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Figure 1: Direct volume renderings (top row) and meshes (bottom row) show the structure of one synthetic dataset. One program computed
all renderings, and another computed the mesh vertices. Between features (columns), the only differences in their source code were functions
for computing a Newton step to the feature, and for measuring feature strength. These functions were shared between the two programs,
achieving orthogonality between implementing visualization algorithms, and specifying the particular features of interest.

Abstract
Visualizing and extracting three-dimensional features is important for many computational science applications, each with their
own feature definitions and data types. While some are simple to state and implement (e.g. isosurfaces), others require more com-
plicated mathematics (e.g. multiple derivatives, curvature, eigenvectors, etc.). Correctly implementing mathematical definitions
is difficult, so experimenting with new features requires substantial investments. Furthermore, traditional interpolants rarely
support the necessary derivatives, and approximations can reduce numerical stability. Our new approach directly translates
mathematical notation into practical visualization and feature extraction, with minimal mental and implementation overhead.
Using a mathematically expressive domain-specific language, Diderot, we compute direct volume renderings and particle-
based feature samplings for a range of mathematical features. Non-expert users can experiment with feature definitions without
any exposure to meshes, interpolants, derivative computation, etc. We demonstrate high-quality results on notoriously difficult
features, such as ridges and vortex cores, using working code simple enough to be presented in its entirety.

CCS Concepts
•Computing methodologies → Scientific visualization; •Software and its engineering → Domain specific languages;
•Human-centered computing → Visualization systems and tools;

1. Introduction

Many different analysis and visualization techniques for spatio-
temporal data share an overarching goal: to better understand some
feature of interest. Features may be defined locally, such as isosur-
faces as points with a certain value, or globally, as with stream-
lines and separatrices. In general, local feature definitions are more

common and cover features ranging from isosurfaces and ridges in
scalar fields [Ebe96], to vortex core lines in vector fields [PR99]
and crease lines in tensor fields [TKW08]. Depending on the ap-
plication, these definitions are either approximated by some (po-
tentially fuzzy) indicator, such as a transfer function in volume
rendering, or explicitly evaluated in an algorithm like Marching
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Cubes [LC87]. However, feature definitions in visualization re-
search have long evolved from the simple definitions to complex,
often multi-variate expressions that involve higher order deriva-
tives, curvatures, Jacobians and any number of mathematical ex-
pressions not easily built from scratch. Furthermore, the common
bi- or trilinear interpolation schemes do not provide continuous
derivatives of any order. Therefore, applying advanced feature def-
inition typically requires various approximations and often leads to
numerical instabilities and significant artifacts.

A typical example is ridge extraction, which is concisely de-
fined in terms of a local indicator involving gradients and Hessian
eigenvectors [Ebe96]. Computing the indicator with stencils for
derivatives is not stable, often producing false positives and need-
ing some pre-smoothing to be effective [SP07,PS08]. Finally, even
with higher-order interpolation [NLKH12, NKH13], generalizing
many of the traditional algorithms has proven challenging.

Our new approach allows users to easily express complex fea-
tures directly in common mathematical notation. Given sampled
data and a sufficiently smooth and accurate reconstruction, these
expressions produce computationally tractable methods of visual-
ization and extraction. Since all derivative and tensor evaluations
are performed analytically, our feature definitions do not suffer
from common discretization artifacts. The implementation com-
plexity is low: experimenting with new definitions is more akin to
copying mathematical definitions into code, rather than incurring
per-feature and per-application implementation costs.

The two main contributions of this work are (1) conceptually
bridging direct volume rendering of features with their explicit
geometric extraction, and (2) implementing both in a way that is
general with respect to feature type and application. We start with
standard mathematical feature definitions (one or more equations
satisfied at points within the feature, e.g. {x| f (x) = v0} for isosur-
faces), but we employ a feature step function that describes one step
towards the feature (e.g. the Newton-Raphson step (v0− f (x))∇ f (x)

∇ f (x)·∇ f (x)
for isosurfaces). The same feature step function can either be eval-
uated once to define a transfer function for direct volume rendering
features, or evaluated repeatedly by particles uniformly sampling a
feature. Code for rendering and extracting features is made specific
to the feature, and to the application of interest, solely by choos-
ing the step function for that feature, and by defining the field in
which the feature is sought. Fig. 1 illustrates our approach with
isosurfaces and some of the extremal features (e.g. ridges, valleys,
critical points) that are the focus of this initial work. Our approach
is enabled by Diderot, a domain-specific language for scientific vi-
sualization that combines mathematical expressivity with parallel
execution [CKR∗12, KCS∗16, CKR18].

2. Background and Related Work

The terminology of “extremal features” has been used in differ-
ent ways. For flow fields, Sahner et al. use “extremal features”
to mean topological separatrices of strain (as a scalar field), de-
fined globally rather locally [SWTH07]. In tensor fields, Zobel
and Scheuermann locally define “extremal features” as points with
a non-invertible tangent space map from the field domain to the
3D space of invariants [ZS17]. Following the earlier terminol-

ogy [GM97,TM98,AK04], we consider extremal features to be the
extrema of some scalar field with respect to motion within a locally
defined constraint subspace, as well as critical points of the scalar
field. Ridges and valleys are extremal relative to motion along one
or more Hessian eigenvectors [Ebe96]. How we quantify the signif-
icance or strength of ridge features is informed by Haralick [Har83]
and Schultz et al. [STS10].

Barakat et al. share our interest in rendering [BT10] and extract-
ing [BAT11] ridges. Our approach is made coherent by a single fea-
ture step function, whereas Barakat et al. used different GPU-based
methods to optimize each task. Their volume rendering [BT10]
uses space-skipping, while ours is more brute-force. Their ridge
extraction [BAT11] computes vertex locations and mesh geometry
at the same time within a sweeping front, while we view mesh-
ing as an optional post-process of vertex computation. Unlike their
work, our approach can easily and consistently handle a variety of
features and feature dimensions (0D, 1D, and 2D). Our interest in
visualizing extremal features is related to finding maxima in ray-
cast volume rendering. Knoll et al. [KHW∗09] find ray locations
that maximize 1D opacity function, to ensure their contribution to
the ray result. Kotava et al. [KKS∗12] extend this to multidimen-
sional transfer functions. Both their approaches draw on the same
basic principles of computational math that we employ in Sec. 3,
but their focus remains on fast rendering, while we seek to accom-
plish both rendering and explicit geometric extraction.

We implement our approach in Diderot [CKR∗12, KCS∗16], a
mathematically expressive language with a tensor-based interme-
diate representation [Chi17, CKR18]. The syntax includes ∇ for
differentiation, ⊗ for tensor product, and • for inner product, com-
bined with the ability to apply operators to fields (to produce, for
example, a scalar field of curvature). This allows the fields and fea-
tures of Sec. 3 to be directly expressed in code, while parallel ex-
ecution (via pthreads) facilitates work with real datasets. Relative
to prior Diderot work, novel aspects of this work include: gener-
alization of volume rendering from isosurfaces to ridge and other
extremal surfaces, more sophisticated particle-based feature extrac-
tion (with meshing, in 3-D, instead of only 2-D), and an implemen-
tation design that isolates feature specificity to a few functions.

The advantages of Diderot for our work, relative to other lan-
guages and tools, rest in the mathematical abstractions supported
by Diderot. MATLAB and Mathematica, for example, allow sym-
bolic expression of functions, making it easy to write down expres-
sions for ridges, vortices, etc. However, their ability to compute on
real-world volume data is limited. First, their built-in reconstruc-
tion has limited order of continuity and accuracy, resulting in poor-
quality second derivatives, and the inability to compute properties
(like surface creases) that depend on higher derivatives. Second,
volume rendering pipelines in these tools, while allowing custom
transfer functions, are available with only built-in interpolants. To
reproduce our results, a user would have to re-implement interpo-
lation as well as ray casting, which would suffer immense perfor-
mance penalty in these interpreted languages compared to the com-
piled binaries produced by Diderot.

There also exist a number of general analysis tools such as VisIt,
Paraview, or Amira that can be used to extract a wide variety of
features. However, these are fundamentally built around discretized
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domains and algorithms, while Diderot directly supports continu-
ous fields and operations on them. While some other tools do sup-
port higher order interpolants, they do not allow expressing math-
ematical formulations in an abstract manner, nor do they provide
the analytical evaluation of such expressions. Users must instead
evaluate expressions by hand, typically using finite difference sten-
cils, with the challenges that this entails. Finally, these tools do
not provide a means to extract smooth features directly but rely on
sampling the corresponding indicator functions on a grid and using
techniques such as Marching Cubes to extract the geometry.

3. Mathematical Background

Our method is based on Taylor expansions. For isosurfaces, Sec. 3.1
reviews how a first-order Taylor expansion generates the formula
for one iteration of Newton-Raphson root finding, which we term
the feature step function s(x). We note a connection to Levoy’s bi-
variate transfer function for isocontours [Lev88]. We then develop
formulae for feature step functions for ridges and valleys as defined
in [Ebe96]. Sec. 3.2 extends this to other extremal features of inter-
est. Sec. 3.3 then formulates functions for feature strength to filter
out insignificant features, and we note a connection to previous cri-
teria for filtering ridge pixels [Har83].

3.1. Basic Feature Step Functions, and Shading

The 1st-order Taylor expansion of scalar field f around x is

f (x+ εεε)≈ f (x)+∇ f (x) · εεε (1)

If we assume f (x+εεε) = v0 for some isovalue v0, then (1) describes
a condition on the offsets εεε from x to a point x+εεε on the v0 isocon-
tour. We can choose an offset εεε = `

∇ f (x)
|∇ f (x)| parallel to the gradient

∇ f (x), and then solve for step length ` to arrive at a formula for
the feature step function siso for isosurfaces:

v0− f (x)≈∇ f (x) · εεε =∇ f (x) · ` ∇ f (x)
|∇ f (x)| = `|∇ f (x)| (2)

⇒ `=
v0− f (x)
|∇ f (x)| ⇒ siso(x) =

(v0− f (x))∇ f (x)
∇ f (x) ·∇ f (x)

. (3)

For locations x near isocontour f (x) = v0, siso(x) (3) indicates the
distance and direction towards the feature.

To volume render, we assign opacity with a tent function param-
eterized by distance d to an isocontour of interest

αtent(d) = α0 max
(

0,1− |d|
w

)
, (4)

where w is the full-width half-max of αtent(d), the apparent thick-
ness of the rendered isocontour. Plugging (3) into (4):

α(x) = αtent(|siso(x)|) = α0 max
(

0,1− 1
w
|v0− f (x)|
|∇ f (x)|

)
. (5)

Eq. (5) is exactly Levoy’s bivariate opacity function for rendering
approximately constant-thickness isocontours, which he justifies
with assumptions equivalent to (1); c.f. (3) in [Lev88].

Feature step functions also facilitate building geometric models

of features. Locations of model vertices may be found by iterated
application of the feature step function

xi+1 = xi + s(xi), (6)

combined with some strategy (such as mutual repulsion) for uni-
formly distributing points across the feature. Many have used
this Newton-based approach to sample implicit surfaces [CA97,
MGW05] (among others).

The above treatment of isocontours exemplifies our approach.
Taylor expansion around the feature of interest leads to a feature
step function, which can then be plugged into either an opacity
function for volume rendering the feature, or into the constraint
satisfaction of an interacting particle system to explicitly sample
the feature. Feature visualization or extraction programs become
specific to the feature via the feature step function. We now derive
feature step functions s(x) for various extremal features.

Newton-Raphson optimization, to find critical points x where
∇ f (x) = 000, is also based on Taylor expansion. Differentiating (1)
with respect to x produces

∇ f (x+ εεε)≈∇ f (x)+H f (x)εεε, (7)

where H f (x) is the Hessian (second derivative) of f at x. Assuming
x+ εεε is a critical point (that is,∇ f (x+ εεε) = 0), then

−∇ f (x)≈H f (x)εεε ⇒ scp(x) =−(H f (x))−1∇ f (x). (8)

The signs of Hessian eigenvalues determine the type of the critical
point (minima, maxima, or saddle point).

