SML has a more general pattern matching facility than the C switch statement in that

patterns can match structured values (e.g., tuples). Therefore, it is natural to allow symbolic

names for structured constant values. For example, a calendar program might include the

4



following definitions:

datatype date = DATE of {month : int, day : int}

const CHRISTMAS = DATE{month=12, day=25}

fun getPresents CHRISTMAS = true

| getPresents _ = false

4 Templates

Templates are a natural generalization of symbolic constants to allow labeled holes1. They

provide a mechanism to define a concise syntax for a collection of similarly structured values.

A template is defined by a declaration of the form

const id trivpat = patexp

where trivpat is a pattern that involves only variables and record construction, and patexp

is a pattern that contains only variables, record construction, special constants and other

value constructors. Every patexp can be viewed both as a pattern and as an expression

(they are the syntactic intersection of patterns and expressions). Every variable appearing

in trivpat must also appear exactly once in patexp. This ensures that it is always possible

to map back and forth between instances of a template and its expansion.

For example, the template mechanism allows us to define a template for the days of the

month July using the declaration

const JULY(x) = DATE{month=7,day=x}

which allows expressions such as JULY(17) to be used to create values for the days in July.

It also allows code such as

fun nameOfDay (JULY 4) = "Independence Day"

| nameOfDay CHRISTMAS = "Christmas"

| ...

in which JULY is used as a constructor in a pattern match.

A more substantial and more useful example of templates arises in systems that do

term manipulation (such as the Nuprl proof development system, or code optimizers). For

the sake of concreteness, we set our example in the context of a generalized λ-calculus.

1The term template was suggested by Dave MacQueen.

5



A term is either a variable or the application of an operator to a sequence of bound terms.

For example, λ and ap are operators and λ(x.a) is a term with x bound in the sub-term

a, and ap(a; b) is term with sub-terms a and b (but no bound variables). One possible

representation of this term language uses a different constructor for each operator:

datatype term

= VAR of var

| LAMBDA of (var * term)

| AP of (term * term)

| PLUS of (term * term)

| · · ·

This representation has a two major deficiencies. First, functions that are largely indepen-

dent of the operators, such as computing the free variables of a term or substitution, require

many similar cases. For example, the code for computing the free variables of a term is:

fun freeVars (VAR v) = [v]

| freeVars (LAMBDA(x, t)) = setMinus (freeVars t, [x])

| freeVars (AP(t1, t2)) = setUnion (freeVars t1, freeVars t2)

| freeVars (PLUS(t1, t2)) = setUnion (freeVars t1, freeVars t2)

| · · ·

where free variable sets are represented by lists. Second, often it is desirable to make the

set of operators extensible (for example, as in the Nuprl system), but if this representation

of terms is used, the datatype needs to be changed to extend the operator set, and this re-

quires a complete recompilation of the program. Furthermore, extension of the operator set

exacerbates the problem with functions like substitution — the addition of a new operator

requires that a new case be added to each such function.

An alternative is to define a regular representation that is extensible. The following

datatype is such a representation; the set of terms is extended by treating more strings as

valid operator names:

datatype operator = OP of string

datatype term

= VAR of var

| TERM of operator * ((var list * term) list)

With this representation, the free variable function requires only two cases:

fun freeVars (VAR v) = [v]

| freeVars (TERM(_, args)) = let

fun fvb (bndVars, subTerm) = setMinus (freeVars subTerm, bndVars)

in

fold (fn (binding, S) => setUnion (fvb binding, S)) args []

end

6



Furthermore, this code is independent of any extensions to the term system.

Unfortunately, the syntax of expressions and patterns using this representation is quite

ugly. For example, the pattern that matches β-redices (i.e., terms of the form ap(λ(x.s); t)

is

TERM(OP "AP", [([], TERM(OP "LAMBDA", [([x], s)])), ([], t)])

compared to

AP(LAMBDA(x, s), t)

in the first representation. Moreover, the second representation scheme does not provide

the syntactic checking given by the first representation. The expression

TERM (OP "LAMBDA", [])

is a perfectly acceptable member of the type term even though terms formed with the

λ operator should always have exactly one subterm in which exactly one variable is newly

bound. Lastly, the use of strings to name operators adds the overhead of string comparison

to pattern matching. All of these problems are elegantly solved using our mechanism. For

example, with the following declarations

datatype operator = OP of int

datatype term = VAR of var | TERM of operator * ((var list * term) list)

const LAMBDA_OP = OP 0 and AP_OP = OP 1 and PLUS_OP = OP 2 and . . .

const AP(p, q) = TERM(AP_OP, [([], p), ([], q)])

and LAMBDA(x, t) = TERM(LAMBDA_OP, [([x], t)])

and PLUS(a, b) = TERM(PLUS_OP, [([], a), ([], b)])

the pattern for β-redices is again AP(LAMBDA(x, s), t), but the code for computing the

free variables remains unchanged. While the type term still includes many unintended

values, disciplined use of the templates AP, LAMBDA and PLUS makes it impossible for users

to produce these values accidentally, and as described in the next section, the required

discipline can be enforced using the module facility. Thus, we obtain both the succinctness

and syntactic checking of the first representation and the flexibility and regular structure

of the second.

7



5 Constructors and the module system

The module system is an important feature of SML. Our proposal meshes elegantly with the

module system; moreover, the module system, because it allows the separation of specifica-

tion and implementation, greatly increases the abstraction achievable with our mechanism.

In particular, because the module system allows the programmer to limit the externally

visible definitions of a structure, it is possible to limit the constructors available to users

of the structure. This is particularly important when a type used to represent a class of

objects contains extra elements that do not represent any object. For example, the second

datatype for terms defined in Section 4 includes many ill-formed elements. A signature of

the form

sig

eqtype term

const AP : term of term * term

const LAMBDA : term of var * term

const PLUS : term of term * term

end

would ensure that users of this term type only used values corresponding to well-formed

terms. Moreover, because data constructors are simply a special kind of value constructor,

it is possible to provide an interface to a structure in which they are made available as

constructors without having to make the datatype declaration in which they are declared

visible. This in turn allows the constructors of a datatype to be selectively exported.

Our proposal adds constructor specifications to the syntax of signatures. A nullary

constructor specification has the form

const id : type

while a unary constructor specification has the form

const id : type of type ′

In this specification, type ′ is the domain and type is the range of the constructor. The syn-

tactic distinction between unary and nullary constructors is required because, in patterns,

unary constructors must always appear with arguments and nullary constructors may never

appear with arguments. The legality of code such as

signature SIG =

sig

type unknown

const K : unknown

end

8



functor F (A : SIG) =

struct

fun f A.K = 17

| f _ = 12

end

depends on K being a nullary operator. Thus it is essential that structures such as

structure S = struct

type unknown = int -> int * int

const K x = (x, 12)

end

not be allowed to match SIG.

6 Projections

One of the asymmetries of the design of SML is that one can define a view of a constructor

that may only be used in expressions (by binding it to a variable using a val declaration),

but cannot define a view that can only be used in patterns. As an example of the utility

of such a mechanism, consider the implementation of points in a graphics toolkit. We may

want to restrict points to some sub-range of the representable values, but still allow users

to decompose points using pattern matching. This might be done as follows

abstype pt_t = PTREP of (int * int)

with

exception PtRange

fun mkPt (a, b) =

if (a and b are in range)
then PTREP(a, b)

else raise PtRange

proj PT (x,y) = PTREP (x,y)

end

where the proj declaration defines an identifier that can be used only in patterns. It is safe

to allow wildcards on the right-hand side of such projection declarations.

