
Metaprogramming with Traits

John Reppy and Aaron Turon

University of Chicago
{jhr,adrassi}@cs.uchicago.edu

Abstract. In many domains, classes have highly regular internal struc-
ture. For example, so-called business objects often contain boilerplate
code for mapping database fields to class members. The boilerplate code
must be repeated per-field for every class, because existing mechanisms
for constructing classes do not provide a way to capture and reuse such
member-level structure. As a result, programmers often resort to ad hoc
code generation. This paper presents a lightweight mechanism for spec-
ifying and reusing member-level structure in Java programs. The pro-
posal is based on a modest extension to traits that we have termed
trait-based metaprogramming. Although the semantics of the mechanism
are straightforward, its type theory is difficult to reconcile with nomi-
nal subtyping. We achieve reconciliation by introducing a hybrid struc-
tural/nominal type system that extends Java’s type system. The pa-
per includes a formal calculus defined by translation to Featherweight
Generic Java.

1 Introduction

In mainstream object-oriented languages, programming amounts to class cre-
ation. While a programmer may write classes from scratch, good style dictates
that existing code be used when possible. Several mechanisms exist to aid the
programmer in this endeavor: inheritance combines existing classes with ex-
tensions or modifications; mixins and traits capture such extensions, allowing
them to be reused; and generic classes are instantiated with type parameters
to produce specialized classes. Each of these mechanisms allows programmers
to capture and reuse useful structure at the level of classes, but they provide
limited support for capturing structure at the level of class members.

In many domains, classes have highly regular internal structure. As a simple
example, consider a thread-safe class in which all methods obtain a single lock
before executing. Manually writing this boilerplate code results in clutter and
rigidity: the locking strategy cannot easily be changed after the fact. In Java,
thread-safe methods were considered important enough to warrant the synchro-
nized keyword, but adding keywords is a kind of magic that only the language
designer, not the language user, can perform. In this paper, we propose a mech-
anism that allows programmers to capture, reuse, and modify such member-level
patterns in a coherent way.

The synchronized pattern consists of behavior common to otherwise unre-
lated members of a class. Another common member-level pattern is when a class

class Customer {

}

String phone
String getPhone()
void setPhone(String)
void findByPhone(String)

String name
String getName()
void setName(String)
void findByName(String)

void load(int id) {
 ... do lookup ...

}

void save() {
 ...
}

name = results.getString("name");

phone = results.getString("phone");

Fig. 1. A more complex member-level pattern

contains collections of similar members that are intended to match a domain
model. For example, consider a Customer class that provides access to a cus-
tomer table in a database. For each field present in the table, the Customer class
will contain a cluster of members: for the name field, the Customer class might
contain an instance variable name and methods getName, setName, and findByName.
Moreover, the class will provide load and save methods that load and store the
class’s instance variables. This situation is shown diagrammatically in Figure 1.
While additional behavior may be needed for particular fields, it is desirable to
abstract the common structure and implementation; once defined, the abstrac-
tion answers the question “what does it mean for a class to provide access to a
database field?” We show how this can be done with our mechanism at the end
of Section 3.

Our proposal is based on a modest extension to traits [9] that allows pro-
grammers to write trait functions, which are parameterized by member names.
Trait functions are applied at compile time to build classes, supporting what
we term trait-based metaprogramming. In describing our mechanism as a form
of metaprogramming, we mean that (1) it operates entirely at compile-time and
(2) it allows both generation and introspection of code.1 There are many frame-
works available for metaprogramming; our proposal’s strength is its singular
focus on member-level patterns. We believe that the territory between classes
and individual class members is a fruitful place to do metaprogramming, and
by focusing our efforts there, we are able to provide a succinct mechanism with
good guarantees about the generated code. A detailed discussion of related work
is given in Section 5.

The language design is presented informally in Section 3. In Section 4 we
model our mechanism as an extension to Featherweight Generic Java (FGJ), giv-

1 This paper focuses on generation; we discuss introspection in a technical report [28].

ing our semantics as a translation to FGJ. While the translation is very simple,
its type theory is difficult to reconcile with nominal subtyping because abstrac-
tion over member labels is allowed. We achieve reconciliation by introducing a
hybrid structural/nominal type system that extends Java’s type system. The
type system is not strongly tied to our broader proposal, and we hope that the
ideas will find broad application in metaprogramming systems for nominally-
subtyped languages, a possibility we discuss in Section 5.2.

2 Background

Traits were originally introduced by Schärli et al. in the setting of Smalltalk [9]
as a mechanism for sharing common method definitions between classes. In their
proposal, a trait is simply a collection of named methods. These methods cannot
directly reference instance variables; instead, they must be “pure behavior.” The
methods defined in a trait are called the provided methods, while any methods
that are referenced, but not provided, are called required methods. An important
property of traits is that while they help structure the implementation of classes,
they do not affect the inheritance hierarchy. In particular, traits are distinguished
from mixins [5] because they can be composed without the use of inheritance.2

Traits can be formed by definition (i.e., listing a collection of method definitions)
or by using one of several trait operations:

Symmetric sum merges two disjoint traits to create a new trait. 3

Override forms a new trait by layering additional methods over an existing trait.
This operation is an asymmetric sum. When one of the new methods has the
same name as a method in the original trait, the override operation replaces
the original method.

Alias creates a new trait by adding a new name for an existing method. This
operation is not renaming, in that it does not replace references to the old
name with the new one.

Exclusion forms a new trait by removing a method from an existing trait. Com-
bining the alias and exclusion operations yields a renaming operation, al-
though the renaming is shallow.

The other important operation on traits is inlining, the mechanism whereby
traits are integrated with classes. This operation merges a class C, a trait, and
additional fields and methods to form a new subclass of C. Often, the additional
methods, called glue methods [9], provide access to the newly added fields. The
glue methods, plus the methods inherited from C, provide the required methods
of the trait. An important aspect of traits is that the methods of a trait are only
loosely coupled; they can be removed and replaced by other implementations.

2 Bracha’s Jigsaw [4], one of the first formal presentations of mixins, supports a similar
notion of composition, but most other constructs under the name “mixin” do not.

3 Smalltalk traits allow name conflicts, but replace the conflicting methods with a
special method body conflict that triggers a run-time error if evaluated.

Traits provide a lightweight alternative to multiple inheritance, and they
have been the focus of much recent interest, including formal calculi [11, 20]
and other language designs for traits [24, 27, 23, 14]. While the details of these
various mechanisms vary, they all share a focus on sharing common method
implementations across unrelated classes. Our design shifts the focus toward
sharing member-level patterns that can occur within a single class.

3 A design for trait-based metaprogramming

We present our design in the setting of Java, though there is little that is Java-
specific. Like other language designs that incorporate traits, a trait in our lan-
guage has a collection of members it provides and a collection of members it
requires. What is new in our design is that traits may be parameterized over
the names and types of these members: our traits are really trait functions. The
basic form of a trait is as follows:

trait trait-name (member-name parameters, type parameters, value parameters)
requires { requirements }

provides { member definitions }

Note that traits may be parameterized over values, such as constant values that
vary between instances of a member-level pattern. Member-name parameters
are prefixed with “$” so that member-name variables never shadow actual mem-
ber names; in our experience, having a clear distinction between obj.foo and
obj.$foo makes trait code easier to understand.