We use Eberly’s definitions of ridge (and valley) surfaces and
lines [Ebe96] to define their feature step formulae. The Hes-
sian H f (x) at x has sorted real eigenvalues λ0 ≥ λ1 ≥ λ2 and
corresponding unit-length and mutually orthogonal eigenvectors
e0,e1,e2. Point x is on a ridge surface if f is maximal at x with re-
spect to motion along eigenvector e2 (corresponding with the most
negative eigenvalue λ2), i.e.∇ f (x) · e2 = 0 and λ2 < 0. Ridge line
membership is defined by∇ f (x) · e1 =∇ f (x) · e2 = 0 and λ1 < 0.
Ridge and valley features can be uniformly treated by defining a
projection P onto the span of one or two eigenvectors, with

Prs = e2⊗ e2, Prl = e1⊗ e1 + e2⊗ e2,
Pvs = e0⊗ e0, Pvl = e0⊗ e0 + e1⊗ e1,

(9)

for ridge surfaces (rs) and lines (rl), and valley surfaces (vs) and
lines (vl). Left-multiplying both sides of (7) by P gives

P∇ f (x+ εεε)≈ P∇ f (x)+PH f (x)εεε. (10)

Ridge/valley feature membership of x+εεε implies P∇ f (x+εεε) = 000,
i.e. f (x+ εεε) is at an extremum with respect to motion within the
range of P. P and H f (x) commute (PH f (x) = H f (x)P) since in
the eigenvector basis they are both diagonal matrices. Analogous
to how in (1) we chose εεε parallel to ∇ f to derive siso (3), in (10)
we chose to align εεε with relevant Hessian eigenvectors: Pεεε = εεε. All
combined, these simplifications to (10) give

−P∇ f (x) =H f (x)εεε (11)

⇒ sft(x) =− (H f (x))−1Pft∇ f (x), (12)

where feature type ft can be rs, rl, vs, or vl (c.f. 9). The product (12)
can be simplified by recognizing again that both P and the Hessian
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inverse are diagonal matrices in the Hessian eigenvector basis. With
ridge surfaces, for example,

srs(x) =−(H f (x))−1Prs∇ f (x) =− e2(e2 ·∇ f (x))
λ2

. (13)

Obermaier et al. used (13) for ridge surface sampling [OMD∗12].
When iterating (12) converges, tests on the Hessian eigenvalue
signs can verify membership in the desired ridge/valley feature.

Besides assigning opacity, direct volume rendering uses shad-
ing to convey surface orientation and shape. The codimension-one
and codimension-two features considered above have analytically
defined normals and tangents, respectively, that can be used for
shading. In the current work, we explore using the step function
s(x) itself for shading, based on an approximate surface normal
−s(x)/|s(x)|. This gives correct shading for isocontours, but not
for ridge and valley features; their normals and tangents depend
on third derivatives [Ebe96]. In addition, since ridges may be non-
orientable [STS10], we use two-sided lighting as a simple approach
that works adequately for all features.

3.2. Other Extremal Features

To define the feature step function for extremal surfaces, let c be
the unit-length direction along which the extremum of scalar f is
sought (to make∇ f · c = 0). The desired step along c at x is then a
straight-forward 1D Newton optimization problem in terms of the
first f ′ and second f ′′ directional derivatives:

f ′ =∇ f · c; f ′′ = c · (∇⊗∇ f )c (14)

s−s(x) = s+s(x) =−
f ′

f ′′
c (15)

with −s or +s indicating minimal and maximal surfaces, respec-
tively; the same Newton step applies to both. The sign of f ′′ deter-
mines the extremum type.

For extremal lines, let c0, c1 span the plane within which the
extrema of f is sought (to make∇ f ·c0 =∇ f ·c1 = 0), and let g and
H be the projection of the gradient ∇ f and Hessian H =∇⊗∇ f ,
respectively, onto that plane:

g =

[
c0 ·∇ f
c1 ·∇ f

]
; H =

[
c0 ·Hc0 c0 ·Hc1
c1 ·Hc0 c1 ·Hc1

]
. (16)

Whether seeking the local maxima or minima of f restricted to the
span of {c0,c1}, (to find maximal line or minimal line features,
respectively), we expand the 2D Newton step in the {c0,c1} basis:

s =
[

s0
s1

]
=−H−1(x)g(x) (17)

s−l(x) = s+l(x) = s0c0 + s1c1 (18)

with −l or +l for minimal or maximal lines, respectively.

We can also consider intersections of features. Surface creases,
for example, are the intersection of isosurfaces and extremal sur-
faces of curvature. The surface normal map is∇⊗n, i.e. n(x+εεε)≈
n(x)+(∇⊗n)εεε describes local change in surface normal n around
x for offsets εεε tangent to the surface (εεε · n = 0). Curvature along
unit-length tangent direction d is then [Car76]

κ(d) = d · (∇⊗n)d. (19)

Curvature is extremal along the curvature directions d1 and d2,
with principal curvatures κ1 = κ(d1) and κ2 = κ(d2): κ1 ≥ κ2 and
curvature κ(d) for any other direction d is within [κ2,κ1]. Con-
sidering the local variation ∇κ1, ∇κ2 of the principal curvatures,
surface creases are points x where ∇κ1 · d1 = 0,κ1 > 0 (outward
creases) and∇κ2 ·d2 = 0,κ2 < 0 (inward creases), i.e., a principal
curvature is extremal with respect to motion along the correspond-
ing curvature direction [Koe90]. In the context of volumetric image
analysis, these have been called crest lines [MLD94, MB95].

3.3. Feature Strength and Mask Functions

Features are worth visualizing or extracting insofar as they indi-
cate the presence and shape of some underlying structure of in-
terest, rather than artifacts or background noise. To complement
the feature step functions that point towards features, we use fea-
ture strength functions to render or extract only those portions of
features exceeding a user-defined strength threshold. Defining fea-
ture strength functions and thresholds is unfortunately less clear-cut
than deriving step functions. For isosurfaces, a non-zero gradient
magnitude may suffice, since that ensures the feature step is finite,
even without indicating feature strength per se.

Following Haralick [Har83], Schultz et al. [STS10] judge ridge
surface significance by testing whether |∇ f |/λ2 < 0 (in our nota-
tion) is above a negative threshold. Comparing to the feature step
function for ridge surfaces (13), we note that when ∇ f is parallel
to eigenvector e2, this is equivalent to testing for small feature step
length |srs|, but it more generally penalizes a large gradient com-
ponent orthogonal to the step direction. We formulate a positive
strength function that is large for strong ridges by considering the
negated reciprocal of the expression used by Haralick and Schultz
et al: −λ2/|∇ f |. This is large when λ2 is very negative (height is
clearly concave-down, cutting across the ridge) and |∇ f | is small
(the ridge does not run along the gradient of a steep hill). To grace-
fully handle |∇ f | ≈ 0, and to provide additional control over what
downward concavity is significant, we propose strength measures
for ridge and valley surfaces and lines:

rrs =
−λ2

r0 + |∇ f |
;rrl =

−λ1

r0 + |∇ f |
;rvs =

λ0

r0 + |∇ f |
;rvl =

λ1

r0 + |∇ f |
(20)

where rs, rl, vs, and vl mean the same as in (9), and r0 > 0 is the
feature strength bias. For a given (positive) feature strength thresh-
old, increasing bias r0 creates a more stringent test on the negativity
(ridges) or positivity (valleys) of the relevant eigenvalue.

We adapt the above measures for other extremal surfaces, with

r−s =
f ′′

r0 + |∇ f | , r+s =
− f ′′

r0 + |∇ f | , (21)

where c is the direction (as above) along which the extremum is
sought, and f ′′ = c · (∇⊗∇ f )c is the second directional deriva-
tive of f along c. For extremal lines, again consider H (16), the
Hessian of f projected to the plane within which the extremum is
sought. We propose strength measures for minimal line (“−l”) and
maximal line (“+l”) features:

r−l =
ρ0

r0 + |∇ f | , r+l =
−ρ1

r0 + |∇ f | , (22)

where ρ0 ≥ ρ1 are the eigenvalues of H.
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1 input vec3 camEye ("Camera look-from point"); // look-at = [0,0,0]
2 input real camDepth ("Distance between near,far clip planes");
3 input real camFOV ("Vertical angle subtended by image");
4 input int imgRes ("Resolution on edge of square output image");
5 input real rayStep ("Sampling distance on central ray");
6 input real thick ("Apparent thickness of isosurface");
7 input real v0 ("which isosurface to render");
8 input image(3)[] vol ("data to render");
9 field#2(3)[] F = bspln3 � vol; // convolve image w/ recon kernel

10 // Only these feature functions are specific to isosurfaces
11 function vec3 fStep(vec3 x) = (v0 - F(x))*∇F(x)/(∇F(x)•∇F(x));
12 function real fStrength(vec3 x) = |∇F(x)|;
13 // Computing ray parameters and view-space basis
14 vec3 camN = normalize(-camEye); // N: away from eye
15 vec3 camU = normalize(camN × [0,0,1]); // U: right
16 vec3 camV = camN × camU; // V: down
17 real camNear = |camEye| - camDepth/2; // near clip, view space
18 real camFar = |camEye| + camDepth/2; // far clip, view space
19 // Core opacity function is a capped tent function
20 function real atent(real d) = clamp(0, 1, 1.5*(1 - |d|/thick));
21 // Renders ray through (rayU,rayV) on view plane through origin
22 strand ray(int ui, int vi) {
23 | real UVmax = tan(camFOV*π/360)*|camEye|;
24 | real rayU = lerp(-UVmax, UVmax, -0.5, ui, imgRes-0.5);
25 | real rayV = lerp(-UVmax, UVmax, -0.5, vi, imgRes-0.5);

26 | vec3 rayVec = camN + (rayU*camU + rayV*camV)/|camEye|;
27 | real rayN = camNear - rayStep; // init ray position
28 | output vec4 rgba = [0,0,0,0]; // output ray color
29 | real gray = 0; // ray grayscale
30 | real tt = 1; // ray tranparency
31 | update {
32 | | rayN += rayStep; // increment ray position
33 | | if (rayN > camFar) { // done if ray passed far plane
34 | | | real q = 1-tt if tt < 1 else 1; // un-pre-multiply
35 | | | rgba = [gray/q, gray/q, gray/q, 1-tt];
36 | | | stabilize;
37 | | }
38 | | vec3 pos = camEye + rayN*rayVec; // ray sample position
39 | | if (!inside(pos,F) || fStrength(pos) == 0) {
40 | | | continue; // neither in field nor possibly near feature
41 | | }
42 | | vec3 step = fStep(pos); // step towards feature
43 | | real aa = atent(|step|); // sample opacity
44 | | if (aa == 0) { continue; } // skip if no opacity
45 | | real gg = (normalize(step)•[0,0,1])^2; // 2-sided lighting
46 | | gray += tt*aa*((0.2 + 0.8*gg)); // ambient and diffuse
47 | | tt *= 1 - aa; // tranparencies multiply
48 | }
49 } // end strand
50 initially [ray(ui,vi) | vi in 0..imgRes-1, ui in 0..imgRes-1];

Figure 2: A minimal but complete volume renderer is made specific to isosurfaces only by fStep and fStrength on lines 11 and 12.

Additional tests may help include or exclude part of a feature,
such as requiring that ridges have sufficient height as well as suffi-
cient strength. In particular, when extracting Sujudi-Haimes vortex
cores [SH94] by the Parallel Vectors operator with ridge or valley
lines of h = (v/|v|) ·(∇⊗v/|∇⊗v|), we want h to be near±1. Our
approach includes a feature mask function to be set and thresholded
to afford this extra control as needed.