Just as val specifications in signatures are used to export only the value of a constructor

defined in a structure, so also proj specifications can be used to export only its pattern

matching behavior. For the same reason that it is required for constructors, we must

maintain explicit arity information for projections.

9



7 Semantics

In the appendix, we give a rigorous formal description of the semantics of SML extended

with abstract value constructors in the style of [MTH90, MT91]. Obviously, a certain

amount of new syntax is introduced, and new semantic rules are required to describe its

meaning. In addition, some minor changes need to be made to the semantics to provide

the extra function given by our extensions. The substantive changes required are small,

but the need to propagate their effects means that many of the semantic rules appearing

in [MTH90] must be updated. This section briefly outlines and motivates the changes we

made to the semantics of the Definition in adding our mechanism to SML.

Our semantics includes a treatment of exceptions. It does not provide an interpretation

of SML’s other constructor ref. We ignore it because allowing ref as a constructor would

(of course) allow it to appear in constant and template declarations. Since the semantics

of ref depends on the store, this would mean that the semantics of all value constructors

might potentially depend on the store. Moreover, it is not entirely clear what the semantics

of templates defined using ref should be. Consider the declaration:

const strange = ref 1

Should every use of strange in an expression result in a new reference cell being allocated,

or should all occurrences refer to the same object? We do not view this ambiguity as a

deficiency of our proposal, rather we view it as evidence that SML’s treatment of ref as a

constructor is a mistake.

In the Definition, the only constructors available are data constructors, which evaluate

to themselves, and exception constructors, which can be looked up in the exception envi-

ronment. In our proposal, constructors denote arbitrary values; therefore, their semantics

must depend on a more general environment. For reasons described below, we actually use

two environments to give their semantics. We use the value environment, that is used to

give the semantics of variables, to give the semantics of constructors in expressions, and

we use a new environment, called the projection environment, to give their semantics in

patterns.

The semantics of a non-nullary value constructor C is given using a pair of functions

(Cπ, Cι): an injection and a projection. The injection is used to construct values in expres-

sions, and the projection is used to perform the data destructuring in pattern matching.

This is a very general mechanism, and allows many extensions. For example, if Cπ and

Cι are arbitrary ML functions, we have views in the sense of [Wad87]. The injection and

projection functions of our mechanism are quite restricted, and can be efficiently compiled.

Moreover, we believe that our proposal provides most of the function that programmers ac-

tually desire. Non-nullary data constructors and exception constructors can also be treated

10



in this manner. Using ML-like notation, the functions corresponding to the data constructor

TERM defined above are

TERMι = fn x => TERM x

TERMπ = fn (TERM x) => x | _ => FAIL

where FAIL is a special value used to denote match failure. Similarly, the functions associ-

ated with the identifier LAMBDA in the template definition given above are

LAMBDAι = fn (x, t) => TERM(LAMBDA_OP, [([x], t)])

LAMBDAπ = fn (TERM(LAMBDA_OP, [([x], t)])) => (x, t) | _ => FAIL

Note the appearance of LAMBDA_OP in these functions. Since the scope of LAMBDA_OP

may differ from that of LAMBDA, these functions must record the environment in which

they were defined. A template declaration, const id trivpat = patexp, executed when the

value environment is VE and the projection environment is PE , associates an injection

closure (trivpat , patexp,VE ) with id in the value environment, and a projection closure

(trivpat , patexp,VE ) with id in the projection environment. This discussion is formalized

by the following rule:

〈(SE ,VE ,PE ,EE ) ` constbind ⇒ VE ′,PE ′〉
(SE ,VE ,PE ,EE ) ` con trivpat = patexp〈and constbind〉 ⇒

{con 7→ (trivpat , patexp,VE )}〈+VE ′〉, {con 7→ (trivpat , patexp,PE )}〈+PE ′〉

We choose not to use ordinary closures to emphasize the restricted nature of the functions

denoted.

Intuitively, the semantics of constants is straightforward. We associate each constant

identifier c with its value v. Nullary data constructors can be treated similarly: they are

associated with themselves. So too can nullary exception constructors: the evaluation of an

exception declaration generates a new exception name, with which the exception constructor

is associated.

In practice, to avoid the need to define equality on structured objects, we do something

slightly different. Nullary data and exception constructors are treated just as described:

they are bound to their value in both the value and projection environments. Constants are

bound to their value in the the value environment, and to a closure consisting of the right

side of their declaration and the current projection environment. Now, pattern matching

against a constant can be defined in terms of pattern matching against their right hand

side. This discussion is formalized by the following rule:

(SE ,VE ,PE ,EE ) ` patexp in Exp⇒ v 〈(SE ,VE ,PE ,EE ) ` constbind ⇒ VE ′,PE ′〉
(SE ,VE ,PE ,EE ) ` con = patexp〈and constbind〉 ⇒

{con 7→ v}〈+VE ′〉, {con 7→ (patexp,PE )}〈+PE ′〉

11



The environment must be recorded to ensure that constructors appearing in a constant’s

expansion are correctly interpreted. Once again, we could use ordinary closures, but choose

to use a special closure representation to emphasize the special, restricted nature of the

represented functions.

Projection declarations produce a binding in the projection environment, but no binding

in the value environment. The binding produced is analogous to that produced by the

constructor declaration with the same body. Variable declarations are treated exactly as

before, in particular they have no effect on the projection environment.

The most important aspect of the module system semantics is the appropriate definition

of signature-structure matching. Informally a signature Σ matches a structure S if it is less

specific: that is, if it has fewer components, is less polymorphic, or elides the constant

nature of values. For example, the specification

val nil : int list

matches the standard list constructor nil (which has type ’a list). The specification

const nil : int list

also matches the constructor nil. When a structure is constrained by a signature (e.g.,

when used as the argument to a functor), it is necessary to thin it by removing the unused

components. Thinning also involves mapping constructors to values or projections by dis-

carding their projection or injection functions. It is to facilitate these operations that we

use separate environments to maintain the associations between identifiers and their values,

and between identifiers and their projections, rather than associating injection-projection

pairs with constructors in the value environment. The association between constructors

and their injections is maintained using the ordinary value environment. This ensures that

the appropriate binding are automatically available when a signature exports an injection

only view of a constructor.

The value of an identifier appearing in an expression is always determined by lookup in

the value environment. This contrasts with the Definition, where value constructors merely

evaluate to themselves without reference to the environment and exception constructors are

looked up in the exception environment.

We must include a rule in the semantics to give the value of an application exp1 exp2 in

which the value of exp1 is an injection closure (trivpat , patexp,VE ). Here trivpat is treated

as a pattern, and matched with the value of exp2. Because trivpat consists only of variables

and tupling, this match always succeeds in type correct programs. Matching produces

an environment that records the required association between values and the variables of

trivpat . The term patexp is treated as an expression, and evaluated using this environment

12



and the environment VE stored in the closure. The resulting value is the value of the

application. This description can be formalized as follows:

E ` exp ⇒ (trivpat , patexp,VE ) E ` atexp ⇒ v
{}, v ` trivpat in Pat⇒ VE ′ VE + VE ′ ` patexp in Exp⇒ v′

E ` exp atexp ⇒ v′

Pattern matching proceeds as in the Definition, except in its treatment of constructors,

where the projection environment is used to give their meaning, rather than the current

approach in which the semantics of exception constructors is given using the exception

environment, and in which datatype constructors are given meaning without reference to

an environment.

First, we consider the matching of a value v against a nullary constructor C. If C is

bound to either a constructor or an exception name in the projection environment — that is,

if it is declared by either a datatype or an exception declaration — then v matches C if and

only if it is equal to the projection associated with C. This means that these constructors

receive the same interpretation as they do in the Definition, although the mechanism used

to assign this interpretation is rather different. Otherwise, C is bound to a constant closure

(patexp,PE ). To match a value against this sort of constructor, we treat patexp as a pattern,

and match the value against it, using PE to interpret any constructors appearing in patexp.