The requires and provides sections also differ from previous designs. In ad-
dition to giving the signatures of required class members, the requirements sec-
tion is also used to place constraints on type parameters, as illustrated in the
DelegateT example near the end of this section. Another departure in our design
is that the provides section can contain field declarations. When such declara-
tions are inlined in a class, the class’s constructors are responsible for initializing
them. Traits are inlined using the use construct, which is syntactically just an-
other form of member definition. Since traits are actually functions, the use
construct applies the trait function to its arguments and inlines the resulting
member definitions. As shown below, the provides section of a trait can also
have use declarations, which is how traits are composed. Conflicting method or
field declarations within the body of a trait or class, whether defined directly or
inlined from traits, are rejected by the type system.

3.1 Some illustrative examples

In the remainder of this section, we present a series of examples that illustrate
our mechanism and the kinds of patterns it captures. We begin by with the
notion of a “property” — a field along with getter and setter methods. In this
example, the variables $f, $g, and $s range over field and method names, while
the variable T ranges over types. The access modifiers public and private deter-
mine the visibility the members will have after they are inlined into a class:

trait PropT ($f, $g, $s, T)

provides {

private T $f;

public void $s (T x) { $f = x; }

public T $g () { return $f; }

}

We can use PropT to define a 2D point class by “using” it twice with different
member names:

class Point2 {

use PropT (x, getX, setX, int);

use PropT (y, getY, setY, int);

Point2 () { x = 0; y = 0; }

}

Note also that the Point2 constructor initializes the fields introduced by the
traits.

Next, we revisit the synchronized example from Section 1:
trait SyncT ($op, R, A...)

requires {

ThisType implements {

Mutex lock;

R $op (A...);

}

}

provides {

override public R $op (A...) {

lock.acquire();

R res = outer.$op (...);

lock.release();

return res;

}

}

This example illustrates several features of our design. Often, as here, we use a
trait to wrap behavior around methods in a way that does not depend on the
parameters or return type of the method. Since Java does not treat parameter
sequences as tuples, we introduce the notation “x...” as a way to name parame-
ter sequences with heterogeneous types, where the arity may vary from instance
to instance. This notation can be used in the signatures of methods; within their
bodies, the actual value of the parameter sequence is denoted by “...”. When
the trait is inlined, a tuple of types is given for the parameter sequence, as in
the following example that synchronizes a string comparison method:

use SyncT (compare, int, (String, String));

The second feature to note is the ThisType keyword, which denotes the class
that is using the trait. Here, we use ThisType to state the requirement that the
class provides the lock field and an implementation of the $op method to be
overridden by the trait. The scope of ThisType acts is the entire trait, so it may
appear as an argument or return type of a method, for example. In particular,
this means that traits can provide binary methods.

The last feature is the use of the override and outer keywords in the dec-
laration of the provided method. The override keyword states that the method
is replacing an existing method in the class, which could either be inherited or
locally defined. The outer keyword is used to invoke the version of the method
that is being overridden. The outer keyword is similar to super, except that it
may only be used to invoke methods that have the override annotation. After a
method is overridden by inlining a trait, it is considered locally defined, and so
it can be overridden again by inlining another trait; this technique can be used
to concatenate partial method implementations from multiple traits, as we show
in a later example.

The following class uses the SyncT trait to implement an atomic test-and-set
operation:

class C {

private boolean x;

private Mutex lock;

boolean testAndSet () { boolean t = x; x = true; return t; }

use SyncT (testAndSet, boolean, ());

C () { lock = new Mutex(); x = false; }

}

Note that without the override annotation in the SyncT trait, there would be a
conflict between the definition of testAndSet given in the body of C and the one
provided by SyncT.

The requires clause of a trait can also be used to impose constraints on any
type parameters the trait might have. These constraints can be nominal (using
extends) or structural (using implements), with the latter allowing us to capture
patterns like delegation, as in the following example:

trait DelegateT ($m, $f, T, A..., R)

requires {

T implements { R $m (A...); }

ThisType implements { T $f; }

}

provides {

R $m (A...) { return $f.$m(...); }

}

We conclude with a more substantial example: the Customer class from Sec-
tion 1. Classes like Customer are quite common in database applications, where
relational databases are mapped onto the class hierarchy. Usually, such classes
include large amounts of boilerplate code for performing this mapping. Numer-
ous mechanisms have been proposed to alleviate this burden, including code
generation and other forms of metaprogramming; sophisticated frameworks like
Hibernate4 and Ruby on Rails5 are currently used to automate this mapping.

Figure 2 presents a code fragment using trait-based metaprogramming to
tackle the mapping problem. Our solution uses two related traits: BObjectT fac-
tors out the code needed to query an SQL database, and StringFieldT maps a

4 http://www.hibernate.org/
5 http://www.rubyonrails.org/

trait BObjectT(String table)

provides {

protected void loadData(ResultSet r) {}

protected void findBy(String whereClause) throws DataNotFound {

Connection con = ... open connection to database ...
Statement stmt = con.createStatement();

String sql = "SELECT * FROM " + table + " WHERE " + whereClause;

ResultSet r = stmt.executeQuery(sql);

if (r.next()) {

loadData(r);

} else {

throw new DataNotFound();

}

}

}

trait StringFieldT($f, $g, $s, $fBy, String fieldName, int length)

requires {

ThisType implements {

void loadData(ResultSet r);

void findBy(String whereClause) throws DataNotFound;

}

}

provides {

use PropT($f, $g, $s, String);

override String $s(String x) throws FieldTooSmall {

if (x.length() > length) throw new FieldTooSmall();

outer.$s(x);
}

override void loadData(ResultSet r) {

$f = r.getString(fieldName);

outer.loadData(r);
}

void $fBy(String x) throws DataNotFound, FieldTooSmall {

if (x.length() > length) throw new FieldTooSmall();

findBy(fieldName + " = ’" + x + "’");

}

}

class Customer {

use BObjectT("customers");

use StringFieldT(name, getName, setName, findByName, "name", 40);

use StringFieldT(addr, getAddr, setAddr, findByAddr, "address", 40);

use StringFieldT(phone, getPhone, setPhone,

findByPhone, "phone_num", 40);

... etc ...
}

Fig. 2. Business objects: a sketch

field in an object to a string field in a database. The latter is a trait function with
value parameters: fieldName and length. As a whole, the example demonstrates
an idiom allowing traits to define “partial methods:” a base trait(BObjectT) is
used to seed a class with an empty implementation of a method (loadData). Then
a trait function (StringFieldT) is applied multiple times, each time extending
the method’s behavior before invoking the outer implementation.