4. Methods

We implement our approach in Diderot, a domain-specific language
for scientific visualization [CKR∗12, KCS∗16, CKR18]. We de-
scribe two Diderot programs, for volume rendering (Sec. 4.1) and
for particle-based feature sampling (Sec. 4.2), and describe how
each may be specialized with feature functions. Code for the fea-
tures functions is listed in the context of volume rendering, but then
re-used verbatim for particle-based feature sampling.

4.1. Direct Volume Rendering

The program in Fig. 2 volume renders isosurfaces and demonstrates
the basic structure of Diderot programs. Input variables (lines 1–8)
include rendering parameters, the isovalue, and the image data from
which the C2-continuous field F is created by convolving with the
cubic B-spline (line 9). After computing ray and camera geometry
(lines 14–18), the atent function (line 20) implements a modified
αtent(d) (4), parameterized by isosurface thickness thick. The
ray strand (the unit of parallelism in Diderot) starting line 22 ren-
ders one ray. After computing ray geometry (lines 23–26), lines 27–
30 initialize ray state, and the update method (starting line 31)
implements one iteration of ray traversal and volume sampling, as
explained in the code comments. The program ends (line 50) by
creating an array of strands to be executed in parallel. Figure 3a
shows how this program renders a small 64× 64× 32 synthetic
dataset (used throughout this section) containing a Möbius strip
with seven Gaussian blobs along its circular core.

The Fig. 2 renderer demonstrates how feature specificity can be
isolated to a few functions, in this case fStep and fStrength,
on lines 11 and 12. The fStep(x) function, directly copied

(a) Rendered (b) iteration 0 (c) iteration 5 (d) iteration 55

Figure 3: Minimal but complete program results: Fig. 2 volume
renderer creates (a), Fig. 4 particle system creates (b), (c), and (d;
converged) after indicated iterations.

from siso(x) (3) of Sec. 3, determines opacity (line 43) and shad-
ing (line 45) based on step = fStep(pos) (line 42). The
fStrength function (line 39) is used here to avoid divide-by-
zero problems when computing feature steps.

Results in Sec. 5 come from a more complete volume renderer,
listed in Appendix A. Compared to Fig. 2, this program renders in
color (with a univariate colormap of the underlying scalar value)
and it offers more control over ray geometry and rendered appear-
ance, but it too hinges on the same fStep and fStrength func-
tions. The top row of Fig. 1 shows a variety of features all vol-
ume rendered from the same Möbius strip synthetic dataset used
in Fig. 3a, all created with the program in Appendix A (used
without change for Fig. 1a). Copying (8) from Sec. 3, we can
change fStep and fStrength to show critical points instead:
function vec3 fStep(vec3 x) = // critical points

-inv(∇⊗∇F(x))•∇F(x);
function real fStrength(vec3 x) = |∇⊗∇F(x)|;

This produces Fig. 1b. The image clarity benefits from
fStrength (the Frobenius norm of the Hessian) and a user-
defined threshold to give opacity only to critical points near signif-
icant second-order variation. Direct volume rendering offers visual
feedback to help determine such thresholds. For consistency one
colormap of scalar data value is used for all renderings in Fig. 1,
which for this synthetic dataset clearly distinguishes in Fig. 1(b)
between maxima (blue) and saddle points (orange).

The following implements srs and srl for ridge surfaces and
lines (Fig. 1(c) and (e)), which depends on Hessian eigensystems.
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1 input real rad ("Inter-particle potential radius");
2 input real eps ("General convergence threshold");
3 input real v0 ("Which isosurface to sample");
4 input vec3{} ipos ("Initial point positions");
5 input image(3)[] vol ("Data to analyze");
6 field#2(3)[] F = bspln3 � clamp(vol); // convolve w/ recon kernel
7 // Only these three "f" functions are specific to isosurfaces
8 function vec3 fStep(vec3 x) = (v0 - F(x))*∇F(x)/(∇F(x)•∇F(x));
9 function tensor[3,3] fPerp(vec3 x) {

10 | vec3 norm = normalize(∇F(x));
11 | return identity[3] - norm⊗norm;
12 }
13 function real fStrength(vec3 x) = |∇F(x)|;
14 function real phi(real r) = (1 - r)^4; // univariate potential
15 function real phi’(real r) = -4*(1 - r)^3;
16 function real enr(vec3 x) = phi(|x|/rad);
17 function vec3 frc(vec3 x) = phi’(|x|/rad) * (1/rad) * x/|x|;
18 // Strands first find feature, then interact w/ or make neighbors
19 strand point (vec3 pos0, real hh0) {
20 | output vec3 pos = pos0; // current particle position
21 | real hh = hh0; // energy gradient descent stepsize
22 | vec3 step = [0,0,0]; // energy+feature steps this iter
23 | bool found = false; // whether feature has been found
24 | int nfs = 0; // number feature steps taken
25 | update {
26 | | if (!inside(pos, F) || fStrength(pos) == 0) {
27 | | | die; // not in field domain & not possibly near feature
28 | | }
29 | | if (!found) { // looking for feature
30 | | | step = fStep(pos); // one step towards feature
31 | | | pos += step;
32 | | | if (|step|/rad > eps) { // took a substantial step
33 | | | | nfs += 1;
34 | | | | if (nfs > 10) { die; } // too slow to converge
35 | | | } else { found = true; } // else converged on feature
36 | | } else { // feature found; interact with other points
37 | | | pos += fStep(pos); // refine feature sampling
38 | | | step = [0,0,0]; // initialize output step
39 | | | real oldE = 0; // energy at current location
40 | | | vec3 force = [0,0,0]; // force on me from neighbors
41 | | | int nn = 0; // number of neighbors
42 | | | foreach (point P in sphere(rad)) {

43 | | | | oldE += enr(P.pos - pos);
44 | | | | force += frc(P.pos - pos);
45 | | | | nn += 1;
46 | | | }
47 | | | if (0 == nn) { // no neighbors, so create one
48 | | | | new point(pos + [0.5*rad,0,0], hh);
49 | | | | continue;
50 | | | } // else interact w/ neighbors
51 | | | force = fPerp(pos)•force; // no force perp. to fStep(pos)
52 | | | vec3 es = hh*force; // energy step along force
53 | | | if (|es| > rad) { // limit motion to radius
54 | | | | hh *= rad/|es|; // decrease stepsize and step
55 | | | | es *= rad/|es|;
56 | | | } // now |es| <= rad
57 | | | vec3 fs = fStep(pos+es); // find step towards feature
58 | | | if (|fs|/|es| > 0.5) { // feature step too big
59 | | | | hh *= 0.5; // try again w/ smaller step
60 | | | | continue;
61 | | | }
62 | | | vec3 oldpos = pos;
63 | | | pos += fs + es; // take steps, find new energy
64 | | | real newE = sum { enr(pos - P.pos) | P in sphere(rad) };
65 | | | if (newE - oldE > 0.5*(pos - oldpos)•(-force)) {
66 | | | | pos = oldpos; // energy didn’t go down enough;
67 | | | | hh *= 0.5; // try again w/ smaller step
68 | | | | continue;
69 | | | }
70 | | | hh *= 1.1; // cautiously increase stepsize
71 | | | step = fs + es; // record steps taken
72 | | | if (nn < 5) { // add neighbor if have too few
73 | | | | new point(pos + 0.5*rad*normalize(es), hh);
74 | | | }
75 | | } // else found
76 | } // update
77 }
78 global {
79 | bool allfound = all { P.found | P in point.all};
80 | real maxstep = max { |P.step| | P in point.all };
81 | if (allfound && maxstep/rad < eps) { stabilize; }
82 }
83 initially { point(ipos[ii], 1) | ii in 0 .. length(ipos)-1 };

Figure 4: A minimal but complete surface feature sampler is made specific to isosurfaces only by three feature functions starting line 8.

function vec3 fStep(vec3 x) { // ridge surfaces
vec3{3} E = evecs(∇⊗∇F(x));
real{3} L = evals(∇⊗∇F(x));
return -(1/L{2})*E{2}⊗E{2}•∇F(x);

}
function real fStrength(vec3 x) = // ridge surfaces

-evals(∇⊗∇F(x)){2}/(fBias + |∇F(x)|);
function vec3 fStep(vec3 x) { // ridge lines
vec3{3} E = evecs(∇⊗∇F(x));
real{3} L = evals(∇⊗∇F(x));
return -(E{2}⊗E{2}/L{2} + E{1}⊗E{1}/L{1})•∇F(x);

}
function real fStrength(vec3 x) = // ridge lines

-evals(∇⊗∇F(x)){1}/(fBias + |∇F(x)|);

In both cases, fStep and fStrength transcribe the mathemati-
cal definitions in (13), (12), and (20), using the sequence (indexed
by {}) of Hessian eigenvectors E and eigenvalues L. Examples
of fStep and fStrength functions for other extremal features
(Sec. 3.2) are given with Results (Sec. 5).

4.2. Particle-based Feature Sampling

Being less common than direct volume rendering in visualization,
the mechanics of particle systems and their implementation merit
more detailed explanation. The Diderot program in Fig. 4 uses en-
ergy minimization to uniformly sample an isosurface. Similar to
the volume renderer in Fig. 2, this uses functions fStep, fPerp,
and fStrength (starting line 8) to isolate its specificity to isosur-
face features; the rest of the program is invariant with respect to the
type of surface feature. The fPerp function returns a projection
onto the space perpendicular to locally possible fSteps.

Based on a univariate potential energy function phi and its
derivative (lines 14 and 15), functions enr and frc (lines 16 and
17) give the energy and force due to a particle at offset x, where the
potential energy profile around each particle has circular support
with radius rad (line 1). Each strand (line 19) computes the posi-
tion of one particle, initialized with an initial set of points (lines 4
and 83, created by a pre-process to randomly sample the volume
domain), and then updated through two stages of computation. In
the first stage, while !found (line 29), the particle is transported
onto the feature by successive applications of the fStep function,
one step per iteration, until the step size is small enough to im-
ply convergence, at which point found is set to true (line 35).
In the second stage (line 36), each iteration computes one step of
gradient descent through the potential energy created by neighbor-
ing particles (if a particle has no neighbors it creates one; line 47).
This involves learning, at the current particle location pos, the en-
ergy and force due to neighbors (line 42), projecting out the force
component aligned with fStep (line 51), taking a step along force
(line 52), moving back to the feature with fStep (line 57), and
then learning the energy at the new location (line 64). The compar-
ison of feature step length |fs| and energy-reducing step length
|es| on line 58 ensures that only small steps are needed to get
back to the feature, after moving to reduce energy.

Finally, line 65 tests the Armijo condition for sufficient de-
crease [Arm66]. In a conservative field, force is the negative gra-
dient of potential energy, so the dot product of -force with the
change in position (pos - oldpos) should predict the change
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in potential (E - oldE), which should be negative. The Armijo
condition is that the actual decrease be at least some fraction of the
prediction; line 65 uses fraction 0.5. If the condition is not met, the
search backtracks with a smaller step size (line 66). Otherwise, the
step size is slightly increased (line 70, which speeds convergence),
and the number of particles in the system is adjusted. Like the in-
dividual particle motion, the determination of whether to add new
particles is made locally, by each particle, based on its number of
neighbors: a new particle is added if the number of neighbors is less
than five (line 72). The system as a whole stabilizes (line 81) when
all strands have located the feature (line 79) and no particle has un-
dergone significant motion (line 80). Results from this program are
illustrated in Fig 3b, 3c, and 3d.