The match against the constructor succeeds if and only if this match succeeds. No variable

bindings are produced. This description is formalized as follows:

PE ′ = PE of E PE ′(longcon) = (patexp,PE ′′)
PE ′′, v ` patexp in Pat⇒ VE ′/FAIL

E, v ` longcon ⇒ VE ′/FAIL

Matching a value v against a pattern C p, where C is a constructor and p is a pattern, also

requires that C be looked up in the projection environment. If C is bound to a constructor

or an exception name, then the match succeeds if and only if the value is a pair consisting

of a tag equal to the exception name or constructor associated with the constructor and

a value v′ that matches p. The bindings produced are those produced by the match of v′

against p. Otherwise, C is bound to a projection closure (trivpat , patexp,PE ). The term

patexp is treated as a pattern, and matched against v. If this match fails, so does the match

against C p. Otherwise, the set of bindings it produces, which includes bindings for every

variable of trivpat , is used to evaluate trivpat (interpreted as an expression). The resulting

value v′, is matched against p. The match of v against C p succeeds if the match of v′

against p does, and when successful it produces the same bindings, otherwise, it fails. This

informal description of pattern matching against template constructors is made formal by

the following rules:

PE ′ = PE of E PE ′(longcon) = (trivpat , patexp,PE ′′)
PE ′′, v ` patexp in Pat⇒ VE ′ VE ′ ` trivpat in Exp⇒ v′ E, v′ ` atpat ⇒ VE ′′/FAIL

E, v ` longcon atpat ⇒ VE ′′/FAIL

13



PE ′ = PE of E PE ′(longcon) = (trivpat , patexp,PE ′′)
PE ′′, v ` patexp in Pat⇒ FAIL

E, v ` longcon atpat ⇒ FAIL

In the static semantics, we must show how the newly added declarations assign types to

identifiers. We must also refine the definition of structure-signature matching to explicitly

maintain the status and arities of constructors.

We intend that constant and template declarations assign types to the constructors

similarly to the corresponding variable declarations. That is, we intend that the following

pairs of declarations assign the same type to id

val id = patexp and const id = patexp
val id = fn trivpat =¿ patexp and const id trivpat = patexp

This requires that we refine the definition of scope of explicit type variables to account for

const declarations, that we extend the definition of type closure, and that we introduce the

appropriate rules to the static semantics.

The definition of signature matching requires information about the status of identifiers,

that is whether they are projections, variables or constructors. In the Definition, this

information can be deduced implicitly: an identifier is a constructor if and only if it is

datatype constructor, in which case it appears in the entry for the datatype in the type

environment, or if it is an exception constructor, in which case it appears in the exception

environment. All other identifiers are variables. This implicit determination of identifier

status is impossible in our setting. Thus, we must maintain the status of variables explicitly

in the environment. We do this by maintaining a new environment, the status environment

that associates identifiers with their statuses. The definition of signature enrichment is

refined to account for status information. For one status environment to enrich another,

the latter environment must associate fewer identifiers with statuses, and each identifier

given a status by the latter environment must be given a less restrictive status than in

the former environment. Constructor status is more restrictive than either projection or

variable status, neither of which is more restrictive than the other. Exception constructor

status is the most restrictive status of all. It is tempting to treat identifier status solely in

the static semantics, but doing so is quite messy because various syntactic conditions, in

particular, the linearity of patterns, depend on the status of identifiers.

For reasons discussed earlier, we must also explicitly maintain the arity of constructors

and projections. We include this arity information along with the status information in the

status environment.

14



8 Implementation

We have built a simple testbed implementation of our proposal. At compile time, template

identifiers are bound to (trivpat , patexp) pairs (the environment component of an injection

or projection closure is coded in the representation choices for the constructors). When a

known template occurs in a pattern, we inline expand it. Say that C is bound to (tp, pe)

and we have the pattern C p. We symbolically apply tp to p. This yields a substitution

on the variables of tp (which are the same as the variables occurring in pe). Applying the

substitution to pe yields a new pattern, which replaces C p.

For a functor parameterized by a structure with constructors, there are two implemen-

tation issues: what is the representation of the abstract constructors and how are they used

in patterns. To handle the first question, we use implicit structure members for the injec-

tion and projection functions. Note that these only need to be added when the structure is

made abstract (i.e., by functor application), and can be generated as part of signature thin-

ning. The injection function is an ordinary function, while the projection is a function that

returns either the sub-values or FAIL. When building a decision tree, the compiler treats

abstract templates as ordinary constructors, which allows merging of matches against them.

This ensures that when CONST is abstract, code such as

case v

of CONST([]) => 0

| CONST(a::b) => a

is compiled so that the projection function associated with CONST is called only once. A

test against an abstract constructor is a call to the projection function. Of course, the

use of functions to implement the construction and destruction associated with abstract

constructors may result in a certain degradation of performance. Of particular concern is

the loss of merging when two abstract constructors have common structure. (For example,

the templates LAMBDA and AP defined earlier share the structure TERM(OP _, _::_). Any

value not matching this pattern cannot possibly match either of them). Other costs include

the loss of inline tests and the replacement of branch tables with trees of conditionals.

Note that these costs are incurred only when constructors are actually abstract, that is,

when functors are used. In particular no penalty is incurred when structures, which have

transparent signatures, are used rather than functors. Moreover if macro expansion is used

in the implementation of functor application (a reasonable thing to do when compiling a

production version of a system), then functors reduce to structures and abstract constructors

become concrete.

Our implementation of abstract constructors can also be applied to solve an outstanding

problem, described in more detail in [App90], with datatype representation and abstrac-

15



tion. In some implementations of SML, the representation of the datatype defined by

datatype d = A | B of t, depends on the representation of t. If the representation of

t is appropriate, it is possible to represent the value B exp with the representation of exp.

Problems arise when t is abstract, since its representation is known at the definition of d

but not elsewhere. Extending our technique to cover abstract datatype constructors that

fall into the danger zone solves this problem. Although our solution to the problem incurs a

performance penalty, a less speedy program is better than one that does not run correctly.

9 Related work

Wadler’s view mechanism ([Wad87]) shares the objective of allowing data abstraction and

pattern matching to cohabit. Views were once part of the Haskell definition ([HW88]),

but were dropped because of technical difficulties. Conceptually, a view of a type T , is a

datatype T ′ together with a pair of mappings between T and T ′. Ostensibly these maps

are isomorphisms, but since they are defined by the user, there is no assurance that the

types are truly isomorphic. Views and templates differ in several significant ways. The

principal difference is that Wadler’s views define maps between concrete representations,

whereas templates provide abstract views of a single representation. Because views define

different types, a given pattern match can involve only one view. In addition, once a view is

defined, it is not possible to add additional constructors (even if other representations admit

additional objects). Templates, on the other hand, do not suffer these restrictions. The im-

plementation of views uses the user defined maps to convert between representations; thus,

pattern matching can incur arbitrarily large performance penalties.2 In our scheme, most

uses of templates incur no run-time cost, and the worst cost associated with their use is that

they may force patterns to be matched serially rather than in parallel. Our presentation of

the semantics of templates is more detailed than that of views given in [Wad87]; further-

more, we address the semantic and implementation issues related to separate compilation

and parameterized modules.

The CAML system ([WAL+]) provides a mechanism for defining new concrete syntax,

by specifying a grammar to map quoted phrases to the internal representation of programs.