3.2 From no parameters to too many?

One apparent downside of the proposed mechanism is that, having introduced
parameters, we need too many of them in order to encode interesting patterns.
The StringFieldT trait, for example, takes a total of six parameters, and one
can easily imagine adding more for a more sophisticated implementation. This
problem is exacerbated by parameter sequences, where the user of a trait must
tediously spell out a tuple of types. In many of these cases, however, the appropri-
ate value for a parameter can be inferred or explicitly computed. For instance,
if the $f parameter to StringFieldT is name, we can derive that $g should be
getName, $s should be setName, and so on. Given a few primitives for label ma-
nipulation, these rules are easy to write down. Likewise, the type arguments to
the SyncT trait can be inferred based on the actual method that the trait over-
rides, as long as no method overloading has occurred. Having the compiler infer
these arguments makes our mechanism less cumbersome to use, and we take up
the idea in a companion technical report [28]; as it turns out, this leads directly
to a powerful form of pattern matching for trait functions.

4 A formal model: Meta-trait Java

Having informally described trait-based metaprogramming, we proceed to the
formal model. The primary goal of this model is to study the type theory of
our mechanism in the context of Java’s nominal type system. Thus, we model
only the core features of our proposal: we drop super, outer, and variable-arity
parameters, since they do not substantially alter the type system, but do clutter
its presentation. In earlier work, we presented a detailed semantics for compiling
traits with hiding and renaming [25]; here, we give a simpler semantics that
performs renaming only through trait functions. The relationship between the
two models is discussed in Section 5.3.

Our calculus, MTJ, is essentially an extension of Featherweight Generic Java
(FGJ); we drop FGJ’s type casts and method type parameters since they do
not interact with our type system in any interesting way.6 Featherweight Java
was designed to capture the minimal essence of Java, with particular focus on
its type system and proof of soundness, and FGJ extends FJ with generics [17].
Our calculus adds traits and trait functions to FGJ, along with the additional

6 For the remainder of this paper, when we refer to FGJ, we mean this restricted
calculus.

C ::= class c<α / N> / N {K D} class declaration

K ::= c(T f) {super(f); this.f = f;} constructor declaration

A ::= trait t($l, α) req {R} prov {D} trait function decl.

R ::= α / N implements {F S} trait requirement decl.

S ::= <α / N> T m(T x); method signature decl.

E ::= t(l, T) trait function application

| E drop l member exclusion

| E alias m as m method aliasing

D ::= F | M | use E; member declaration

F ::= T f; field declaration

M ::= T m(T x) {return e;} method declaration

e ::= x | e.f | e.m(e) | new N(e) expression
v ::= new N(e) value

N, P ::= c<T> nonvariable type name
T, U ::= N | α type name

Fig. 3. MTJ: syntax

type-theoretic machinery needed to support those features. Like FGJ, we omit
assignment, interfaces, overloading, and super-sends. MTJ is not equipped with
its own dynamic semantics; instead, we define a translation from MTJ programs
to FGJ programs. The type system, however, is given directly, and it conserva-
tively extends FGJ’s type system.

4.1 Syntax

The syntax of MTJ is given in Figure 3; portions highlighted in grey are exten-
sions to FGJ’s syntax. For the calculus, we abbreviate extends to /, requires
to req, and provides to prov. The metavariables c and d range over class names
and t ranges over trait names. For field names and method names (collectively
called labels), we separate variables from concrete names, as follows:

Concrete Variable Either

Field names f, g $f f

Method names m $m m

Member names (labels) l $l l, k

Note we assume the sets of field and method names are disjoint. Object is a class
name, but cannot be defined in an MTJ program; this is a variable name, but
cannot occur as a parameter.

To keep notation compact, we make heavy use of overbar sequence nota-
tion: f denotes the possibly empty sequence f1, . . . , fn, for example. Pairs of se-
quences are interleaved: T f stands for T1 f1, . . . , Tn fn, and this.f = f; stands for
this.f1 = f1; . . . ;this.fn = fn;. Sequences are delimited as necessary to match
Java syntax. Sequences of parameters are also assumed to contain no duplicate
names. The empty sequence is denoted by •, and sequence concatenation by
the · operator. Finally, sequences with named elements are sometimes used as
finite maps taking names to sequence elements. Thus, D(foo) denotes the field
or method declaration in D named foo (unambiguous because method and field
names must be distinct).

A class table CT is a map from class names c to class declarations. Likewise,
a trait table TT maps trait names t to trait declarations. A program is a triple
(CT,TT, e). In defining the semantics of MTJ, we assume fixed, global tables
CT and TT. We further assume that these tables are well-formed : the class table
must define an acyclic inheritance hierarchy, and the trait table must define an
acyclic trait use graph.

4.2 Translation to FGJ

An FGJ program is an MTJ program with an empty trait table (and thus no
trait use declarations). The semantics of MTJ are given by a translation function
[[−]] that takes MTJ class declarations to FGJ class declarations. The transla-
tion flattens trait use declarations into sequences of FGJ member declarations,
incorporating the bodies of traits into the classes in which they are used. As a
consequence, the so-called flattening property [22] holds by construction: class
members introduced through traits cannot be distinguished from class members
defined directly within a class.7

Much of the work of translation is performed by substitution. Since trait
functions are strictly first-order, the definitions of the various substitution forms
(types for types, labels for labels, etc.) are straightforward and hence omitted.

The details of the translation are shown in Figure 4. Class declarations are
translated by flattening the class body, keeping track of the name of the class
so that any occurrences of ThisType can be replaced by it. Fields and methods
are already “flat,” so the only interesting member-level translation is for trait
use declarations. To flatten a trait function application, we first substitute the
actual parameters for the formal parameters within the trait body, and then
flatten the result. To drop a member for an inlined trait, we simply remove it
from the flattened collection of member delcarations. There is a subtlety in the
semantics for aliasing: when recursive methods are aliased, do their recursive
invocations refer to the original method or to the alias? We have chosen the
latter interpretation, following Liquori and Spiwack [20]. This choice does not
affect our type system, but does affect finer-grained type systems that track
individual method requirements [25].

7 A similar property, called the copy principle, has been defined for mixins [2].

[[class c<α / N> / N {K D}]] = class c<α / N> / N {K [[D]]c<α>}

[[F]]N = F

[[M]]N = M

[[use E;]]N = [[E]]N

[[t(l, T)]]N = [[[l/$l, T/α, N/ThisType]D]]N

where TT(t) = trait t($l, α) req {R} prov {D}
[[E drop l]]N = [[E]]N \ l

[[E alias m as m′]]N = [[E]]N · [m′/m] ([[E]]N (m))

Fig. 4. MTJ to FGJ translation

Note that translation is guaranteed to terminate, since the trait use graph is
required to be acyclic.

4.3 Types in MTJ

We now turn to the static semantics for MTJ. One approach for constructing a
type system for traits is to defer type checking of trait members until the trait
is used in a class, then check the trait members as if they were declared within
that class [20]. While this approach is pleasantly simple, requiring no changes
to the existing type system for classes, it has at least one significant downside:
type errors in a trait function may not be detected until that function is used,
perhaps by a programmer using a library of such trait functions.