The remaining particle system results, on synthetic data here and
on real-world data in Sec. 5, use a more complex Diderot program,
shown in Appendix B. Its basic structure is the same as in Fig. 4, but
it has three kinds of improvements: more controls on system behav-
ior, a more demanding test of system convergence, and more robust
handling of population control (and the ability to sample 0D, 1D,
and 2D features in 3D fields), via an inter-particle potential func-
tion with a slight minimum. The increased system controls include
the periodicity of attempts at population control (Fig. 4 does this at
every iteration), a scaling of fStep to stabilize feature sampling,
and separate convergence thresholds for feature sampling and for
particle motion (Fig. 4 uses the same eps on lines 32 and 81).

The system convergence of the Appendix B program demands
that all particles have found the feature, like the minimal program
above. Rather than simply requiring no significant motion in the
last iteration, however, it averages motion over all recent iterations,
and demands that all particles have been consistently slow-moving,
and that none died or birthed new particles recently. The geomet-
ric uniformity of the sampling is measured with the coefficient-
of-variation of each particle’s distance to its closest neighbor. The
coefficient-of-variation (CV) is a dimensionless measure of disper-
sion computed as the standard deviation divided by the mean. A
low CV of closest neighbor distance implies particle system uni-
formity. Some of these considerations are from earlier particle sys-
tem work [KESW09], but others (such as CV-based convergence
testing) are incremental improvements.

Better handling of particle system population (the number of
particles) is required for reliable particle-based feature extraction
in cases other than simple synthetic data. The system popula-
tion is locally controlled according to each particle’s number of
neighbors, based on a minimum nnmin and maximum nnmax tar-
get number of neighbors. This permits handling 2D (surface) fea-
tures, with (nnmin,nnmax) = (6,8), versus 1D (curve) features, with
(nnmin,nnmax) = (2,3). To attain the target neighbor number range,
particles add new neighbors with new (to build up the sampling of a
feature that was only sparsely sampled by initialization), or remove
themselves with die (to remove points from needlessly dense sam-
plings). Particles next to the boundary of a feature, where feature
strength falls below a threshold, will be missing some neighbors,
and will thus try to create new neighbors. These new particles will
be immediately removed, however, due to low fStrength (as in
line 26 of Fig. 4) To avoid a stream of short-lived particles dying

at feature boundaries, each particle maintains a count of how many
new neighbors it has created, capped at nnmax.

A final conceptual difference between the simplistic particle pro-
gram in Fig. 4 and the robust one in Appendix B is the sampling
of features with boundaries. While inter-particle repulsion is ade-
quate for most isosurfaces (as in Fig. 3d), problems arise when the
isosurface is not entirely contained by the volume domain, or when
the feature is not a closed surface, as with the open edge of a ridge
surface where the feature strength falls below a threshold. In these
cases, simple repulsion will force particles off the feature, failing to
maintain a regular hexagonal sampling on surface features. Based
on previous work [KESW09], we use a potential function φ(r)
with a slight negative potential well to create a specific preferred
inter-particle distance. Current work has adopted the φ(r) shown in
(Appendix B) Fig. 11, a C3-continuous function from φ(0) = 1 to
φ(r) = 0 for r ≥ 1, with a minima (well) at φ(2/3) =−0.001.

4.3. Particle system post-processing

(a) (b) (c) (d) (e) (f)
Figure 5: Particles on surface features (a) are meshed by adding
inter-particle edges (b), uncrossing edges (c), adding triangles (d),
fixing stray edges (e), and filling holes (f).

After computing a particle system to sample a surface feature,
meshing the resulting points may be more useful for down-stream
processing or visualization than the point locations themselves. We
believe the high spatial regularity at convergence of our particle
systems, combined with erring on the side of high sampling density,
simplifies the meshing task. Our simple meshing approach seems
adequate from our limited experience, though it would benefit from
computational geometry analysis. Fig 5 illustrates the approach for
an intermediate (non-converged) configuration with less regularity
(Fig 5a). We first find edges for all inter-particle interactions (i.e.
within each other’s potential wells, Fig 5b), using a short utility
Diderot program described in Appendix D.2. Subsequent steps are
implemented in about 700 lines of C code. We find crossing edge
pairs, remove the longer edge in each pair (Fig 5c), add triangles
for length-3 edge loops (Fig 5d), and remove stray edges (Fig 5e).
Short edge loops (length 4 or 5) with only one triangle per edge
are holes, which we fill by adding minimal-length internal edges
and associated triangles. This approach produced the meshes seen
in the lower row of Fig 1. With particles sampling 1D features,
we simply add edges for inter-particle interactions and sort vertices
into polylines paths.

5. Results

These results were produced with the volume rendering and particle
system programs in Appendices A and B, modified for each case by

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



G. Kindlmann et al. / Rendering & Extracting Extremal Features

defining the field F of interest, and selecting the feature functions
for the feature type of interest. The code for the feature functions
are shared between the two programs. All results use 6×6×6 sup-
port C4-continuous reconstruction kernels available in Diderot, ei-
ther c4hexic (which exactly reconstructs cubics), or the quintic
B-spline bspln5 (which smooths more).

5.1. Cell Nuclei as Local Maxima

Microscopic volumetric imaging often involves manipulating spec-
imens so cell nuclei fluoresce [Str07]; maximum intensity pro-
jection (MIP) can then visualize the location of nuclei [LZP12].
Fig. 6 illustrates this with data acquired as part of research on
neuron migration in zebrafish development [WP13]. These trans-
genic zebrafish express red fluorescent protein in the cell mem-
branes of neurons of particular interest [MWRP10], shown as an
isosurface in Fig. 6a, in addition to green fluorescent protein in all
nuclei [PGVCO01]. In Fig. 6b, the MIP is computed only within
the interior of the neurons of interest, which clarifies the result
somewhat. The individual nuclei remain hard to discern, however.
Fig. 6c renders the local maxima only, using the critical point step
function (8), so that the number, location, and relative position of
the nuclei become clear, as each is rendered as a shaded and roughly
spherical blob. This is not possible with isosurfaces: the local max-
ima for each nuclei occur at widely varying intensities, so isosur-
facing could not consistently reveal them all, nor create a spherical
shape from maxima with different (negative) Hessian eigenvalues.

(a) MIP (b) MIP within iso. (c) Maxima within iso.

Figure 6: Green cell nucleii can be traditionally rendered with
MIP (a), or with MIP computed only within the membrane of cells
of interest (b). Maxima rendering (c) clarifies nucleii number and
depth.

5.2. Ridge Surface Boundary Curve

While it is common in practice to bound the extent of ridge surface
features by thresholding their feature strength, they also have an
intrinsic boundary at certain degeneracies of the Hessian, where its
two smallest eigenvalues become equal, as described by Schultz
et al. [STS10]. They localize degeneracies on voxel faces with
Newton steps towards the simultaneous roots of a set of dis-
criminant functions of the Hessian components [ZP04], and then
connect a polyline of degenerate Hessians across faces. Our ap-
proach starts by defining a new scalar field as the mode of the

Hessian [CHDH00] (+1 when two small eigenvalues are equal,
and −1 when two large eigenvalues are equal). We copy formu-
lae from [CHDH00] to create a scalar field F of Hessian mode:
field#4[] F0 = c4hexic � img; // img == data volume
field#2(3)[3,3] E = ∇⊗∇F0 - identity[3]*trace(∇⊗∇F0)/3;
field#2(3)[] F = 3*sqrt(6)*det(E/|E|);

Then ridge lines of mode F, where it is close to 1, are the de-
generate lines of interest. Fig 7 illustrates with a synthetic dataset
involving three connected twisting sheets. The resolution and ori-
entation of the grid gives rise to a complex configuration of two
sheets joining, and one terminating at a degenerate line. We may
easily volume render the degenerate line in isolation as a ridge
line of mode (Fig 7d), or explicitly sample it with a particle sys-
tem, and render the particles in context (Fig 7e,f)). The feature step
fStep function used to render or sample the degenerate line is the
same as for ridge lines in Sec. 4.1; only the definition (above) of
scalar field F differs. While the previous Newton-step approach for
isolating these features used trilinear interpolation of third deriva-
tives [STS10, ZP04], ours requires fourth derivatives (Hessian of
the mode of the Hessian), but with significantly smaller implemen-
tation complexity, and the ability to work with high-quality recon-
structions.

(a)

(b) (c) (d) (e) (f)

Figure 7: A three-way intersection of sheets (a) creates a complex
configuration of ridge surfaces (b), seen closer in (c). The analytic
ridge boundary can be rendered in isolation (d), and regularly sam-
pled with a particle system (e); different view (f).

5.3. Crease Lines on Implicit Surfaces

!1

!2

(a) (b) (c)

Figure 8: Curvature-based transfer functions do a poor job (a) of
isolating surface crease lines, but feature steps toward curvature
extrema permit their clean rendering (b), (c).

While volume rendering with curvature-based transfer functions
can highlight the convex and concave portions of implicit sur-
faces [HKG00, KWTM03], Fig 8a illustrates that they do a poor
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job of capturing surface creases (Sec 3.2) on a synthetic vol-
ume of a dodecahedron with indented faces and edges of vary-
ing sharpness. To render crease lines properly, we create scalar
fields K1 and K2 of curvature, based on formulae in [KWTM03]:
field#3(3)[3] N = -∇F/|∇F|; // F=C^4 scalar field
field#3(3)[3,3] P = identity[3] - N⊗N; // evals=1,1,0
field#2(3)[3,3] G = P•(∇⊗N)•P; // evals=k1,k2,0
field#2(3)[] discrim = sqrt(2*G:G - trace(G)*trace(G));
field#2(3)[] K1 = (trace(G) + discrim)/2;
field#2(3)[] K2 = (trace(G) - discrim)/2;
field#2(3)[] KT = sqrt(K1^2 + K2^2);

Rendering crease lines does not require creating a new func-
tion to fStep in 3D towards the curvature extrema, but we
do require the length of that step. Outward creases (maxima of
κ1 along d1) are rendered by setting material color mcol via:
1 if (KT(pos) < fMaskTh) {
2 mcol = gray; // low total curvature; uninteresting
3 } else {
4 vec3 d1 = col1span(G(pos) - K2(pos)*P(pos));
5 real k1’ = d1•∇K1(pos);
6 real k1’’ = d1•(∇⊗∇K1(pos))•d1;
7 mcol = lerp(gray, rcol, atent(1,|k1’/k1’’|/3));
8 }

where gray and rcol are the colors for gray and the outward
crease color; the code for inward crease rendering is essentially
the same. The tensor G(pos)-K2(pos)*P(pos) on line 4 has
eigenvalues κ1,0,0; utility function col1span (App. D.1) returns
the eigenvector (i.e. the curvature direction d1) for κ1. From (15),
the crease line feature step length is |k1’/k1’’|, used on line 7
with the same atent of Fig. 2 line 20 to effect the crease line
coloring, shown in Fig 8b. Results on a foot of the Visible Human
female CT scan are in Fig 8c. Some creases indicate skin folds
and toenail edges, while others demarcate the toenails, and the toes
themselves. The ease of creating these renderings, which depend
on fourth derivatives (Hessian of curvature), is notable.

5.4. Vortex Cores in 3D Flow

Vortex cores remain an important target for scientific visualization
and feature extraction, because of the variety of possible definitions
of cores. We consider two possible vortex core definitions.

The second principal invariant (the coefficient of quadratic term
of the characteristic equation) of the Jacobian J =∇⊗v of a vector
field v, is (c.f. (6) of [CPC90]):

Q =
tr(J)2− tr(J ·J)

2
(23)

If ΩΩΩ = (J− JT )/2 and S = (J + JT )/2 are the anti-symmetric
(vorticity tensor) and symmetric (rate-of-strain tensor) compo-
nents of J, then Q = (|ΩΩΩ|2 − |S|2)/2 > 0 implies that vor-
ticity dominates strain [JH95, HAL05]. The Q-criterion identi-
fies vortices with regions of high Q [HWM88]. We express
a differentiable field of Q in Diderot by copying (23) with
field#4[] V = c4hexic � img; // img == data volume
field#3(3)[3,3] J = ∇⊗V;
field#3(3)[] F = (trace(J)^2 - trace(J•J))/2;

and visualize and extracting ridge lines of F= Q with the feature
functions previously described.