This mechanism could be used to implement our template mechanism, although the imple-

mentation details appear non-trivial. Recently, a quotation mechanism has been proposed

for SML, which allows terms in some object language to be included in expressions ([Sli91]).

This provides some of the syntactic convenience of our mechanism, but it provides no help

for pattern matching against terms of the object language.

2In fact, there is no guarantee that the maps even terminate.

16



References

[AM87] A. W. Appel and D. B.. MacQueen. A Standard ML compiler. In Functional
Programming Languages and Computer Architecture, volume 274 of Lecture Notes
in Computer Science, pages 301–324. Springer-Verlag, September 1987.

[App90] Andrew W. Appel. A runtime system. Lisp and Symbolic Computation, 4(3):343–
380, November 1990.

[AR92] William E. Aitken and John H. Reppy. Abstract data constructors. In Proceedings
of the ACM SIGPLAN Workshop on ML and its Applications, pages 1–11, June
1992.

[HW88] Paul Hudak and Philip Wadler. Report on the functional programming language
haskell (draft proposed standard). Technical Report YALEU/DCS/RR-666, Yale
University, Department of Computer Science, December 1988.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, Englewood Cliffs, N.J., 2nd edition, 1988.

[MT91] R. Milner and M. Tofte. Commentary on Standard ML. The MIT Press, Cam-
bridge, Mass, 1991.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT
Press, Cambridge, Mass, 1990.

[Nel91] Greg Nelson, editor. Systems Programming with Modula-3. Prentice-Hall, Engle-
wood Cliffs, N.J., 1991.

[Sli91] Konrad Slind. Varieties of object language embedding in standard ML, 1991.
unpublished.

[Wad87] Philip Wadler. Views: A way for pattern matching to cohabit with data abstrac-
tion. In Conference Record of the 14th Annual ACM Symposium on Principles of
Programming Languages, pages 307–313, January 1987.

[WAL+] Pierre Weis, Maŕıa-Virginia Aponte, Alain Laville, Michel Mauny, and Ascánder
Suárez. The CAML Reference Manual (Version 2.6). Projet Formel, INRIA-ENS.

17



A Appendix

A.1 Introduction

In this appendix, we give the semantics of our proposed mechanism. This semantics is presented as
a modification of the formal semantics of Standard ML published in [MTH90], referred to as “the
Definition,” and [MT91] referred to as “the Commentary.” For reasons discussed in the body of the
paper, our semantics assumes a language without references (but with exceptions). In section A.5,
we show how references may be partially restored to the language.

A.2 Syntax

A.2.1 Core

Two new reserved words, const and proj must be added to the language, so must a new class Proj
of identifiers, containing those identifiers that denote value projections. We define a number of new
phrase classes:

ConstBind constant declarations
ProjBind projection declarations
TrivPat template arguments
TrivPatRow template arguments
AtPatExp atomic template expansions
PatExpRow template expansion rows
PatExp template expansions

We define these phrase classes, and extend a few phrase classes of the Definition as follows: (The
symbol +::= is used to denote extension of existing phrase classes.)

constbind ::= con 〈trivpat〉 = patexp〈and constbind〉

projbind ::= proj 〈trivpat〉 = pat〈and projbind〉

atpatexp ::= scon special constant
〈op〉var variable
〈op〉longcon value constructor
〈op〉longexcon exception constructor
–〈patexprow〉˝ record
trivpat : ty typed
( patexp)

patexprow ::= lab = patexp〈, patexprow〉

patexp ::= atpatexp atomic
〈op〉longcon atpatexp value construction
〈op〉longexcon atpatexp exception construction
patexp1 con patexp2 infixed value construction
patexp1 excon patexp2 infixed exception construction
patexp : ty

dec +::= const constbind constant declaration
proj projbind projection declaration

atpat +::= 〈op〉longproj projection

18



pat +::= 〈op〉longproj atpat projection
pat1 proj pat2 infixed projection

trivpat ::= 〈op〉var variable
–trivpatrow˝ record
trivpat : ty typed
( trivpat)

trivpatrow ::= lab = trivpat〈, trivpatrow〉

Certain new syntactic restrictions are required:

• No template argument or template expansion may contain the same variable twice.

• In a constant declaration con = patexp, no variables may occur in patexp, while in a constant
declaration con trivpat = patexp, the set of variables occurring in trivpat must be identical to
the set of those appearing in patexp.

• In a projection declaration proj = pat , no variables may occur in pat , while in a projection
declaration proj trivpat = pat , the set of variables occurring in trivpat must be identical to
the set of those appearing in pat .

• No constant or projection declaration may bind the same identifier twice.

A.2.2 Modules

Two new phrase classes are required.

ConstDesc constant specification
ProjDesc projection specification

They are defined, and the necessary changes made to the Definition’s phrase classes by the following
productions.

spec +::= const constdesc constant specification
proj projdesc projection specification

constdesc ::= con : ty〈of ty〉〈and constdesc〉

projdesc ::= proj : ty〈of ty〉〈and projdesc〉

One new syntactic restriction is required.

• No constant description constdesc or projection description projdesc may describe the same
identifier twice.

19



A.2.3 Derived Forms

Certain new derived forms, analogous to derived forms given by the Definition are introduced.

Template Arguments trivpat
( trivpat1, · · · , trivpatn) –1 = trivpat1, · · · ,n = trivpatn˝ (n ≥ 2)

Template Argument Rows trivpatrow
id〈:ty〉〈, trivpatrow〉 id = id〈:ty〉〈, trivpatrow〉

Template Expansions patexp
( ) –˝
( patexp1, · · · , patexpn) –1 = patexp1, · · · ,n = patexpn˝ (n ≥ 2)
[ patexp1, · · · , patexpn] patexp1 :: · · · :: patexpn :: nil (n ≥ 0)

Template Expansion Rows patexprow
id〈:ty〉〈, patexprow〉 id = id〈:ty〉〈, patexprow〉

A.2.4 Identifier Status

The status of an identifier, that is whether it is an exception constructor, an ordinary constructor,
a variable, or a projection is determined by the rules of Appendix B of the Commentary and the
following new rules. Rule 4 of Appendix B must be modified as below to account for the possibility
that an identifier is already declared as a projection. A new status p is added for projections.

3′. A const declaration (specification) assigns id : c for each id which it declares (specifies).

3′′. A proj declaration (specification) assigns id : p for each id which it declares (specifies).

4. A pattern pat assigns id : v for every id which does not already have c, p or e status and
occurs in pat .

4′. A template argument trivpat (template expansion patexp) assigns id : v for every id which
does not already have c, p or e status and occurs in trivpat (patexp).

A.3 Static Semantics

A.3.1 Core

We define a new class of simple semantic objects called Status. We use it to represent the status
and arity of identifiers. It has seven members: one for variables, and two for each of constructors,
projections and exceptions (one for each possible arity).

s ∈ Status = {v, c0, c1, p0, p1, e0, e1}

This set is ordered by the partial order v, which is defined as the least partial order in which the
following hold: v v c0, p0 v c0, c0 v e0, v v c1, p1 v c1, and c1 v e1.

Only one new set of compound semantic objects is needed, the status environments StatEnv.
These are finite mappings from identifiers to their statuses. We must also modify the definition of
a (static) environment to include the status environment.