Our goal, in contrast, is to subsume FGJ’s type system while separately type
checking trait definitions, expressions, and uses. To achieve this goal, our calculus
must give types to traits and trait expressions. Trait types must also be available
at the expression level, because this and ThisType may appear in trait method
bodies. In a structural type system, these requirements can be easily met by
introducing incomplete object types to track trait requirements and assigning
these types to traits [11, 3]; the type of a trait would then be a (structural)
supertype of all classes that include that trait. Determining the status of trait
types in a nominal type system is more difficult. One route is to associate a type
name with each trait declaration [27], as is done for class declarations. Typing
trait expressions involving aliasing or exclusion, however, is awkward with this
approach.

The situation in MTJ is further complicated by the fact that trait functions
are abstracted over labels and types, and may constrain their type parameters to
implement interfaces that include abstract labels (Section 3). In principle these
features could be supported in a purely nominal way, but we believe that the
resulting type system would be too brittle and cumbersome, and would limit the
programmer’s ability to use existing classes as type parameters to traits.

N, P ::= c<T> nonvariable type name

T, U ::= N | α type name

τ ::= N � σ object type

| T type name

| ∀α <: τ .τ bounded polymorphic type

| τ → τ function/method type

|
Q

$l.τ label-dependent type

σ ::=
˙
l : µl

l∈L¸
R object signature

µ ::= T | T → T object member signature

R ::= {l} required member set

Fig. 5. MTJ: type syntax

In view of these concerns, we propose a hybrid structural/nominal type sys-
tem. Purely nominal type systems must still check the structure of types to
ensure soundness; the pertinent structure does not appear in the syntax of the
types, but rather through auxiliary machinery (e.g., fields and mtype in FGJ).
Our type system exposes structural types syntactically: an object type N � σ
is a pair of a type name N and an object signature σ. If an object has type
N �σ, then it is nominally a subtype of N , and structurally a subtype of σ. The
nominal component is used for checking method arguments and return values,
because in FGJ these constructions impose nominal subtyping constraints, while
the structural component is used for checking field accesses and method invo-
cations, corresponding to the structural-checking machinery in FGJ. The full
syntax of MTJ types is given in Figure 5.

Of course, there is a relationship between the two components of an object
type: for each nominal type N — for each class — there is a signature σN

giving its interface. We call this signature the canonical signature for N . The
purpose of the signature component in an object type is to impose additional
structural constraints on the type of the object, beyond those already imposed
by its canonical signature. These additional constraints can only be introduced
through the requires and provides declarations in a trait function; thus, the
constraints are only placed on type variables (including ThisType, which we
treat as a type variable). The type variables in a trait are replaced by class
names when trait function application is translated to FGJ. Our type system
ensures that the constraints on these type variables are satisfied by the eventual
class name arguments, ensuring the type-safety of the resulting FGJ code.

Notice that types τ include both object types and type names. A type name
is either a nonvariable type name (which is a class name, possibly applied to
type parameters) or a type variable. A nonvariable type name N stands for the
object type N � σN that includes the canonical signature of the class. A type
variable α stands for an unknown (but bounded) object type. The surface syntax

of the language prevents trait and class member declarations from introducing
new object types: member declarations can only refer to named types. Thus,
in the type syntax, object signatures are constrained to use type names rather
than arbitrary object types. This constraint allows us to give a tidy account of
recursive object types, as we shall see later.

An object signature σ is annotated with a set R of member names. In the
object type for a trait, this set contains the name of all required members. For
example, consider the following trait BarT, which requires a foo method and
provides a bar method:

trait BarT

requires { ThisType implements { Object foo(Object x); } }

provides { Object bar(Object x) { return foo(foo(x)); } }

The type of BarT is Object�〈foo : Object → Object, bar : Object → Object〉{foo}.
The nominal component of the type is Object because BarT places no nominal
constraints on ThisType. Note that expression-level typing does not distinguish
between the provided and required members of an object type, because traits
are ultimately incorporated into classes that must provide all required members.

Classes are also given object types, as with the following polymorphic class [17]:
class Pair<X / Object, Y / Object> / Object {

Pair(X fst, Y snd) { super(); this.fst=fst; this.snd=snd; }

X fst; Y snd;

Pair<X,Y> setfst(X newfst) { return new Pair<X,Y>(newfst, snd); }

}

Our type system will give the following type to Pair:

∀X <: Object � 〈〉∅ , Y <: Object � 〈〉∅ . Pair<X,Y> �

〈
fst : X, snd : Y,
setfst : X → Pair<X,Y>

〉
∅

Trait functions add an additional complication: the result type of a trait func-
tion may depend on its label parameters, but these labels are unknown values,
not unknown types. We introduce a very limited form of dependent types [15]
to address this issue. In our calculus, the dependent type

∏
$l.τ represents a

function that takes a label parameter and yields a value of type τ , where $l may
occur free in τ . For example, consider the following trait function:

trait GetterT ($f, $g, T)

requires { ThisType implements { T $f; } }

provides { T $g() { $f; } }

In MTJ, GetterT has the type∏
$f, $g . ∀T <: Object � 〈〉∅ . Object � 〈$f : T, $g : • → T〉{$f}

To give the typing judgments of the system, we need a few definitions. A
context Γ is a sequence of abstract labels $l and variable typings x : T ; we write
$l ∈ Γ and Γ (x) = T , respectively, to denote their occurrence in Γ . Each label
or variable may only occur once in Γ . A type context ∆ is a finite map from type
variables α to types τ . Just as we fixed class and trait tables in the translation
semantics, we fix a global class type table CTy and trait type table TTy for the

Nominal subtyping: ∆ ` T l T

CT(c) = class c<α / N> / N { . . . }
∆ ` c<T> l [T/α]N

∆(α) = N � σ

∆ ` α l N

∆ ` T1 l T2 ∆ ` T2 l T3

∆ ` T1 l T3 ∆ ` T l T

Structural subtyping: ∆ ` σ <: σ

µm = T → T µ′m = T → T ′ ∆ ` T l T ′

∆ `
˙
m : µm, l : µl

l∈L¸
R <:

˙
m : µ′m, l : µl

l∈L¸
R

L1 ⊇ L2 R1 ⊆ (R2 ∪ (L1 \ L2))

∆ `
˙
l : µl

l∈L1
¸
R1

<:
˙
l : µl

l∈L2
¸
R2

∆ ` σ1 <: σ2 ∆ ` σ2 <: σ3

∆ ` σ1 <: σ3

General subtyping: ∆ ` τ <: τ

∆ ` N1 l N2 ∆ ` σ1 <: σ2

∆ ` N1 � σ1 <: N2 � σ2 ∆ ` α <: ∆(α)

∆ ` τ1 <: τ2 ∆ ` τ2 <: τ3

∆ ` τ1 <: τ3

Fig. 6. MTJ: subtyping

static semantics. The former takes class names to types, the latter takes trait
names to types. These tables play a role similar to a store typing: they give each
class and trait a presumed type, allowing us to check mutually-recursive class
definitions. Ultimately, we ensure that the actual type of each class and trait
matches the type given in the table. Formally, we regard the tables as implicit
contexts for our typing judgments.