Alternatively, the Sujudi-Haimes condition identifies vortex
cores as points where the flow direction is the sole real eigen-
vector of J [SH94]. This is equivalent to saying that v and
JJJvvv are parallel, and that the discriminant of J is negative (i.e.

there are two complex conjugate eigenvalues) [RP96]. In Diderot:
field#2(3)[] F = (V/|V|) • (J•V/|J•V|);
field#2(3)[] A = -trace(J);
field#2(3)[] B = (trace(J)^2 - trace(J•J))/2; // == Q
field#2(3)[] C = -det(J);
field#2(3)[] discrim = A^2*B^2 - 4*B^3 \

- 4*A^3*C + 18*A*B*C - 27*C^2;
function real fMask(vec3 x) = -discrim(x);

Our approach here is a literal interpretation of the Parallel Vectors
operator applied to v and JJJvvv: we could seek the ridge and valley
lines of F at F= +1 and F= −1, respectively, with the additional
requirement that fMask > 0 [PR99].

Figure 9: Volume rendering of Q isosurfaces around extracted
polylines of Q ridge lines

Fig. 9 visualizes a small region of a turbulent reacting jet-in-
crossflow simulation [GGK∗12]. As described in [BGB∗16], the
complex variety of vortex structures merit study with dedicated
flow analysis tools. Our goal was to see if a direct first-principles
approach could produce something plausible. The rendering in
Fig. 9 shows translucent isosurfaces of Q volume rendered by OS-
PRay, and color coded by the sign of Q. Within the volume ren-
dering are tubes around polylines extracted from our particle-based
feature extraction of the ridge lines of Q (Sec. 4.3). This demon-
strates one value of our explicit feature extraction: integration with
other visualization and analysis tools.

Our work on Parallel Vector Operator (PVO) features produced
novel formulae for the gradient and Hessian of the dot product
(a/|a|) · (b/|b|) between two vector fields a and b, normalized.
For Sujudi-Haimes vortex cores of vector field v, a = v and b =
(∇⊗ v)v. As described in Appendix C, we modified the Diderot
compiler to produce human-readable expressions of the intermedi-
ate representations used to compute PVO, which are compared to
the PVsolve formulae of Van Gelder and Pang [GP09].

5.5. DTI Anisotropy Extremal Features

Scalar fields of tensor invariants provide a rich vocabulary
for defining and exploring various possible features. Diffusion
tensor image (DTI) visualization can use fractional anisotropy
(FA) [Bas95] to highlight nervous tissue white matter. Our pre-
vious work [KCS∗16] used Diderot to create a scalar field F of
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(a) Isosurface (b) Ridge Surface (c) Ridge Line (d) Max Line (e) Min Surface
Figure 10: Different feature step functions reveal a variety of Fractional Anisotropy (FA) features from a DTI volume.

FA, and render its isosurface, as in Fig. 10a (showing a human
brain DTI from above, with a near cutting plane). With our new ap-
proach, Fig. 10b shows an FA ridge surface obtained by swapping
out the isosurface fStep function (Fig. 2 line 11) with the one
for ridge surfaces (Sec. 4.1). With another feature step function,
Fig. 10c shows FA ridge lines [TKW08]. Fig. 10d shows, on the
other hand, the maximal lines of FA with respect to the medium and
minor eigenvector of the diffusion tensor itself (not the eigenvectors
of the FA Hessian), using (18) and (22). With strength thresholds
set to generate comparably dense visualizations, FA maximal lines
(Fig. 10d) seem to have better coherent organization than FA ridge
lines (Fig. 10c). Since both capture the cingulum bundles (two di-
agonal green paths near center), FA maximal lines merit further
exploration as neuroanatomical markers. Fig. 10e shows another
experimental DTI feature, using (15) and (21) to render surfaces
of minimal FA with respect to the diffusion tensor minor eigenvec-
tor (spaning adjacent but orthogonal white matter paths [KTW07]),
colored by the minor eigenvector orientation.

6. Discussion, Conclusions, Future Work

Our new approach unifies, both in mathematical formulation and in
source code, the tasks of volume rendering and geometrically ex-
tracting features from 3D fields. These are complementary tasks:
one can quickly volume render to ascertain the presence of features
and set appropriate feature strength and feature mask (Sec. 3.3)
thresholds, before running feature extraction and meshing. Using
the exact same code to describe features for both tasks increases
trust in the results, and legible code that mirrors math notation sim-
plifies exploring new features. Our results can be integrated with
other tools by saving extracted features to files read by other vi-
sualization tools (as in Fig. 9), or by linking a Diderot program,
compiled to a library [KCS∗16], into another application that con-
trols its execution.

Our focus has been establishing a new way of implementing sci-
entific visualization research, to address the bottleneck of human
implementation time, rather than computational execution time.
Still, the volume rendering and particle system programs can both
execute in parallel, which makes them workable with sufficient
cores, but we did not record any specific measurements of com-
pile time, execution time, or parallel speedup. On a modern Mac
laptop with 8 cores, most programs compiled in under 20 seconds;
programs for particles in vector or tensor fields data took several
minutes. Execution times ranged from under 5 seconds for scalar

volume renderings, to several minutes for the more complex parti-
cle systems. One drawback is that any change to the field or feature
functions requires recompiling the entire program. Some dynamic
linking of feature-specific modules may be possible, but it would
complicate the Diderot compiler’s whole-program optimization.

Though the volume rendering and feature sampling programs are
mature enough to work on real data, they favor implementation
simplicity over computational efficiency or algorithmic sophisti-
cation. Volume rendering would be more efficient with adaptive
sampling of rays, perhaps based on the Lipschitz constants used
by Kalra and Barr [KB89]. The particle system currently makes no
effort to vary density with feature curvature [MGW05], or to dis-
cover the optimal feature scale [KESW09]. With a meshing strategy
more sophisticated than that of Sec. 4.3, the stringent convergence
tests and ensuing computational expense of our particles could be
reduced; at the opposite extreme of this are methods like AFront
which compute vertices and meshing in one sweep [SSS06].

Except for the C code for particle system meshing (Sec. 4.3),
all the code for generating our results is in Diderot, and nearly
all of it is included in this manuscript and its Appendices. While
mature visualization applications will likely require connections to
other libraries and interfaces, we are holding ourselves to a stan-
dard for self-contained reproducibility that we believe may culti-
vate research interest in scientific visualization by simplifying how
readers may explore and experiment with new methods.
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Appendix A: Direct Volume Rendering in Diderot

The base program for the direct volume rendered figures is below.
It was used as-is for Fig. 1. The program comments should support
understanding its operation; some additional explanation follows.
1 input vec3 camEye ("camera look-from point");
2 input vec3 camAt ("camera look-at point");
3 input vec3 camUp ("camera pseudo-up vector");
4 input real camNear ("at-relative near clip distance");
5 input real camFar ("at-relative far clip distance");
6 input real camFOV ("vertical field-of-view angle");
7 input bool camOrtho ("orthographic (not perspective)") = false;
8 input int iresU ("image # horizontal samples");
9 input int iresV ("image # vertical samples");

10 input real rayStep ("ray inter-sample distance");
11 input real refStep ("opacity reference step length");
12 input real transp0 ("early ray stopping transparency") = 0.005;
13 input real thick ("approximate thickness of feature");
14 input real fStrTh ("feature strength threshold");
15 input real fMaskTh ("feature mask threshold") = 0;
16 input real fBias ("Bias in feature strength computing") = 0.0;
17 input real maxAlpha ("maximum opacity of feature");
18 input vec4 phong ("Phong Ka Kd Ks Sp") = [0.1, 0.7, 0.2, 100];
19 input vec3 litdir ("view-space light direction") = [-1,-2,-1];
20 input vec3 mcNear ("color at near clip plane") = [1,1,1];
21 input vec3 mcFar ("color at far clipping plane") = [1,1,1];
22 input real isoval ("which isosurface to render");
23 input image(3)[] vol ("data to render") = image("vol.nrrd");
24 input image(1)[3] cmap ("scalar colormap") = image("cmap.nrrd");
25 input vec2 cmmm ("min,max colormap range") = [0,0];
26
27 field#2(3)[] F = bspln3 � clamp(vol);
28 field#0(3)[] Fcm = F; // colormap scalar field itself
29 field#0(1)[3] CM = tent � clamp(cmap); // 1-D colormap field
30
31 // Isosurface-specificity limited to these four functions
32 function vec3 fStep(vec3 x) =
33 | (isoval - F(x))*∇F(x)/(∇F(x)•∇F(x));
34 function real fStrength(vec3 x) = |∇F(x)|;
35 function real fMask(vec3 x) = F(x);
36 function bool fTest(vec3 x) = true;
37
38 // Computing ray parameters and view-space basis
39 vec3 camN = normalize(camAt - camEye);// N: away from eye
40 vec3 camU = normalize(camN × camUp); // U: right
41 vec3 camV = camN × camU; // V: down
42 real camDist = |camAt - camEye|;
43 real camVmax = tan(camFOV*π/360)*camDist;
44 real camUmax = camVmax*iresU/iresV;
45 real camNearVsp = camNear + camDist; // near clip, view space
46 real camFarVsp = camFar + camDist; // far clip, view space
47
48 // Convert light direction from view-space to world-space
49 vec3 litwsp = transpose([camU,camV,camN])•normalize(litdir);
50
51 // Core opacity function is a capped tent function
52 function real atent(real a0, real d)
53 | = a0*clamp(0, 1, 1.5*(1 - |d|/thick));
54
55 function bool posTest(vec3 x)
56 | = (inside(x, F) // in field
57 | && fStrength(x) > fStrTh // possibly near feature
58 | && fMask(x) >= fMaskTh // meets feature mask
59 | && fTest(x)); // passes addtl feature criterion
60
61 // Each strand renders one ray through (rayU,rayV) on view plane
62 strand raycast(int ui, int vi) {
63 | // Compute geometry of ray through pixel [ui,vi]
64 | real rayU = lerp(-camUmax, camUmax, -0.5, ui, iresU-0.5);
65 | real rayV = lerp(-camVmax, camVmax, -0.5, vi, iresV-0.5);
66 | real rayN = camNearVsp;
67 | vec3 UV = rayU*camU + rayV*camV;
68 | vec3 rayOrig = camEye + (UV if camOrtho else [0,0,0]);
69 | vec3 rayVec = camN + ([0,0,0] if camOrtho else UV/camDist);
70 |
71 | // Opacity correction is via alphaFix; distance between
72 | // ray samples is |rayVec|*rayStep
73 | real alphaFix = |rayVec|*rayStep/refStep;
74 | vec3 eyeDir = -normalize(rayVec);
75 |
76 | // Unpack Phong parameters
77 | real phKa = phong[0]; real phKd = phong[1];
78 | real phKs = phong[2]; real phSp = phong[3];
79 |
80 | output vec4 rgba = [0,0,0,0]; // ray output
81 | vec3 rgb = [0,0,0]; // ray state is current color ...
82 | real transp = 1; // ... and current tranparency
83 |

84 | update {
85 | | rayN += rayStep; // increment ray position
86 | | if (rayN > camFarVsp) { // ray passed far clip plane
87 | | | stabilize;
88 | | }
89 | | vec3 pos = rayOrig + rayN*rayVec; // ray sample position
90 | | if (!posTest(pos)) {
91 | | | continue;
92 | | }
93 | |
94 | | vec3 step = fStep(pos); // step towards feature
95 | | real aa = atent(maxAlpha, |step|); // opacity
96 | | if (aa == 0) { continue; } // skip if no opacity
97 | | aa = 1 - (1 - aa)^alphaFix; // opacity correction
98 | | vec3 snorm = -normalize(step); // "surface normal"
99 | | real dcomp = (snorm•litwsp)^2; // two-sided lighting