XE ∈ StatEnv = Id
fin→ Status

E or (SE ,TE ,VE ,EE ,XE ) ∈ Env = StrEnv × TyEnv ×VarEnv × ExConEnv × StatEnv

20



Type variables may occur in constant and projection declarations, so we must explain their
binding structure. Recall that constant and projection declarations are typed analogously to value
declarations. This means that we must ensure that free type variables occurring in constant and
projection declarations become bound at the correct point. For this reason, we must extend the
definitions of unguarded type variables and type variable scope that appear in Section 4.6 to account
for projection and constructor declarations. An occurrence of a type variable α in a value, projection
or constant declaration dec is unguarded if it is not part of a smaller value, projection or constant
declaration contained in dec. Since constant and projection declarations never contain declarations,
this means that every type variable occurring in a constant or projection declaration is unguarded. A
type variable α is scoped at a given value, projection or constant declaration if it appears unguarded
in that declaration, but not in any larger value declaration containing that declaration. Associated
with each value, projection and constant declaration is a (finite) set of the explicit type variables
that are scoped there. We think of these declarations as being implicitly decorated with this set,
which we indicate in the static semantics by subscripting the reserved words const, proj and val.

Because we intend the static semantics of constant declarations to be easily explicable in terms
of the static semantics of variable declarations, we must be careful in closing an environment VE
that arises from a constant declaration. Since no constant declaration may bind the same identifier
twice, for each constructor con bound by VE there is a unique con 〈trivpat〉 = patexp that binds
con. If VE (con) = τ , let ClosC,constbindVE (con) = ∀α(k).τ , where

α(k) =

{
tyvars τ \ tyvarsC if patexp is a variable or constructor, or trivpat is present.
apptyvars τ \ tyvarsC otherwise.

Similarly, for projection declarations, each proj that is bound by VE is bound by a unique clause
proj 〈trivpat〉 = pat . If VE (proj ) = τ , let ClosC,projbindVE (proj ) = ∀α(k).τ , where

α(k) =

 tyvars τ \ tyvarsC if pat is a variable, constructor, or projection,
or trivpat is present.

apptyvars τ \ tyvarsC otherwise.

We adopt the convention that for any longid = strid1. · · · .stridk.id and any environment E,
E(longid) = (VE ′(id),XE ′(id)) where VE ′ and XE ′ are defined by

VE ′ = VE of ((SE of · · · ((SE of E)strid1) · · ·)stridk)

XE ′ = XE of ((SE of · · · ((SE of E)strid1) · · ·)stridk).

In what follows, inference rules that are numbered are to be read as replacements for the cor-
responding rules in the Definition, and those without numbers are to be read as additional rules.
Unless explicitly mentioned, the remaining rules of the Definition should be used without change.

Declarations C ` dec ⇒ E

C + U ` valbind ⇒ VE ,XE VE ′ = ClosC,valbindVE U ∩ tyvars VE ′ = ∅
C ` valU valbind ⇒ (VE ′,XE ) in Env

(17)

C + U ` constbind ⇒ VE ,XE VE ′ = ClosC,constbindVE U ∩ tyvars VE ′ = ∅
C ` constU constbind ⇒ (VE ′,XE ) in Env

C + U ` projbind ⇒ VE ,XE VE ′ = ClosC,projbindVE U ∩ tyvars VE ′ = ∅
C ` projU projbind ⇒ (VE ′,XE ) in Env

C ⊕ TE ` datbind ⇒ VE ,TE ,XE ∀(t,CE ) ∈ Ran TE , t 6∈ (T of C)
TE maximizes equality

C ` datatype datbind ⇒ (VE ,TE ,XE ) in Env
(19)

21



C ⊕ TE ` datbind ⇒ VE ,TE ,XE ∀(t,CE ) ∈ Ran TE , t 6∈ (T of C)
C ⊕ (VE ,TE ,XE ) ` dec ⇒ E TE maximizes equality

C ` abstype datbind with decend⇒ Abs(TE , E)
(20)

C ` exbind ⇒ EE ,XE VE = EE

C ` exception exbind ⇒ (VE ,EE ,XE ) in Env
(21)

The only changes made in these rules were those required to propagate the status environment.
The rule for constant declarations, together with the rule given below for the static semantics of
constant bindings ensures that the following pairs of declarations assign the same type to id (recall
that PatExp ⊆ Exp and TrivPat ⊆ Pat).)

val id = patexp and const id = patexp
val id = fn trivpat =¿ patexp and const id trivpat = patexp

Value Bindings C ` valbind ⇒ VE ,XE

C ` pat ⇒ (VE ,XE , τ) C ` exp ⇒ τ 〈C ` valbind ⇒ VE ′,XE ′〉
C ` pat = exp〈 and valbind〉 ⇒ VE 〈+VE ′〉,XE 〈+XE ′〉

(26)

C + VE ` valbind ⇒ VE ,XE

C ` rec valbind ⇒ VE ,XE
(27)

Once again the only changes are those required to propagate the status environment.

Constant Bindings C ` constbind ⇒ VE ,XE

〈C ` trivpat in Pat⇒ (VE ,XE , τ ′)〉 C 〈+(VE ,XE )〉 ` patexp in Exp⇒ τ
〈〈C ` constbind ⇒ VE ′,XE ′〉〉

C ` con〈trivpat〉 = patexp〈〈and constbind〉〉 ⇒
{con 7→ τ}〈+{con 7→ τ ′ → τ}〉〈〈+VE ′〉〉, {con 7→ c0}〈+{con 7→ c1}〉〈〈+XE ′〉〉

This rule formalizes the earlier discussion of the static semantics of const declarations. The trivpat
(if present) is treated as a pattern, and the patexp is treated like an expression. Note the assignment
of constant status and the appropriate arity (1 if trivpat is present, 0 otherwise) to each constant
bound.

Projection Bindings C ` projbind ⇒ VE ,XE

〈C ` trivpat in Pat⇒ (VE ,XE , τ ′)〉 C ` pat ⇒ (VE ,XE , τ)
〈〈C ` projbind ⇒ VE ′,XE ′〉〉

C ` proj 〈trivpat〉 = pat〈〈and projbind〉〉 ⇒
{proj 7→ τ}〈+{proj 7→ τ ′ → τ}〉〈〈+VE ′〉〉, {proj 7→ p0}〈+{proj 7→ p1}〉〈〈+XE ′〉〉

Note that the same variable and status environments are produced for both trivpat and pat . This
ensures that their variables are typed identically. Recall that the syntax requires that they contain
exactly the same variables. Note the assignment of projection status and the appropriate arity to
each declared projection identifier.

22



Datatype Bindings C ` datbind ⇒ VE ,TE ,XE

tyvarseq = α(k) C,α(k)t ` conbind ⇒ CE ,XE
〈C ` datbind ⇒ VE ,TE ,XE ′ ∀(t′,CE ) ∈ Ran TE , t 6= t′〉
C ` tyvarseq tycon = conbind〈 and datbind〉 ⇒

ClosCE 〈+VE 〉, {tycon 7→ (t,ClosCE )}〈+TE 〉,XE 〈+XE ′〉

(29)

This rule propagates the state environment produced by its hypothesis. It is otherwise the same as
the corresponding rule in the Definition.

Constructor Bindings C, τ ` datbind ⇒ CE ,XE

〈C ` ty ⇒ τ ′〉 〈〈C, τ ` conbind ⇒ CE ,XE 〉〉
C, τ ` con〈of ty〉〈〈— conbind〉〉 ⇒
{con 7→ τ}〈{con 7→ τ ′ → τ}〉〈〈+CE 〉〉, {con 7→ c0}〈{con 7→ c1}〉〈〈+XE 〉〉

(30)

Note the assignment of constructor status, and the appropriate arity to each declared datatype
constructor. Otherwise, this rule is the same as the corresponding rule in the Definition.