4.4 Subtyping

MTJ has three forms of subtyping: nominal subtyping, written ∆ ` N1 l N2,
structural subtyping, written ∆ ` σ1 <: σ2, and general subtyping, written ∆ `
τ1 <: τ2. These relations are defined in Figure 6.

The nominal subtyping relation is just FGJ’s subtyping relation: it defines
inheritance-based subtyping, which is the reflexive-transitive closure of the ex-
tends relation.

Structural subtyping applies to object signatures. We support both depth
and width subtyping. For depth subtyping, we follow FGJ (and GJ) in providing
only covariant subtyping on methods. We also consider a signature with fewer
requirements to be a subtype of the same signature with more requirements; the
reasons for this choice will become clear in Section 4.7.

General subtyping is defined so that the nominal and structural components
of an object type may vary independently. In particular, it is sometimes neces-

Bound of type name:

type(N) = [T/α]τ0 when CTy(c) = ∀α <: τ .τ0

bound∆(N) = type(N)

bound∆(α) = ∆(α)

Well-formed type names: ∆ ` T OK

α ∈ dom(∆)

∆ ` α OK

CTy(c) = ∀α <: τ .τ0 ∆ ` T OK ∆ ` bound∆(T) <: [T/α]τ

∆ ` c<T> OK

Expression typing: ∆; Γ ` e : T

∆; Γ ` x : Γ (x)

∆; Γ ` e0 : T0 bound∆(T0) = N � σ

∆; Γ ` e0.f : σ(f)

∆; Γ ` e0 : T0 bound∆(T0) = N � σ σ(m) = T → T ′

∆; Γ ` e : U ∆ ` U l T

∆; Γ ` e0.m(e) : T ′

∆ ` N OK fields(N) = T f ∆; Γ ` e : U ∆ ` U l T

∆; Γ ` new N(e) : N

Fig. 7. MTJ: expression typing

sary for the nominal component of a type to be promoted without affecting the
structural component, as in the following example:

class HasFoo { Object foo; }

trait NeedsFooA requires { ThisType implements {foo : Object} }

trait NeedsFooB requires { ThisType / HasFoo } provides { use NeedsFooA; }

In NeedsFooB, ThisType is bounded by HasFoo�〈foo : Object〉{foo}. In NeedsFooA,
however, ThisType is bounded by Object�〈foo : Object〉{foo}, so a promotion of
the nominal component of the bound is needed. Note that foo is marked required
for NeedsFooA because it is not provided by the trait—in particular, it cannot be
removed using drop—but is expected to be present in any class using the trait.

4.5 Static semantics: expressions

We present the static semantics of MTJ starting with expressions and working
our way upwards.

As usual for a type system without a subsumption rule, we include a pro-
motion function bound∆ for computing the least nonvariable supertype of a
given type, given in Figure 7. At the expression level, all types are named, so
bound∆ is only defined on type names. The type computed by bound∆, however,

is always an object type. Thus, using bound∆ on a nonvariable type name cor-
responds to an iso-recursive “unfold:” the signature component of bound∆(N),
i.e., the canonical signature of N , is the one-step expansion of N . We use the
function “type” to compute the canonical type; that function, in turn, uses the
class table to discover the appropriate canonical signature. As in FGJ, we have
a well-formedness check for type names, written ∆ ` T OK, which ensures that
the type parameters for a class respect their bounds.

The expression typing rules (Figure 7) are similar to their counterparts in
FGJ, with a few notable differences. Most importantly, field access and method
invocation are checked via object signatures, rather than separate machinery.
These rules are the motivation for our hybrid type system, making it possible to
type traits and classes in a uniform way. Our rule for method invocation is some-
what simpler than in FGJ, because we do not model generic methods. A final
point to observe is that all premises involving subtyping use the nominal sub-
typing relation. Each such premise corresponds to a proposition that must hold,
using FGJ’s (nominal) subtyping relation, after translation of the expression.

4.6 Static semantics: member declarations and trait expressions

Type checking for classes and traits begins at the member level: the judgment
∆; Γ ` D : τ , given in Figure 8, assigns each member declaration an object
type. This type should be understood as the least upper bound for the type of
objects containing the declaration. For field and method declarations, the nomi-
nal component of the type will always be Object, while the structural component
will give the label and type for that member. Trait use declarations are assigned
the type of their trait expression, which may include nominal requirements.

Member declaration typing checks that any abstract labels are in scope
(Γ ` l OK). Notice that method bodies are checked via the expression typing
judgment, and the type given to the body is (as usual) required to be a nominal
subtype of the expected return type. We also check that any types appearing in
the program text are well-formed.

Trait expression typing is fairly straightforward; here, our type system re-
sembles Fisher and Reppy’s [11]. Recall that, when trait function applications
are translated, a class name is substituted for ThisType (Section 4.2); really,
ThisType is an implicit type parameter to every trait. Thus, when checking a
trait function application, we substitute the type of this (as given by Γ) for
ThisType in the trait type. We also substitute the explicit type arguments,
checking that they respect their bounds.

The alias operation requires that the method to be aliased is actually pro-
vided by the trait, and that no method with the aliased name is provided or re-
quired by the trait. Likewise, for drop we check that the member to be dropped
is provided by the trait. Because the member might be mentioned in a method
provided by the trait, we do not simply drop it from the trait signature, but
rather mark it as required. A more precise type can be given if member require-
ments are tracked for each provided method [25], but this comes at a cost: it
leaks fine-grained implementation details about the trait into its signature.

Label checking: Γ ` l OK

Γ ` l OK

$l ∈ Γ

Γ ` $l OK

Member declaration typing: ∆; Γ ` D : τ

∆ ` T OK Γ ` f OK

∆; Γ ` T f; : Object � 〈f : T 〉∅

∆; Γ ` E : τ

∆; Γ ` use E; : τ

∆ ` T0, T OK Γ ` m OK ∆; Γ, x : T ` e : U ∆ ` U l T0

∆; Γ ` T0 m(T x) {return e;} : Object �
˙
m : T → T0

¸
∅

Trait expression typing: ∆; Γ ` E : τ

TTy(t) =
Q

$l.∀α <: τ . N � σ ∆ ` T OK Γ ` l OK

∆ ` bound∆(T) <: [l/$l, T/α, Γ (this)/ThisType]τ

∆; Γ ` t(l, T) : [l/$l, T/α, Γ (this)/ThisType]N � σ

∆; Γ ` E : T �
˙
l : µl

l∈L¸
R m ∈ L \ R m′ /∈ L Γ ` m′ OK

∆; Γ ` E alias m as m′ : T �
˙
m′ : µm, l : µl

l∈L¸
R

∆; Γ ` E : T �
˙
l : µl

l∈L¸
R k ∈ L \ R

∆; Γ ` E drop k : T �
˙
l : µl

l∈L¸
R∪{k}

Fig. 8. MTJ: member-level typing

4.7 Static semantics: classes and traits

When typing a class or trait declaration, we attempt to find the meet (greatest
lower bound) of its member declaration types. If the meet is defined, it gives
us the type for the class or trait; if it is not defined, there is a type error. For
example, consider the following class:

class C {

int x;

int getX() { return x; }

}

The types of the member declarations are

Object � 〈x : int〉∅ and Object � 〈getX : • → int〉∅

respectively. The greatest lower bound of these types is

Object � 〈x : int, getX : • → int〉∅

Replacing Object in the nominal component of this type with C, we have the
type of the class.