100 | | real scomp = |snorm•normalize(eyeDir+litwsp)|^phSp
101 | | if phKs != 0 else 0.0;
102 | |
103 | | // simple depth-cueing
104 | | vec3 dcol = lerp(mcNear, mcFar, camNearVsp, rayN, camFarVsp);
105 | | vec3 mcol = CM(lerp(0, 1, cmmm[0], Fcm(pos+step), cmmm[1]))
106 | | if (cmmm[0] != cmmm[1]) else [1,1,1];
107 | | // light color is [1,1,1]
108 | | rgb += transp*aa*((phKa + phKd*dcomp)*modulate(dcol,mcol)
109 | | + phKs*scomp*[1,1,1]);
110 | | transp *= 1 - aa;
111 | | if (transp < transp0) { // early ray termination
112 | | | transp = 0;
113 | | | stabilize;
114 | | }
115 | }
116 | stabilize {
117 | | if (transp < 1) { // un-pre-multiply opacities
118 | | | real aa = 1-transp;
119 | | | rgba = [rgb[0]/aa, rgb[1]/aa, rgb[2]/aa, aa];
120 | | }
121 | }
122 }
123 initially [ raycast(ui, vi)
124 | vi in 0..iresV-1, ui in 0..iresU-1 ];

The renderer is made specific to isosurface with the feature step
fStep (line 32) and feature strength fStrength (line 34) func-
tions. As described in Sec. 3 and demonstrated in Secs. 4 and 5,
different feature step and strength functions will repurpose the ren-
derer for different types of features. Vector and tensor field ren-
dering will involve defining some derived scalar field F from the
multi-variate data, rather than directly creating F from the data as
in line 27 above. The feature mask function fMask, (line 35) de-
scribed in Sec. 3.3, offers additional tunable control over what parts
of a feature are worth seeing, and the test function fTest (line 36)
is available as a further criterion for feature membership. These are
used in the posTest function (line 55) function, which used on
line 90 to skip over some ray samples.
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Appendix B: Particle-based Feature Sampling in Diderot

The base program for the particle-based feature sampling is be-
low. It was used as-is to generate the isosurface sampling seen in
Fig. 1f. The program comments should support understanding its
operation; additional explanations follow.
1 input real fStrTh ("Feature strength threshold");
2 input real fMaskTh ("feature mask threshold") = 0;
3 input real fBias ("Bias in feature strength computing") = 0.0;
4 input real tipd ("Target inter-particle distance");
5 /* tipd is the only length or speed variable with data spatial
6 units; everything else measures space in units of tipd */
7 input real mabd ("Min allowed birth distance (> 0.7351)") = 0.75;
8 input real travMax ("Max allowed travel to or on feature") = 10;
9 input int nfsMax ("Max allowed # feature steps ") = 20;

10 // these next three control the Gradient Descent in Energy
11 input real gdeTest ("Scaling in sufficient decrease test") = 0.5;
12 input real gdeBack ("How to scale stepsize for backtrack") = 0.5;
13 input real gdeOppor ("Opportunistic stepsize increase") = 1.2;
14 input real fsEps ("Conv. thresh. on feature step size");
15 input real geoEps ("Conv. thresh. on system geometry") = 0.1;
16 input real mvmtEps ("Conv. thresh. on point movement") = 0.01;
17 input real rpcEps ("Conv. thresh. on recent pop. changes") = 0.01;
18 input real pcmvEps ("Motion limit before PC") = 0.3;
19 input real isoval ("Which isosurface to sample") = 0;
20 input int verb ("Verbosity level") = 0;
21 input real sfs ("Scaling (<=1 for stability) on fStep") = 0.5;
22 input real hist ("How history matters for convergence") = 0.5;
23 // higher hist: slower change, more stringent convergence test
24 input int pcp ("periodicity of population control (PC)") = 5;
25 input vec3{} ipos ("Initial point positions");
26 input image(3)[] vol ("data to analyze");
27
28 field#2(3)[] F = bspln3 � clamp(vol);
29
30 // Isosurface-specificity limited to fDim and these 5 functions
31 int fDim = 2;
32 function vec3 fStep(vec3 x) =
33 | (isoval - F(x))*∇F(x)/(∇F(x)•∇F(x));
34 function tensor[3,3] fPerp(vec3 x) {
35 | vec3 norm = normalize(∇F(x));
36 | return identity[3] - norm⊗norm;
37 }
38 function real fStrength(vec3 x) = |∇F(x)|;
39 function real fMask(vec3 x) = F(x);
40 function bool fTest(vec3 x) = true;
41
42 function bool posTest(vec3 x) =
43 (inside(x, F) // in field
44 && fStrength(x) > fStrTh // possibly near feature
45 && fMask(x) >= fMaskTh // meets feature mask
46 && fTest(x)); // passes addtl feature criterion
47
48 // Each particle wants between nnmin and nnmax neighbors
49 int nnmin = 6 if (2==fDim) else 2 if (1==fDim) else 0;
50 int nnmax = 8 if (2==fDim) else 3 if (1==fDim) else 0;
51
52 /* Potential function (found with Mathematica) phi(r):
53 phi(0)=1, phi(r)=0 for r >= 1, with minima (potential well)
54 phi’(2/3)=0 and phi(2/3)=-0.001. Phi(r) is C^3
55 continuous across the well and with 0 for r >= 1. Potential
56 well induces good packing with energy minimization. */
57 function real phi(real r) {
58 | real s=r-2.0/3;
59 | return
60 | | 1 + r*(-5.646 + r*(11.9835 + r*(-11.3535 + 4.0550625*r)))
61 | if r < 2.0/3 else
62 | | -0.001 + ((0.09 + (-0.54 + (1.215 - 0.972*s)*s)*s)*s)*s
63 | if r < 1 else 0;
64 }
65 function real phi’(real r) { // phi’(r) = d phi(r) / dr
66 | real t=3*r-2;
67 | return
68 | | -5.646 + r*(23.967 + r*(-34.0605 + 16.22025*r))
69 | if r < 2.0/3 else
70 | | 0.01234567901*t*(4.86 + t*(-14.58 + t*(14.58 - 4.86*t)))
71 | if r < 1 else 0;
72 }
73 real phiWellRad = 2/3.0; // radius of potential well
74 real rad = tipd/phiWellRad; // actual radius of potential support
75 function real enr(vec3 x) = phi(|x|/rad);
76 function vec3 frc(vec3 x) = phi’(|x|/rad) * (1/rad) * x/|x|;
77
78 // pchist reflects periodicity of PC: pchist^(2*pcp) = hist
79 real pchist = hist^(1.0/(2*pcp));
80
81 int iter = 0; // iteration counter
82 real rpc = 1; // recent population change

83 int popLast = -1; // population at last iteration
84
85 /* Finds a number in [0,1) roughly proportional to the low 32
86 bits of significand of given real x. NOTE: ONLY useful only
87 when compiling with --double */
88 function real urnd(real x) {
89 | if (x==0) return 0;
90 | real l2 = log2(|x|);
91 | real frxp = 2^(l2-floor(l2)-1); // in [0.5,1.0), like frexp(x)
92 | // use iter to make different values for same x
93 | return fmod((2^20 + 2*iter)*frxp, 1);
94 }
95
96 // Given vec3 (and iter), a random-ish value uniformly in [0,1)
97 function real v3rnd(vec3 v)
98 | = fmod(urnd(v[0]) + urnd(v[1]) + urnd(v[2]), 1);
99

100 // Given vec3 (and iter), a big random-ish integer
101 function real genID(vec3 v) = floor(1000000*v3rnd(v));
102
103 /* Is this an iteration in which to do population control (PC)?
104 If not, pcIter() returns 0. Otherwise, returns 1 when should
105 birth new particles, and -1 when should kill then off. This
106 alternation is not due to any language limitations; it just
107 plays well with the PC heuristics used here. */
108 function int pcIter() = ((iter/pcp)%2)*2 - 1
109 if (pcp>0 && iter>0 && 0 == iter % pcp)
110 else 0;
111
112 // Strands first find feature, then interact w/ or make neighbors
113 strand point (vec3 p0, real hh0) {
114 | output vec3 pos = p0; // current particle position
115 | real ID = genID(p0); // strand identifier
116 | real hh = hh0; // energy gradient descent stepsize
117 | vec3 step = [0,0,0]; // energy+feature steps this iter
118 | bool found = false; // whether feature has been found
119 | int nfs = 0; // number feature steps taken
120 | real trav = 0; // total distance traveled
121 | real mvmt = 1; // average of recent movement
122 | real closest = rad; // distance to closest neighbor
123 | int born = 0; // how many particles I have birthed
124 | bool first = true; // first time through update
125 | update {
126 | | if (!posTest(pos)) {
127 | | | die;
128 | | }
129 | | if (travMax > 0 && trav > travMax) { // too much travel
130 | | | die;
131 | | }
132 | | if (!found) { // ------------------------ looking for feature
133 | | | if (nfsMax > 0 && nfs > nfsMax) { // too many steps
134 | | | | die;
135 | | | }
136 | | | step = sfs*fStep(pos); // one step towards feature
137 | | | pos += step;
138 | | | mvmt = lerp(|step|/tipd, mvmt, hist);
139 | | | if (mvmt > fsEps) { // still moving
140 | | | | trav += |step|/tipd;
141 | | | | nfs += 1;
142 | | | } else { // found feature, prepare for code below
143 | | | | found = true;
144 | | | | mvmt = 1;
145 | | | | trav = 0;
146 | | | }
147 | | } else { // ------------------ feature found; minimize energy
148 | | | // if feature is isolated points, we’re already done
149 | | | if (0 == fDim) { stabilize; }
150 | | | step = sfs*fStep(pos); pos += step; trav += |step|/tipd;
151 | | | real oldE = 0; // energy at current location
152 | | | vec3 force = [0,0,0]; // force on me from neighbors
153 | | | int nn = 0; // number of neighbors
154 | | | foreach (point P in sphere(rad)) {
155 | | | | vec3 off = P.pos - pos;
156 | | | | if (|off|/tipd < fsEps && ID <= P.ID) {
157 | | | | | // with 0-D features or unlucky intialization, points
158 | | | | | // can really overlap; point w/ lower ID dies
159 | | | | | die;
160 | | | | }
161 | | | | oldE += enr(off);
162 | | | | force += frc(off);
163 | | | | nn += 1;
164 | | | }
165 | | | if (0 == nn) { // else fDim is 1 or 2
166 | | | | // No neighbors; create one if possible
167 | | | | if (!( pcIter() > 0 && born < nnmax )) { continue; }
168 | | | | // Ensure new pos is near feature, for all
169 | | | | // feature dimensions and orientations
170 | | | | vec3 noff0 = fPerp(pos)•[tipd,0,0];
171 | | | | vec3 noff1 = fPerp(pos)•[0,tipd,0];
172 | | | | vec3 noff2 = fPerp(pos)•[0,0,tipd];
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173 | | | | vec3 noff = noff0;
174 | | | | noff = noff if |noff| > |noff1| else noff1;
175 | | | | noff = noff if |noff| > |noff2| else noff2;
176 | | | | // noff is now longest of noff0, noff1, noff2
177 | | | | vec3 npos = tipd*normalize(noff) + pos;
178 | | | | npos += sfs*fStep(npos);
179 | | | | if (posTest(pos)) {
180 | | | | | new point(npos, hh); born += 1;
181 | | | | }
182 | | | | continue;
183 | | | }
184 | | | // Else I did have neighbors; interact with them
185 | | | vec3 es = hh*fPerp(pos)•force; // energy step along force
186 | | | if (|es| > tipd) { // limit motion to tipd
187 | | | | hh *= tipd/|es|; // decrease stepsize, step
188 | | | | es *= tipd/|es|;
189 | | | } // now |es| <= tipd
190 | | | vec3 fs = sfs*fStep(pos+es); // step towards feature
191 | | | if (|fs|/(fsEps*tipd + |es|) > 0.5) {
192 | | | | hh *= 0.5; // feature step too big, try w/ smaller step
193 | | | | continue;
194 | | | }
195 | | | vec3 oldpos = pos;
196 | | | pos += fs + es; // take steps, find new energy
197 | | | real newE = 0;
198 | | | closest = rad;
199 | | | // find mean neighbor offset (mno) to know (opposite)
200 | | | // direction in which to add new particles with PC
201 | | | vec3 mno = [0,0,0];
202 | | | nn = 0;
203 | | | foreach (point P in sphere(rad)) {
204 | | | | vec3 off = P.pos - pos;
205 | | | | newE += enr(off);
206 | | | | closest = min(closest, |off|);
207 | | | | mno += off;
208 | | | | nn += 1;
209 | | | }
210 | | | mno /= nn;
211 | | | // test the Armijo sufficient decrease condition
212 | | | if (newE - oldE > gdeTest*(pos - oldpos)•(-force)) {
213 | | | | // backtrack because energy didn’t go down enough
214 | | | | hh *= gdeBack; // try again next time w/ smaller step
215 | | | | if (0 == hh) {
216 | | | | | die; // backtracked all the way to hh=0!
217 | | | | }
218 | | | | pos = oldpos;
219 | | | | continue;
220 | | | }
221 | | | hh *= gdeOppor; // opportunistically increase stepsize
222 | | | step += fs + es;
223 | | | trav += |step|/tipd;
224 | | | mvmt = lerp(|step|/tipd, mvmt, hist);
225 | | | if (|step|/tipd < pcmvEps && pcIter() != 0) {
226 | | | | // can do PC only if haven’t moved a lot
227 | | | | if (pcIter()>0 // this is an iter to add
228 | | | | | | && newE<0 // already in a potential well
229 | | | | | | && nn<nnmin // have fewer than expected neighbors
230 | | | | | | && born<nnmax) { // haven’t birthed too many times
231 | | | | | vec3 npos = pos - tipd*normalize(mno);
232 | | | | | npos += sfs*fStep(npos); npos += sfs*fStep(npos);
233 | | | | | bool birth = true;
234 | | | | | if (fDim == 2 && nn >= 4) {
235 | | | | | | foreach (point P in sphere(npos, tipd*mabd)) {
236 | | | | | | | birth = false; // too close to existing point
237 | | | | | | }
238 | | | | | | if (birth) {
239 | | | | | | | // Have nn neighbors: too few (nnmin > nn).
240 | | | | | | | // Try adding a new neighbor with a probability
241 | | | | | | | // that scales with nnmin-nn.
242 | | | | | | | birth = v3rnd(pos) < (nnmin - nn)/real(nnmin);
243 | | | | | | }
244 | | | | | }
245 | | | | | if (birth && posTest(npos)) {
246 | | | | | | new point(npos, hh); born += 1;
247 | | | | | }
248 | | | | } else if (pcIter() < 0 && newE > 0 && nn > nnmax) {
249 | | | | | // Have too many neighbors, so maybe die. If I have
250 | | | | | // nn neighbors, they probably also have nn neighbors.
251 | | | | | // To have fewer, that is, nnmax neighbors, we all
252 | | | | | // die with chance of nn-nnmax out of nn.
253 | | | | | if (v3rnd(pos) < (nn - nnmax)/real(nn)) {
254 | | | | | | die;
255 | | | | | }
256 | | | | }
257 | | | }
258 | | } // else found
259 | | first = false;
260 | } // update
261 }
262 global {