Exception Bindings C ` exbind ⇒ EE ,XE

〈C ` ty ⇒ τ τ is imperative〉 〈〈C ` exbind ⇒ EE ,XE 〉〉
C ` excon〈of ty〉〈〈and exbind〉〉 ⇒

{excon 7→ exn}〈+{excon 7→ τ → exn}〉〈〈+EE〉〉, {excon 7→ e0}〈+{excon 7→ e1}〉〈〈+XE〉〉
(31)

C(longexcon) = (τ, s) 〈C ` exbind ⇒ EE ,XE 〉
C ` excon = longexcon〈and exbind〉 ⇒
{excon 7→ τ}〈+EE 〉, {excon 7→ s}〈+XE 〉

(32)

Note the assignment of exception status in rule 31. In rule 32, s is either e0 or e1, because excep-
tion constructors are declared (specified) only by exception declarations (specifications), and these
always assign exception status. Otherwise, these rules are the same as the corresponding rules in
the Definition.

Atomic Patterns C ` atpat ⇒ (VE ,XE , τ)

C ` ˙ ⇒ ({}, {}, τ)
(33)

C ` scon ⇒ ({}, {}, type(scon))
(34)

C ` var ⇒ ({var 7→ τ}, {var 7→ v}, τ)
(35)

C(longcon) = (σ, c0) σ � τ
C ` longcon ⇒ ({}, {}, τ)

(36)

C(longproj ) = (σ, p0) σ � τ
C ` longproj ⇒ ({}, {}, τ)

C(longexcon) = (exn, e0)

C ` longexcon ⇒ ({}, {}, exn)
(37)

23



〈C ` patrow ⇒ (VE ,XE , %)〉
C ` –〈patrow〉˝ ⇒ ({}〈+VE 〉, {}〈+XE 〉, {}〈+%〉 in Type)

(38)

C ` pat ⇒ (VE ,XE , τ)

C ` ( pat) ⇒ (VE ,XE , τ)
(39)

Rule 35 and rule 46 (below) are the only rules concerning patterns that assign status to identifiers.
Both only assign variable status. Note how the three rules for constructors, and exceptions con-
structors use the status to ensure that the identifier really is nullary. The only changes to rules 33,
34, 38 and 39 are those required to propagate the status environment properly.

Pattern Rows C ` patrow ⇒ (VE ,XE , %)

C ` ...⇒ ({}, {}, %)
(40)

C ` pat ⇒ (VE ,XE , τ)
〈C ` patrow ⇒ (VE ′,XE ′, %) lab 6∈ Dom %〉

C ` lab = pat〈, patrow〉 ⇒ (VE 〈+VE ′〉,XE 〈+XE ′〉, {lab 7→ τ}〈+%〉)
(41)

The only changes to these rules are those required to propagate the status environment properly.

Patterns C ` pat ⇒ (VE ,XE , τ)

C ` atpat ⇒ (VE ,XE , τ)

C ` atpat ⇒ (VE ,XE , τ)
(42)

C(longcon) = (σ, c1) σ � τ ′ → τ C ` atpat ⇒ (VE ,XE , τ ′)

C ` longcon atpat ⇒ (VE ,XE , τ)
(43)

C(longproj ) = (σ, p1) σ � τ ′ → τ C ` atpat ⇒ (VE ,XE , τ ′)

C ` longproj atpat ⇒ (VE ,XE , τ)

C(longexcon) = (τ → exn, e1) C ` atpat ⇒ (VE ,XE , τ)

C ` longexcon atpat ⇒ (VE ,XE , exn)
(44)

C ` pat ⇒ (VE ,XE , τ) C ` ty ⇒ τ

C ` pat : ty ⇒ (VE ,XE , τ)
(45)

C ` pat ⇒ (VE ,XE , τ) 〈C ` ty ⇒ τ〉
C ` id〈:ty〉 as pat ⇒ (VE + {id 7→ τ},XE + {id 7→ v}, τ)

(46)

Note how the three rules for constructors, projections, and exception constructors use the status to
ensure that the identifier really does accept an argument. Rule 46 has been modified to generate a
variable status for the identifier it binds, and to propagate the status information derived from its
sub-pattern. Rules 42 and 45 now propagate the status environment but are otherwise unchanged.

A.3.2 Modules

We need to refine the definition of enrichment so that it accounts for the status environment. All
that needs to be changed is the definition of environment enrichment, and the only change required
there is the addition of a further clause describing the appropriate relationship between the two
status environments. An Environment E1 = (SE 1,TE 1,VE 1,EE 1,XE 1) enriches an environment
E2 = (SE 2,TE 2,VE 2,EE 2,XE 2), written E1 � E2 if:

24



1. Dom SE 1 ⊇ Dom SE 2 and SE 1(strid) � SE 2(strid) for each strid ∈ Dom SE 2.

2. Dom TE 1 ⊇ Dom TE 2 and TE 1(tycon) � TE 2(tycon) for all tycon ∈ Dom TE 2.

3. Dom VE 1 ⊇ Dom VE 2 and VE 1(id) � VE 2(id) for all id ∈ Dom VE 2.

4. Dom EE 1 ⊇ Dom EE 2 and EE 1(excon) = EE 2(excon) for all excon ∈ Dom EE 2.

5. Dom XE 1 ⊇ Dom XE 2 and XE 1(id) w XE 2(id) for all id ∈ Dom XE 2.

Otherwise, the only changes required are in the semantics of specifications: we show how the
status of identifiers is inferred and propagated.

Specifications B ` spec ⇒ E

C of B ` constdesc ⇒ VE ,XE

B ` const constdesc ⇒ (ClosVE ,XE ) in Env

C of B ` projdesc ⇒ VE ,XE

B ` proj projdesc ⇒ (ClosVE ,XE ) in Env

C of B ` datdesc ⇒ TE ,VE ,XE

B ` datatype datdesc ⇒ (TE ,ClosVE ,XE ) in Env
(73)

C of B ` exdesc ⇒ EE ,XE

B ` exception exdesc ⇒ ({}, {},EE ,EE ,XE )
(74)

Value Descriptions C ` valdesc ⇒ VE ,XE

C ` ty ⇒ τ 〈C ` valdesc ⇒ VE ,XE 〉
C ` var : ty〈and valdesc〉 ⇒ {var 7→ τ}〈+VE 〉, {var 7→ v}〈+XE 〉

(82)

Constant Descriptions C ` constdesc ⇒ VE ,XE

C ` ty ⇒ τ 〈C ` ty ′ ⇒ τ ′〉 〈〈C ` constdesc ⇒ VE ,XE 〉〉
C ` con : ty〈of ty ′〉〈〈and constdesc〉〉 ⇒
{con 7→ τ}〈+{con 7→ τ ′ → τ}〉〈〈+VE 〉〉, {con 7→ c0}〈+{con 7→ c1}〉〈〈+XE 〉〉

Projection Descriptions C ` projdesc ⇒ VE ,XE

C ` ty ⇒ τ 〈C ` ty ′ ⇒ τ ′〉 〈〈C ` projdesc ⇒ VE ,XE 〉〉
C ` proj : ty〈of ty ′〉〈〈and projdesc〉〉 ⇒

{proj 7→ τ}〈+{proj 7→ τ ′ → τ}〉〈〈+VE 〉〉, {proj 7→ p0}〈+{proj 7→ p1}〉〈〈+XE 〉〉

Datatype Descriptions C ` datdesc ⇒ TE ,VE ,XE

tyvarseq = α(k) C,α(k) ` condesc ⇒ CE ,XE
〈C ` datdesc ⇒ TE ,VE ,XE ′〉

C ` tyvarseq tycon = condesc〈and datdesc〉 ⇒
{tycon 7→ (t,ClosCE )}〈+TE 〉,ClosCE 〈+VE 〉,XE 〈+XE ′〉

(84)