As another example, suppose we have a trivial trait that provides nothing,
but requires a method foo:

trait ReqT

requires { ThisType implements { Object foo(); } }

provides {}

Notice that the type of ReqT is Object � 〈foo : • → Object〉{foo}. We can then
define a class A that uses ReqT:

class A / Object {

A foo() { return this; }

use ReqT;

}

Taking the meet of ReqT’s type with the type of foo defined in A yields the
type Object � 〈foo : • → A〉∅. This is why types with fewer required members are
“smaller” according to the subtyping relation: when we take the meet of two
types, one requiring a member and one providing it, the resulting type lists the
member as provided. In the above example, the type of the required member
was lowered as well. On the other hand, the class B is not well-typed.

class B / Object {

Object foo(Object x) { return x; }

use ReqT;

}

The requisite meet is not defined for B, because its type for foo has no lower
bound in common with ReqT.

The meet of two object types, written τ1 ∧∆ τ2, is defined in Figure 9. In
addition, we define object type concatenation, written τ1 ⊕∆ τ2, which yields the
meet of its operands but also checks that they provide disjoint sets of members.

The judgment ∆;Γ ` R ⇒ α <: τ is used to gather trait requirements into
type constraints. Recall that both nominal and structural requirements can be
specified. Object type concatenation is used to compute a type encompassing
the given structural requirements, while checking that there is at most one re-
quirement for any member name. The rule takes the meet of this type with the
nominal requirement, allowing structural requirements to refine, but not con-
flict with, its canonical signature. Thus, for instance, a trait cannot both require
ThisType to be a subclass of String and also provide a length method that re-
turns a boolean. The type constraint given by the judgment includes the labels
of all required members in its requirement set.

The typing rule for trait function declarations is given in a declarative style:
it uses a type context ∆ mentioning types that are in turn checked under ∆.
This is necessary for two reasons. First, a requires clause for one type parameter
may mention any of the trait function’s type parameters, so requirements must
be checked under the the constraints they denote. Likewise, the upper bound for
ThisType is needed for type checking member declarations, but the types given
to those declarations are used to constrain ThisType. The result type of the
trait function, τ0, is the concatenation of the types of the provided and required

Requirements:

reqs
“
N �

D
l : µl

l∈L
E
R

”
= N �

D
l : µl

l∈R
E
R

Object type meet: N � σ ∧∆ N � σ = N � σ

∆ ` Ni l Nj with i, j ∈ {1, 2}
∆ ` σ <: σ1 ∆ ` σ <: σ2 ∆ ` σ′ <: σ1, ∆ ` σ′ <: σ2 =⇒ ∆ ` σ′ <: σ

N1 � σ1 ∧∆ N2 � σ2 = Ni � σ

Object type concatenation: N � σ ⊕∆ N � σ = N � σ

σ1 =
˙
l : µl

l∈L1
¸
R1

σ2 =
˙
l : µl

l∈L2
¸
R2

(L1 ∩ L2) ⊆ (R1 ∪R2)

N1 � σ1 ⊕∆ N2 � σ2 = N1 � σ1 ∧∆ N2 � σ2

Method signature declaration typing: ∆; Γ ` S : τ

∆ ` T0, T OK Γ ` m OK

∆; Γ ` T0 m(T x); : Object �
˙
m : T → T0

¸
∅

Requirement constraints: ∆; Γ ` R ⇒ α <: τ

∆ ` N OK ∆; Γ ` F : τf ∆; Γ ` S : τs

bound∆(N) ∧∆ (
L

∆ τf · τs) = N �
˙
l : µl

l∈L¸
∅

∆; Γ ` α / N implements {F S} ⇒ α <: N �
˙
l : µl

l∈L¸
L

Trait function declaration typing: A : τ

∆; $l ` R ⇒ α <: τ ∆; $l ` R0 ⇒ ThisType <: τ ′0
∆ = α <: τ , ThisType <: τ0 ∆; $l, this : ThisType ` D : τdecl

τ0 = τ ′0 ⊕∆

`L
∆ τdecl

´
∆ ` τ ′0 <: reqs(τ0)

trait t($l, α) req {R0 R} prov {D} :
Q

$l . ∀α <: τ . τ0

Class declaration typing: C : τ

K = c(U g, T f) {super(g); this.f = f;}
fields(N) = U g fields(c<α>) = U g; T f

∆ = α <: type(N) ∆ ` N, N OK ∆; this : c<α> ` D : τ

P � σ =
L

∆ τ σ =
˙
l : µl

l∈L¸
R N � σN = type(N)

∆ ` σ <: (σN � (L \ R)) R ⊆ dom(σN) ∆ ` c<α> l P

class c<α / N> / N {K D} : ∀α <: type(N) . c<α> � σ ∧∆ N � σN

Fig. 9. MTJ: class and trait typing

members of the trait. Using concatenation rather than meet ensures that the
trait does not contain multiple definitions of a member.

Note that a trait function t may use other traits without fulfilling their
requirements. In this case, we insist that t explicitly state the unfulfilled re-
quirements in its ThisType constraints, which is checked by the hypothesis
∆ ` τ ′

0 <: reqs(τ0), where τ ′
0 is the bound t places on ThisType and τ0 is

the result type of the trait function.
Class declaration typing is similar to trait function typing: the types of the

class’s member declarations are used to partially determine the class’s type via
concatenation. There are several important differences, however. For one, the
class type includes the canonical signature of its immediate superclass (σN in the
rule). If a class overrides any members of its superclass, the overriding definitions
must be subtypes of the originals. Hence, we check that the signature of the
superclass, σN , restricted to the members defined in the class body, L \ R, is a
supertype of the signature for the class body, σ. Another difference is that all
trait requirements must be fulfilled by the class. This is checked in two ways.
First, the set of required members from the class body,R, must be a subset of the
members provided by the superclass, dom(σN). Second, class itself is required
to be a nominal subtype of any nominal requirements introduced by the traits
it uses (∆ ` c<α> l P).

4.8 Soundness

The semantics of MTJ is given by a translation to FGJ, but the resulting FGJ
class table is also a valid MTJ class table. Thus, our soundness result is broken
into two steps, one taking place entirely within MTJ and one relating the two
calculi. We briefly survey the result here, with a detailed version of the proof
available in a companion technical report [28].

Definition 1. A class C is flat if it contains no trait use declarations.

Note that limiting the syntax of MTJ to flat class declarations yields the syntax
of FGJ, modulo the features that we dropped (casts and generic methods).