263 | int pop = numActive();
264 | int pc = 1 if pop != popLast else 0;
265 | rpc = lerp(pc, rpc, pchist);
266 | bool allfound = all { P.found | P in point.all};
267 | real percfound =
268 | | 100* mean { 1.0 if P.found else 0.0 | P in point.all};
269 | real meancl = mean { P.closest | P in point.all };
270 | real varicl = mean { (P.closest - meancl)^2 | P in point.all };
271 | real covcl = sqrt(varicl) / meancl;
272 | real maxmvmt = max { P.mvmt | P in point.all };
273 | print("======= finished iter ", iter, " w/ ", pop, ")",
274 | | | | "; %found=", percfound,
275 | | | | "; mean(hh)=", mean { P.hh | P in point.all},
276 | | | | "; mean(cl)=", meancl,
277 | | | | "; COV(cl)=", covcl,
278 | | | | "; max(mvmt)=", maxmvmt,
279 | | | | "; pc=", pc,
280 | | | | "; rpc=", rpc,
281 | | | | "\n");
282 | if (allfound // all particles have found the feature
283 | | | && covcl < geoEps // and system is geometrically uniform
284 | | | && maxmvmt < mvmtEps // and nothing’s moving much
285 | | | && rpc < rpcEps) { // and pop. hasn’t changed recently
286 | | print("======= Stabilizing ", numActive(), " (iter ", iter, ")",
287 | | | | | "; COV(cl)=", covcl, " < ", geoEps,
288 | | | | | "; max(mvmt)=", maxmvmt, " < ", mvmtEps,
289 | | | | | "; rpc=", rpc, " < ", rpcEps,
290 | | | | | "\n");
291 | | stabilize;
292 | }
293 | iter += 1;
294 | popLast = pop;
295 }
296 initially { point(ipos[ii], 1) | ii in 0 .. length(ipos)-1 };

As with the direct volume renderer, the code specific to one fea-
ture is isolated to one place: the statement of feature dimension
fDim (line 31), and the feature functions starting on line 32. Rel-
ative to the volume renderer, the new feature function is fPerp
(line 34), which projects onto the orthogonal complement of the
possible local feature steps.

Compared with the basic particle system program (Fig. 4), the
program is longer and more complex, but the basic structure is the
same. There is still a univariate inter-particle potential energy φ(r),
is implemented as phi (line 57), which is a piecewise polynomial
with a slight potential well at r = 2/3. The function is graphed in
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Figure 11: Graph of inter-particle potential function φ(r)

Fig. 11, which includes an inset that vertically expands the plot over
interval [0.55,1] to clarify the location and shape of the potential
well. The relative shallowness of the potential well compared to
height at r = 0 ensures that energy minimization separates close
particles before it attempts to produce uniform spacing.

The functions over 3D space for energy (enr on line 75) and
force (frc on line 76) are defined as they were in simple Fig. 4
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program. The control of the population of the particle system is
probabilistic in flavor, using function v3rnd (line 97) which gen-
erates from a vec3 v a value in [0,1) by combining the low-order
bits of the X, Y, and Z coordinates of v (as exposed by urnd on
line 88) with the current program iteration count. The current ver-
sion of Diderot lacks a pseudo-random number generator. The same
v3rnd is used in the genID function (line 101) used to assign to
each strand a number (hopefully unique), which proves useful for
debugging. A unique per-strand identifier that is thread-safe and
stable across iterations is currently not available in Diderot. The
periodicity of considering to add or kill particles is controlled by
pcIter (line 108).

As in the simple particle system (Fig. 4), each program strand
computes the position of one particle. Each particle starts (with
found=false, line 118) looking for the feature of interest with
repeated fSteps (lines 132 through 146) while ignoring other par-
ticles, after which (lines 147 through 258) particles interact with
each other to produce a uniform feature sampling. This second
phase includes careful mechanisms for population control. If parti-
cles have no neighbors (lines 165 through 183), an effort is made
to create a new neighbor close to the feature, using fPerp. Com-
puting energy at the updated location (lines 203 through 210) in-
cludes computing a mean offset to neighbors mno, which is used
later (line 231) as part of determining where to try add a new par-
ticle in case of under-population. Because the φ(r) function in the
minimal Fig. 4 particle system program was purely repulsive, the
last energy gradient descent direction could play that role (Fig. 4
line 73), but here the φ(r) includes a potential well, so the geomet-
ric information in mno is useful. If the particle has not predictably
moved downhill in energy (line 212), it backtracks and tries again
on the next iteration.

Otherwise (line 221), with predictable energy descent, the
records of recent motion are updated (line 222), and, if recent mo-
tion is small, population control is considered (local estimates of
particle density mean less if the system is rapidly moving). Precau-
tions are taken to ensure that the intended location of the a new
particle are not too close to an existing one, via the minimum al-
lowed birth distance mabd parameter (input line 7, used line 235).
This parameter is subtle: if too high, significant holes are never
filled in, and if too low, then the pentagonal arrangements of points
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Figure 12: Geometric derivation of lower bound on mabd param-
eter to avoid filling pentagonal holes in sampling

that may appropriately minimize energy on higher curvature sur-
faces may trigger the birth of multiple particles, each trying to
create a local hexagonal packing (wherein every particle will see
nnmin = 6 neighbors). Fig. 12 illustrates the geometric reasoning
involved in setting mabd. If particles, separated by S, have formed
a pentagon, then if one adds a new particle at distance S, it will
have distance D from another particle on the other side of the pen-
tagon; D/S≈ 0.735085. Setting mabd higher than this (0.75 works
in our experience) prevents pentagonal holes from triggering exces-
sive births. Subsequent meshing can fill the whole by adding two
edges and three triangles.

The chances of creating a new particle (if the mabd test passes,
line 242) or of a particle exiting the computation (line 253) de-
pend on the relationship between the number of neighbors nn and
the target range of neighbor numbers [nnmin,nnmax]. The intent
is that after one or two periods of population control, the system
has roughly the correct number of particles and can proceed to dis-
tribute them in a uniform way. While this code with these parameter
settings worked adequately to produce our current results, we hope
that further computational and geometric analysis can demonstrate
the theoretical stability and robustness of the method.

In the final part of the program, the global update (line 262), the
particle system state is measured to test for convergence (line 282),
which includes tests on the recent stability of particle position and
number, as well as their spatial uniformity, as measured by the
coefficient-of-variation of distances to interacting neighbors.
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Appendix C: Human-readable Diderot intermediate
representation

The ability of the Diderot compiler to generate code that computes
higher-order derivatives of vector and tensor fields has enabled our
work to date. How any compiler converts the surface programming
langauge into working code requires multiple stages of internal or
intermediate representation. We thought it might be interesting to
see what the Diderot compiler is doing with the expressions associ-
ated with extremal features, by modifying the (open-source) com-
piler to print some of its intermediate representations. We show
here human-readable expressions for gradient and Hessian of the
Parallel Vector operator used for many vector field features [PR99].

If we consider two 3D vector fields a(x) and b(x) (these two let-
ters are more easily distinguished than the standard u(x) and v(x)),
the Parallel Vector Operator (PVO) a‖b is true at points x where
a(x) is parallel to b(x), i.e.

(a‖b)(x) ⇔ P(x) = a(x)
|a(x)| ·

b(x)
|b(x)| =±1 (24)

Our approach to visualizing or extracting a‖b involves finding the
Newton step towards a‖b. Since a‖b are particular ridge and valley
lines of a ·b/(|a||b|) (where the height is +1 and−1, respectively),
we need the gradient and Hessian of (a/|a|) ·(b/|b|) to compute the
Newton step with (12) of Sec. 3.1.