25



Constructor Descriptions C, τ ` condesc ⇒ CE ,XE

〈C ` ty ⇒ τ ′〉 〈〈C, τ ` condesc ⇒ CE ,XE 〉〉
C, τ ` con〈of ty〉〈〈—condesc〉〉 ⇒

{con 7→ τ}〈+{con 7→ τ ′ → τ}〉〈〈+CE 〉〉, {con 7→ c0}〈+{con 7→ c1}〉〈〈+XE 〉〉

(85)

Exception Descriptions C ` exdesc ⇒ EE ,XE

〈C ` ty ⇒ τ tyvars(τ) = ∅〉 〈〈C ` exdesc ⇒ EE ,XE 〉〉
C ` excon〈of ty〉〈〈and exdesc〉〉 ⇒

{excon 7→ exn}〈+{excon 7→ τ → exn}〉〈〈+EE 〉〉, {excon 7→ e0}〈+{excon 7→ e1}〉〈〈+XE 〉〉
(86)

A.4 Dynamic Semantics

A.4.1 Core

The values that expressions may yield are changed. We remove Addr and := because they are
required only for the support of references. We also need to add a class ConClosure of values to
represent the values of templates. There is no need for a new class to represent the values of symbolic
constants, since they are evaluated when they are declared.

We also need to define an environment in which constant identifiers are mapped to their pro-
jection value. The possible values include constructors, exception values, and projection values for
symbolic constants. The projection values of symbolic constants are represented using two classes,
Constant and ProjClosure; the first is used for unparametrized constants, and the second, for tem-
plates.

v ∈ Val = SVal ∪ BasVal ∪ Con

∪ (Con×Val) ∪ ExVal ∪ Record

∪ Closure ∪ ConClosure

(trivpat , patexp,PE ) ∈ ProjClosure = TrivPat× PatExp× ProjEnv

(trivpat , patexp,VE ) ∈ ConClosure = TrivPat× PatExp×VarEnv

(patexp,PE ) ∈ Constant = PatExp× ProjEnv

Proj = Constant ∪ Con ∪ ExVal ∪ ProjClosure

PE ∈ ProjEnv = (Con ∪ ExCon ∪ Proj)
fin→ Proj

(SE ,VE ,PE ,EE ) or E ∈ Env = StrEnv ×VarEnv × ProjEnv × ExConEnv

Atomic Expressions E ` atexp ⇒ v/p

VE (longvar) = v

(SE ,VE ,PE ,EE ) ` longvar ⇒ v
(104)

VE (longcon) = v

(SE ,VE ,PE ,EE ) ` longcon ⇒ v
(105)

26



VE (longexcon) = v

(SE ,VE ,PE ,EE ) ` longexcon ⇒ v
(106)

We consistently obtain the value of an identifier by looking it up in the value environment. We
include all three rules for emphasis, but in fact only rule 105 is changed (while a note in the Definition
states that exceptions are to be looked up in the exception environment, the value of every expression
must be stored in both the value and exception environments, so this note may be safely ignored).

Expressions E ` exp ⇒ v/p

E ` exp ⇒ con E ` atexp ⇒ v

E ` exp atexp ⇒ (con, v)
(112)

E ` exp ⇒ (trivpat , patexp,VE ) E ` atexp ⇒ v
{}, v ` trivpat in Pat⇒ VE ′ VE + VE ′ ` patexp in Exp⇒ v′

E ` exp atexp ⇒ v′

Rules 114 and 115, which give the semantics of ref and :=, need to be eliminated. For the same
reason, the restriction that the constant not be ref in rule 112 is dropped. The second rule gives
the semantics of template application. Note the use of the fact that both TrivPat and PatExp are
subsets of Pat ∩ Exp to avoid the need for new rules to explain their semantics.

Declarations E ` dec ⇒ E′/p

E ` valbind ⇒ VE

E ` val valbind ⇒ ({},VE , {}, {})
(129)

E ` constbind ⇒ VE ,PE

E ` const constbind ⇒ ({},VE ,PE , {})
E ` projbind ⇒ PE

E ` proj projbind ⇒ ({}, {},PE , {})
` datbind ⇒ CE

E ` datatype datbind ⇒ ({},CE ,CE , {})
E ` exbind ⇒ EE

E ` exception exbind ⇒ ({},EE ,EE ,EE )
(130)

These rules are concerned with ensuring that the projection (and value) environments are correctly
maintained. Note that these rules take into account the discussion in section 2.9 of the Commentary.

Constant Bindings E ` constbind ⇒ VE ,PE/p

(SE ,VE ,PE ,EE ) ` patexp in Exp⇒ v 〈(SE ,VE ,PE ,EE ) ` constbind ⇒ VE ′,PE ′〉
(SE ,VE ,PE ,EE ) ` con = patexp〈and constbind〉 ⇒

{con 7→ v}〈+VE ′〉, {con 7→ (patexp,PE )}〈+PE ′〉

〈(SE ,VE ,PE ,EE ) ` constbind ⇒ VE ′,PE ′〉
(SE ,VE ,PE ,EE ) ` con trivpat = patexp〈and constbind〉 ⇒

{con 7→ (trivpat , patexp,VE )}〈+VE ′〉, {con 7→ (trivpat , patexp,PE )}〈+PE ′〉
Two rules describe the semantics of symbolic constant declarations, one for templates and the other
for constants. Note that constants are evaluated as soon as they are declared.

27



Projection Bindings E ` projbind ⇒ PE/p

〈(SE ,VE ,PE ,EE ) ` projbind ⇒ PE ′〉
(SE ,VE ,PE ,EE ) ` proj = pat〈and projbind〉 ⇒ {proj 7→ (pat ,PE )}〈+PE ′〉

〈(SE ,VE ,PE ,EE ) ` projbind ⇒ PE ′〉
(SE ,VE ,PE ,EE ) ` proj trivpat = pat〈and projbind〉 ⇒ {proj 7→ (trivpat , pat ,PE )}〈+PE ′〉

Two rules describe the semantics of symbolic projection declarations, one for nullary projections
and the other for non-nullary projections.

Datatype Bindings ` datbind ⇒ CE/p

` conbind ⇒ CE 〈` datbind ⇒ CE ′〉
` tyvarseq tycon = conbind〈and datbind〉 ⇒ CE〈+CE ′〉

This rule, which gives the dynamic semantics of datatype declarations, is required, in essentially this
form, even in the semantics of the Definition. It is included here only because it does not appear in
the Definition. See section 2.9 of the Commentary, for a discussion of the issues involved.

Constructor Bindings ` conbind ⇒ CE/p

〈` conbind ⇒ CE ′〉
` con〈〈of ty〉〉〈—conbind〉 ⇒ {con 7→ con}〈+CE ′〉

Like the rule that gives the dynamic semantics of datatype declarations, a rule of this form is required
in the semantics of the Definition, but not included there. See section 2.9 of the Commentary, for a
discussion of the issues involved.