To prove soundness, we need to ensure that the presumed class and trait
types from the class type and trait type tables agree with the actual classes and
traits in CT and TT.

Definition 2. A class type table CTy agrees with a class table CT, written
CT ` CTy, if dom(CT) = dom(CTy) and for all c ∈ dom(CT), we have CT(c) :
CTy(c). We write TT ` TTy for the same property relating the trait tables.

We can now show a typical soundness result purely in terms of MTJ; here,
translation acts as the “dynamic semantics” for MTJ and we prove that any
well-typed program will successfully translate to a program with the same type.

Theorem 1 (Soundness of translation). If CT ` CTy and TT ` TTy then,
for all c ∈ dom(CT), we have that C = [[CT(c)]] is defined, that C is flat, and
that C : CTy(c). Furthermore, if ` e : T under CT, then ` e : T under the
translated class table.

This theorem is straightforward to prove. First, we prove a series of standard
lemmas for weakening of the context and type and label substitution. These
are sufficient to prove the theorem, since translation is essentially trait function
application. A minor twist comes in the lemma showing type preservation for
member declaration translation. The type of the original member is not always
the same as the translated member: if the original member is a trait use decla-
ration, and the trait places requirements on ThisType, those requirements will
not appear in the flattened trait body. Thus, the translation preserves only the
provided elements of a member declaration type. Theorem 1 still holds, however,
because the class typing rule ensures that there are no residual requirements, so
the type of the class as a whole is preserved under translation.

We then show the following result, relating MTJ to FGJ.

Theorem 2 (Well-typed, flat MTJ programs are well-typed FGJ pro-
grams). If (CT, •, e) is an MTJ program with only flat class declarations and
CT ` CTy, TT ` TTy, and `MTJ e : T , then (CT, e) is a well-typed FGJ program
and `FGJ e : T .

This theorem is even easier to prove: we prove that our canonical type signatures
give the same results as FGJ’s machinery (e.g., the mtype function), and then
prove by a series of inductive arguments that our typing judgments imply the
corresponding judgments in FGJ. Taking the two theorems together, we have
that a type-safe MTJ program translates to a type-safe FGJ program.

5 Discussion

5.1 Related work: metaprogramming

Broadly speaking, metaprogramming consists of writing (meta) programs that
manipulate (object) programs.Compilers are the best-known metaprograms, but
the technique is also useful for generating high-level code. In particular, gen-
erative programming has been proposed as a paradigm for building families
of related systems: code and other artifacts are generated from a high-level
model or specification, automating much of the software development process [6].
Metaprogramming, of course, is a crucial element of this process. Since metapro-
gramming raises the level of abstraction and can arbitrarily modify the meaning
of code, it is important that metaprogramming frameworks strike a good balance
between expressiveness, invasiveness, readability, and safety guarantees.

Draheim et al. give a good summary of several metaprogramming frameworks
for Java and similar languages, focusing specifically on their utility for gener-
ative programming [7]. A typical approach is to use so-called meta-objects to
represent and alter code entities (classes, methods, etc.). The implementation of
the meta-objects gives rise to a meta-object protocol (MOP) that can be overrid-
den or extended with new features [18]. MOP frameworks have been used both
to generate code and to modify the semantics of language mechanisms such as
multiple inheritance. They are extremely flexible, but require manipulation of
ASTs and provide very few guarantees about generated code.

An alternative approach is to incorporate metaprogramming constructs di-
rectly into the language. SafeGen [16], for example, extends Java with cursors
and generators. Cursors pick out a collection of entities within the code of a
program, while generators, guided by cursors, output code fragments. Gener-
ators are written in a quasi-quotation style, giving the system a great deal of
flexibility. Perhaps the most interesting aspect of SafeGen is that generators are
statically checked for safety, using a theorem prover to check short first-order
sentences produced by the type checker. Programmers are insulated from the
theorem-proving process: from their perspective, it is just another type system.

Aspect-oriented programming (AOP) is another form of metaprogramming,
where advice is weaved into existing code [19]. Our proposal has significant sim-
ilarities with AOP, but also significant differences. Trait functions enable pro-
grammers to abstract “cross-cutting concerns” in a way similar to aspects; advice
often wraps methods with function, just as we do with examples like SyncT. The
most important difference is a matter of control: aspects control their own appli-
cation to classes through pointcuts, but traits are explicitly included in classes.

Fähndrich et al. have described an elegant pattern-based approach to metapro-
gramming, similar to AOP, but focused on generating new function, rather than
modifying existing behavior [10]. Their system is template-based, but uses pat-
tern matching to determine how to instantiate the templates. The patterns pro-
vide constraints that lead to strong static guarantees about the templates. In
our technical report, we sketch a design inspired by this idea: the member re-
quirements for a trait function are matched against the members defined in a
class, and the trait is automatically applied for each match [28]. This brings
trait-based metaprogramming much closer to AOP, but the control of trait ap-
plication still remains in the hands of the class designer, who must explicitly
request the pattern matching to take place. Moreover, our design has a much
coarser-grained notion of pointcuts than AOP, since traits cannot be inserted at
arbitrary points in the control-flow of a method.

Most similar to our proposal, the Genoupe framework [8] for C# supports
code generation through parameterized classes. Classes are parameterized over
types and values, and may contain code that inspects their parameters at compile-
time, generating code as it does so. For example, classes can use a @foreach
keyword to loop over the fields or methods of a type parameter. The code within
the @foreach will be generated repeatedly for each match. Genoupe includes
some static type checking of parameterized classes, but it cannot guarantee the
well-formedness of the generated code. Moreover, generation results in complete
classes, which cannot be combined in a single-inheritance language.

In general, the novelty of our approach is its particular focus on member-
level patterns and its strength is in simplicity. Typed traits are composable,
incomplete class implementations, and with our extension, they offer a uniform,
expressive, and type-safe way to do metaprogramming without resorting to AST
manipulation. In addition, the result of this metaprogramming is always just a
trait, leaving ultimate control of the code to the class designer.

5.2 Related work: type systems

Nominal subtyping is a refinement of structural subtyping: type names are placed
in a nominal subtyping relationship, but the types these names represent must
be structurally related to guarantee type safety. In purely nominal type sys-
tems, types must be always be named, and subtyping always explicitly stated;
“combining” structural and nominal subtyping amounts to relaxing these re-
quirements. Moby [13] and Unity [21] relax them entirely, allowing the use of
arbitrary structural subtyping. In Moby, there are object types and class types,
the latter naming a specific class. Subtyping on class types is based on the ex-
plicit inheritance hierarchy, and so is essentially nominal, while object types are
compared structurally. Unity is closer to our type system in that object types
include a nominal component (called a brand) and a structural component. In
both type systems, as with ours, nominal types have associated “canonical”
structural types describing their interface. Programmers can choose whether to
constrain types structurally or nominally, or, with Unity, both.