Atomic Patterns E, v ` atpat ⇒ VE/FAIL

PE ′ = PE of E PE ′(longcon) = con v = con

E, v ` longcon ⇒ {}
(144)

PE ′ = PE of E PE ′(longcon) = con v 6= con

E, v ` longcon ⇒ FAIL
(145)

PE ′ = PE of E PE ′(longcon) = en v = en

E, v ` longcon ⇒ {}
PE ′ = PE of E PE ′(longcon) = en v 6= en

E, v ` longcon ⇒ FAIL

PE ′ = PE of E PE ′(longcon) = (patexp,PE ′′)
PE ′′, v ` patexp in Pat⇒ VE ′/FAIL

E, v ` longcon ⇒ VE ′/FAIL
(∗)

PE ′ = PE of E PE ′(longproj ) = con v = con

E, v ` longproj ⇒ {}
PE ′ = PE of E PE ′(longproj ) = con v 6= con

E, v ` longproj ⇒ FAIL

PE ′ = PE of E PE ′(longproj ) = en v = en

E, v ` longproj ⇒ {}

28



PE ′ = PE of E PE ′(longproj ) = en v 6= en

E, v ` longproj ⇒ FAIL

PE ′ = PE of E PE ′(longproj ) = (patexp,PE ′′)
PE ′′, v ` patexp in Pat⇒ VE ′/FAIL

E, v ` longproj ⇒ VE ′/FAIL

PE ′ = PE of E PE ′(longexcon) = en v = en

E, v ` longexcon ⇒ {}
(146)

PE ′ = PE of E PE ′(longexcon) = en v 6= en

E, v ` longexcon ⇒ FAIL
(147)

The first five rules give the only substantive change. The remaining rules echo these rules for
projections and exception constructors. We cannot simply use longid because variables are treated
differently. Note the use of the projection environment in the interpretation of constants. In rule ∗,
VE ′ is always empty, because patexp contains no variables.

Patterns E, v ` pat ⇒ VE/FAIL

PE ′ = PE of E PE ′(longcon) = con
v = (con, v′) E, v′ ` atpat ⇒ VE ′/FAIL

E, v ` longcon atpat ⇒ VE ′/FAIL
(154)

PE ′ = PE of E PE ′(longcon) = con v 6∈ {con} ×Val

E, v ` longcon atpat ⇒ FAIL
(155)

PE ′ = PE of E PE ′(longcon) = en
v = (en, v′) E, v′ ` atpat ⇒ VE ′/FAIL

E, v ` longcon atpat ⇒ VE ′/FAIL

PE ′ = PE of E PE ′(longcon) = en v 6∈ {en} ×Val

E, v ` longcon atpat ⇒ FAIL

PE ′ = PE of E PE ′(longcon) = (trivpat , patexp,PE ′′)
PE ′′, v ` patexp in Pat⇒ VE ′ VE ′ ` trivpat in Exp⇒ v′ E, v′ ` atpat ⇒ VE ′′/FAIL

E, v ` longcon atpat ⇒ VE ′′/FAIL

PE ′ = PE of E PE ′(longcon) = (trivpat , patexp,PE ′′)
PE ′′, v ` patexp in Pat⇒ FAIL

E, v ` longcon atpat ⇒ FAIL

PE ′ = PE of E PE ′(longproj ) = con
v = (con, v′) E, v′ ` atpat ⇒ VE ′/FAIL

E, v ` longproj atpat ⇒ VE ′/FAIL
(154)

PE ′ = PE of E PE ′(longproj ) = con v 6∈ {con} ×Val

E, v ` longproj atpat ⇒ FAIL
(155)

PE ′ = PE of E PE ′(longproj ) = en
v = (en, v′) E, v′ ` atpat ⇒ VE ′/FAIL

E, v ` longproj atpat ⇒ VE ′/FAIL

PE ′ = PE of E PE ′(longproj ) = en v 6∈ {en} ×Val

E, v ` longproj atpat ⇒ FAIL

29



PE ′ = PE of E PE ′(longproj ) = (trivpat , patexp,PE ′′)
PE ′′, v ` patexp in Pat⇒ VE ′ VE ′ ` trivpat in Exp⇒ v′ E, v′ ` atpat ⇒ VE ′′/FAIL

E, v ` longproj atpat ⇒ VE ′′/FAIL

PE ′ = PE of E PE ′(longproj ) = (trivpat , patexp,PE ′′)
PE ′′, v ` patexp in Pat⇒ FAIL

E, v ` longproj atpat ⇒ FAIL

PE ′ = PE of E PE ′(longexcon) = en
v = (en, v′) E, v′ ` atpat ⇒ VE ′/FAIL

E, v ` longexcon atpat ⇒ VE ′/FAIL
(156)

PE ′ = PE of E PE ′(longexcon) = en v 6∈ {en} ×Val

E, v ` longexcon atpat ⇒ FAIL
(157)

Rule 158, which gives the semantics of ref when it appears in patterns, must be omitted. The
first five rules above give the only other substantive changes. The remaining rules echo these rules
for projections and exception constructors. We could have just used longid (since the syntax of the
language doesn’t allow variables to be applied in patterns), but chose not to for the sake of symmetry
with the atomic case. Again, note the use of the projection environment in the interpretation of
constants.

A.4.2 Modules

The only changes required here are some minor modifications to the way interfaces are defined and
built to ensure that structures are cut down appropriately by signatures.

Interfaces now contain an injection (value) and a projection component.

(IE , vars, projs, excons) or I ∈ Int = IntEnv × Fin(Id)× Fin(Id)× Fin(ExCon)

Inter and ↓ are changed to handle projection environments and the projection component of inter-
faces.

Inter(SE ,VE ,PE ,EE ) = (IE ,Dom VE ,Dom PE ,Dom EE )

where IE is as before, IE = {strid 7→ InterE; SE (strid) = E}.

(SE ,VE ,PE ,EE ) ↓ (IE , vars, excons, projs) = (SE ′,VE ′,PE ′,EE ′)

where SE’ is as before, SE′ = {strid 7→ E ↓ I; SE (strid) = E and IE (strid) = I}, and

VE ′ = VE ↓ vars

PE ′ = PE ↓ projs

EE ′ = EE ↓ excons

with ↓ now denoting function domain restriction.

We also provide the following semantic rules that ensure that the appropriate identifiers are
added to the interface for each specification.

Specifications IB ` spec ⇒ I

` valdesc ⇒ vars

IB ` val valdesc ⇒ ({}, vars, ∅, ∅)
(176)

` constdesc ⇒ cons

IB ` const constdesc ⇒ ({}, cons, cons, ∅)

30



` projdesc ⇒ projs

IB ` proj projdesc ⇒ ({}, ∅, projs, ∅)
C ` datdesc ⇒ cons

IB ` datatype datdesc ⇒ ({}, cons, cons, ∅)
C ` exdesc ⇒ excons

IB ` exception exdesc ⇒ ({}, excons, excons, excons)
(177)

Constant Descriptions ` constdesc ⇒ cons

〈` constdesc ⇒ cons〉
` con〈and constdesc〉 ⇒ con〈∪cons〉

Projection Descriptions ` projdesc ⇒ projs

〈` projdesc ⇒ projs〉
` proj 〈and projdesc〉 ⇒ proj 〈∪projs〉

Datatype Descriptions ` datdesc ⇒ cons

` condesc ⇒ cons 〈` datdesc ⇒ cons ′〉
` condesc〈and datdesc〉 ⇒ cons〈∪cons ′〉

Constructor Descriptions ` condesc ⇒ cons

〈` condesc ⇒ cons〉
` con〈—condesc〉 ⇒ con〈∪cons〉

A.5 References

As commented at the beginning of the appendix, we have restricted our attention to a language
without references. This is actually a greater restriction than is really needed. It suffices to treat
ref as a variable rather than a constructor. The required changes to the dynamic semantics presented
earlier are quite simple. First, addresses and the special value := must be restored to the set of
values. Additionally, two new special values are required, ref and ! . Rules 114 and 115 are restored.
A new rule for ! is also required.

s, E ` exp ⇒ ! s, E ` atexp ⇒ a

s,E ` exp atexp ⇒ s(a)

The initial status of ref is v rather than c, the initial value environment, VE ′
0, is defined by

VE ′
0 = {id 7→ id ; id ∈ BasVal}+ {:= 7→ :=}+ {ref 7→ ref}+ {! 7→ !}.

The Definition’s declaration of ! in terms of ref, which is no longer valid, is also removed.

31