Our proposal also allows arbitrary structural subtyping, but only at the
trait function level; subtyping for expressions is strictly nominal. We believe
this paradigm to be widely applicable: a metalanguage with flexible, structural
subtyping can be used to generate code for an object language with a more
rigid, nominal type system. Moreover, since traits are just (incomplete) collec-
tions of class members, our type system can be used for other metaprogramming
frameworks that do not make traits an explicit programming construct but still
assemble classes from partial implementations. Though type parameters will
not be tied to trait functions in such frameworks, they can still be used at the
metaprogramming level with purely structural constraints, since they will not
be present in generated code.

In Ancona et al.’s polymorphic bytecode proposal, compilation units are type-
checked without complete knowledge of the inheritance hierarchy: type-checking
results in a set of structural and nominal constraints to be satisfied by the
eventual, dynamically-linked class hierarchy [1]. The combination of nominal and
structural constraints resembles our object types, and the system retains Java’s
purely nominal subtyping after linking is performed. Polymorphic bytecode, in
order to respect Java’s type system, must place nominal constraints on types
any time a method is invoked: it has no analog to our trait functions, which
allow purely structural constraints to be imposed and discharged.

5.3 Related work: traits

The introduction of traits for Smalltalk [9] prompted a flurry of work on traits for
statically-typed languages. Fisher and Reppy developed the first formal model
of traits in a statically-typed setting [12], subsequently extending it to support
polymorphic traits and stateful objects [11]. The model type checks traits in
isolation from classes. The structural component of our type system is essen-
tially a variant of Fisher and Reppy’s type system. In our previous workshop
paper [25], we reformulated the Fisher-Reppy trait calculus using Riecke-Stone

dictionaries [26], giving a semantics for member renaming and hiding operations
on traits. The calculus renames members by modifying a dictionary, rather than
substituting labels in program code. Thus, it provides a foundation for the sepa-
rate compilation of trait functions in Moby, which already uses such dictionaries
in its implementation. Separate compilation in Java remains future work.

Multiple designs extending Java with traits have been proposed. Smith and
Drossopoulou describe a family of three such extensions, called Chai [27]. They
support separate type checking of traits by introducing trait names into Java’s
type system; in essence, traits define interfaces, and the classes that use them are
considered to have “implemented” those interfaces. As discussed in Section 4,
this approach is probably too brittle to support trait functions. Another proposed
design is FeatherTrait Java [20], which adds traits to Featherweight Java, but
defers all type checking until traits have been included in a class. There are strong
similarities between traits and mixins [5]; a good discussion of their relationship
can be found in [14].

5.4 Conclusion

We have presented a language design for metaprogramming with traits. We be-
lieve our proposal hits a sweet spot for metaprogramming: while its semantics
are very simple, it is capable of capturing a wide variety of patterns occurring
at the member level of class definitions. In modeling our mechanism formally,
we have developed a type system which incorporates a mixture of structural
and nominal subtyping, and proved the soundness of the resulting calculus. An
implementation is underway, written as a source-to-source translator for Java.

Acknowledgments We thank the anonymous reviewers for their help in catch-
ing mistakes and improving the overall presentation.

References

1. D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca. Polymorphic bytecode:
compositional compilation for Java-like languages. In POPL’05, pages 26–37, 2005.

2. D. Ancona, G. Lagorio, and E. Zucca. Jam–designing a Java extension with mixins.
TOPLAS, 25(5):641–712, Sept. 2003.

3. V. Bono, M. Bugliesi, and L. Liquori. A Lambda Calculus of Incomplete Objects.
In MFCS, pages 218–229, 1996.

4. G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. PhD thesis, University of Utah, Mar. 1992.

5. G. Bracha and W. Cook. Mixin-based inheritance. In ECOOP’90, pages 303–311,
New York, NY, Oct. 1990. ACM.

6. K. Czarnecki and U. W. Eisenecker. Generative programming: methods, tools, and
applications. ACM Press/Addison-Wesley Publishing Co., 2000.

7. D. Draheim, C. Lutteroth, and G. Weber. An Analytical Comparison of Genera-
tive Programming Technologies. Technical Report B-04-02, Institute of Computer
Science, Freie Universität Berlin, January 2004.

8. D. Draheim, C. Lutteroth, and G. Weber. A Type System for Reflective Program
Generators. In GPCE’05, pages 327–341, 2005.

9. S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits: A Mechanism
for fine-grained Reuse. TOPLAS, 28(2):331–388, Mar. 2006.

10. M. Fähndrich, M. Carbin, and J. R. Larus. Reflective program generation with
patterns. In GPCE’06, pages 275–284, New York, NY, USA, 2006. ACM Press.

11. K. Fisher and J. Reppy. Statically typed traits. Technical Report TR-2003-13,
Dept. of Computer Science, U. of Chicago, Chicago, IL, Dec. 2003.

12. K. Fisher and J. Reppy. A typed calculus of traits. In FOOL11, Jan. 2004.
13. K. Fisher and J. H. Reppy. Extending Moby with Inheritance-Based Subtyping.

In ECOOP’00, pages 83–107, 2000.
14. M. Flatt, R. B. Findler, and M. Felleisen. Scheme with Classes, Mixins, and Traits.

In APLAS’06, 2006.
15. M. Hofmann. Syntax and Semantics of Dependent Types. In Semantics and Logics

of Computation, volume 14, pages 79–130. Cambridge University Press, 1997.
16. S. S. Huang, D. Zook, and Y. Smaragdakis. Statically Safe Program Generation

with SafeGen. In GPCE’05, pages 309–326, 2005.
17. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core

calculus for Java and GJ. TOPLAS, 23(3):396–450, 2001.
18. G. Kiczales, J. des Rivieres, and D. G. Bobrow. The art of metaobject protocol.

MIT Press, Cambridge, MA, USA, 1991.
19. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-Oriented Programming. In ECOOP’97, pages 220–242, 1997.
20. L. Liquori and A. Spiwack. Feathertrait: A modest extension of featherweight java.

TOPLAS, to appear, 2007.
21. D. Malayeri and J. Aldrich. Combining Structural Subtyping and External Dis-

patch. In FOOL/WOOD’07, 2007.
22. O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening Traits. Journal of Object

Technology, 5(4):129–148, June 2006.
23. M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet, B. Emir, S. McDirmid,

S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, L. Spoon, and M. Zenger. An
overview of the Scala programming language (second edition). Technical Report
LAMP-REPORT-2006-001, EPFL, Lausanne, Switzerland, May 2006.

24. P. J. Quitslund. Java traits — improving opportunities for reuse. Technical Report
CSE 04-005, OGI School of Science & Engineering, Sept. 2004.

25. J. Reppy and A. Turon. A foundation for trait-based metaprogramming. In
FOOL/WOOD’06, 2006.

26. J. G. Riecke and C. A. Stone. Privacy via subsumption. INC, 172(1):2–28, Jan.
2002. A preliminary version appeared in FOOL5.

27. C. Smith and S. Drossopoulou. Chai: Traits for Java-Like Languages. In
ECOOP’05, pages 453–478, 2005.

28. A. Turon. Metaprogramming with Traits. Honors thesis, forthcoming as a Univer-
sity of Chicago technical report, 2007.