We modified the Diderot compiler to learn expressions for these
derivatives, by printing LATEXor Unicode formattings of the inter-
mediate representation. Starting with a minimal program to evalu-
ate once the gradient of the PVO:
1 input image(3)[3] A;
2 input image(3)[3] B;
3 field#2(3)[3] a = bspln3 � A;
4 field#2(3)[3] b = bspln3 � B;
5
6 field#2(3)[] P = (a/|a|)•(b/|b|); // the PVO
7
8 strand f(int i) {
9 | output tensor[3] r = ∇P([0,0,0]);

10 | update {
11 | | stabilize;
12 | }
13 }
14 initially [ f(i) | i in 0..0];

Our modified compiler generated:

((A•∇⊗B)+(B•∇⊗A))
(|A| ∗ |B|) (25)

−( ((B•A)∗ (A•∇⊗A))
(|A| ∗ |B| ∗ (A•A))

+
((B•A)∗ (B•∇⊗B))
(|B| ∗ |A| ∗ (B•B))

), (26)

which we manually post-processed to find:

∇P =
a ·∇⊗b + b ·∇⊗a − a ·b

(
a·∇⊗a

a·a + b·∇⊗b
b·b

)

|a||b| . (27)

We were not previously familiar with this expression of∇P, which
(to first order) points towards (or away from) where a and b are
parallel. Terms like a ·∇⊗b are the Jacobian∇⊗b of b, contracted
on the left by a, which can be thought of as a sum over the rows
of ∇⊗ b, weighted by the components of a. The ∇P expression
could also be derived by hand, but it was a nearly automatic side-
effect of our modified Diderot compiler. The expression for ∇P is
symmetric in switching a and b, which is reassuring.

For comparison, Van Gelder and Pang, also interested in iterative
methods to extract PVO features, derive (with a page of careful ex-
planation) this condition for a step εεε from x such that x+εεε satisfies
a‖b (c.f. (29) in [GP09]):

q+
(

I− b⊗b
b ·v

)
(∇⊗a− s∇⊗b)εεε

−
(

b⊗q
b ·b ∇⊗b+

q⊗a
a ·a ∇⊗a

)
εεε = 000 (28)

where

q =

(
I− b⊗b

b ·b

)
a (29)

is the component of a orthogonal to b. The authors then describe
how εεε may then by computed as the solution to a system of equa-
tions as part of an iterative search. They chose a mathematical for-
mulation that is not symmetric in switching a and b.

We were curious if our modified Diderot compiler could pro-
duce a human-readable expression for the Hessian of P(x) = a(x)

|a(x)| ·
b(x)
|b(x)| , which is inverted as to compute, via (12), the feature step
of our approach. By changing line 9 in the program above to in-
clude r = ∇⊗∇P([0,0,0]); our modified compiler gener-
ated a lengthy expression:

(((∇⊗A)T•∇⊗B)+(A•∇⊗∇⊗B)+((∇⊗B)T•∇⊗A)+(B•∇⊗∇⊗A))
(|B|∗|A|)

+
(((B•A)∗((A•∇⊗A)⊗(A•∇⊗A)))+(2∗(B•A)∗((A•∇⊗A)⊗(A•∇⊗A))))

(|B|∗|A|∗((A•A))2)

+
(((B•A)∗((B•∇⊗B)⊗(A•∇⊗A)))+((B•A)∗((A•∇⊗A)⊗(B•∇⊗B))))

((B•B)∗|A|∗|B|∗(A•A))

+
((B•A)∗((B•∇⊗B)⊗(B•∇⊗B)))

(|B|∗|A|∗((B•B))2)
+

(2∗|B|∗(B•A)∗((B•∇⊗B)⊗(B•∇⊗B)))
(|A|∗(B•B)∗((B•B))2)

−( ((((A•∇⊗A)⊗(B•∇⊗A)))+(((A•∇⊗A)⊗(A•∇⊗B)))+((B•A)∗((∇⊗A)T•∇⊗A))+((B•A)∗(A•∇⊗∇⊗A))+(((A•∇⊗B)⊗(A•∇⊗A)))+(((B•∇⊗A)⊗(A•∇⊗A))))
(|B|∗|A|∗(A•A))

+
((((B•∇⊗B)⊗(B•∇⊗A)))+(((A•∇⊗B)⊗(B•∇⊗B)))+(((B•∇⊗B)⊗(A•∇⊗B)))+(((B•∇⊗A)⊗(B•∇⊗B))))

(|A|∗|B|∗(B•B))

+
((|B|∗(B•A)∗((∇⊗B)T•∇⊗B))+(|B|∗(B•A)∗(B•∇⊗∇⊗B)))

(|A|∗(B•B)∗(B•B)) )
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With some manual post-processing (factoring common terms
and regrouping), we develop an expression for the Hessian of P:

∇⊗∇P =

(∇⊗b)T ·∇⊗a + (∇⊗a)T ·∇⊗b + a ·∇⊗∇⊗b + b ·∇⊗∇⊗a

+a ·b
(

3(b·∇⊗b)⊗(b·∇⊗b)
(b·b)2 +

3(a·∇⊗a)⊗(a·∇⊗a)
(a·a)2 +

(a·∇⊗a)⊗(b·∇⊗b)+(b·∇⊗b)⊗(a·∇⊗a)
(a·a)(b·b)

)

− a·b(b·∇⊗∇⊗b+(∇⊗b)T ·∇⊗b) + (a·∇⊗b+b·∇⊗a)⊗(b·∇⊗b) + (b·∇⊗b)⊗(a·∇⊗b+b·∇⊗a)
b·b

− a·b(a·∇⊗∇⊗a+(∇⊗a)T ·∇⊗a) + (a·∇⊗b+b·∇⊗a)⊗(a·∇⊗a) + (a·∇⊗a)⊗(a·∇⊗b+b·∇⊗a)
a·a

|a||b|
(30)

Review of this expression reveals that it too is symmetric in
switching a and b.∇⊗∇⊗a is the Hessian of vector field a, a third-
order tensor that, when right multiplied by offset εεε, gives the local
change in the Jacobian. While it would also be possible to derive
∇⊗∇P by hand, the automated operation of a compiler may be
more trustworthy. We show this expression for ∇⊗∇P to demon-
strate functionality that is otherwise hidden inside the Diderot com-
piler, and to document a complicated formula that others may find
useful if implementing Newton steps towards PVO features without
Diderot.
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Appendix D: Utility programs in Diderot

We we include, for the sake of completeness, other Diderot pro-
grams and functions that were used to compute results or generate
figures.

D.1. Finding 1D column-space (col1span)
1 // finds vector spanning 1D columnspace
2 function vec3 col1span(tensor[3,3] m) {
3 | vec3 ret = [0,0,0];
4 | vec3 c0 = m[:,0]; // extract columns
5 | vec3 c1 = m[:,1];
6 | vec3 c2 = m[:,2];
7 | vec3 c = c0;
8 | // learn which column is longest
9 | int which = 0;

10 | if (|c1| > |c|) { c = c1; which = 1; }
11 | if (|c2| > |c|) { c = c2; which = 2; }
12 | // starting with longest column, add in other columns,
13 | // negating as needed to get longest (most accurate) sum
14 | if (0 == which) {
15 | | ret = c0;
16 | | ret += c1 if c1•c0 > 0 else -c1;
17 | | ret += c2 if c2•c0 > 0 else -c2;
18 | } else if (1 == which) {
19 | | ret = c1;
20 | | ret += c0 if c0•c1 > 0 else -c0;
21 | | ret += c2 if c2•c1 > 0 else -c2;
22 | } else { // 2 == which
23 | | ret = c2;
24 | | ret += c0 if c0•c2 > 0 else -c0;
25 | | ret += c1 if c1•c2 > 0 else -c1;
26 | }
27 | // normalize result if possible
28 | return normalize(ret) if |ret|>0 else [0,0,0];
29 }

The above function is used as part of surface crease line rendering
(Sec. 5.3), to find the single eigenvector of a symmetric 3×3 matrix
associated with the sole non-zero eigenvalue. This amounts to find-
ing a vector that spans the column space of the matrix, which the
above function does by finding the longest possible sum of (possi-
bly negated) columns in the given matrix, and then normalizing.

D.2. Finding edges between particles (edge.diderot)
1 input vec3{} ipos ("vertex positions") = load("pos.nrrd");
2 input real rad ("radius within which verts are edge-connected");
3
4 strand point (int ii, vec3 pp) {
5 | // the output of this program is what it print()s,
6 | // rather than this "output" variable foo.
7 | output real foo=0;
8 | int ID = ii; // record our index in vert list
9 | vec3 pos = pp; // record spatial position

10 | update {
11 | | // the sphere() test implicitly depends on pos
12 | | foreach (point P in sphere(rad)) {
13 | | | if (ID < P.ID) {
14 | | | | // only report each edge once
15 | | | | print(ID, "\n", P.ID, "\n");
16 | | | }
17 | | }
18 | | stabilize;
19 | }
20 }
21
22 initially { point(ii, ipos[ii]) | ii in 0 .. length(ipos)-1 };

The above utility program is used for the first stage of meshing
feature sampling results systems (Sec. 4.3): connecting neighboring
vertices together. Because the particle system tends to produce very
uniform samplings at and near convergence, the test for whether
two vertices (as represented by two particles) should be considered
edge-connected is reduced to knowing if they interacted in the last
iteration. Because for this work we have not yet attempted to vary
sampling density based on feature characteristics, this is in turn

equivalent to asking whether two particles are within the potential
function φ(r) support of each other. Assuming the φ(r) described
in Appendix B, with its potential well at r = 2/3, the radius rad
given to on line 2 should be 3/2 of the target inter-particle distance
(tipd, Appendix B line 4) used for particle system computation.
A k-d tree created by Diderot run-time based on the special pos
position variable (line 9) ensures that the sphere test (line 12) is
executed efficiently.

D.3. PostScript mesh drawing (epsdraw.diderot)

The program below is included for the sake of completeness since
it is used for figure generation (Fig 1 bottom row, Fig. 3(b,c,d), and
Fig. 5). It produces a PostScript depiction of small particle systems
and their meshes, by computing world-to-view and view-to-screen
transformations via homogeneous coordinates. With its ability to
label all edges, vertices, and faces in a vector graphics output, it
was used for debugging the Appendix B particle system program,
and its subsequent meshing. This is not, however, a typical or espe-
cially informative Diderot program. Like edge.diderot above,
the useful output of this program is via its many print statements,
rather than typical per-strand computed output. Diderot currently
has no means of sorting strands based on computed results, so the
PostScript commands to draw each element are printed to a single
line of text, which starts with “Z pop” where Z is screen depth.
Sorting these lines as a post-process ensures that PostScript will
draw closer elements after (on top of) further elements.
1 input vec3{} ipos ("point positions");
2 input int{} edg ("edges as pairs of point indices");
3 input int{} tri ("triangles as triplets of point indices");
4 int pntNum = length(ipos);
5 int edgNum = 0 if (edg[0] == 0 && edg[1] == 0)
6 else length(edg)/2;
7 int triNum = 0 if (tri[0] == 0 && tri[1] == 0 && tri[2] == 0)
8 else length(tri)/3;
9 input image(3)[] img ("data to analyze") = image("vol.nrrd");

10 input vec3 camEye ("camera look-from point") = [6, 9, 2];
11 input vec3 camAt ("camera look-at point") = [0, 0, 0];
12 input vec2 clasuv ("Camera Look-at Shift at along U,V") = [0,0];
13 input vec3 camUp ("camera pseudo-up vector") = [0, 0, 1];
14 input real camNear ("at-relative near clip distance") = -3;
15 input real camFar ("at-relative far clip distance") = 3;
16 input real camFOV ("vertical field-of-view angle") = 15;
17 input bool camOrtho ("orthographic (not perspective)") = false;
18 input int iresU ("image # horizontal samples") = 640;
19 input int iresV ("image # vertical samples") = 480;
20 input real clwid ("circle line width (in world space!)") = 0.01;
21 input real elwid ("edge line width (in screen space!)") = 0.1;
22 input real revth ("draw reversed edges this much thicker") = 6;
23 input bool cfill ("should fill circle") = true;
24 input bool bvcull ("back vertex culling") = false;
25 input real label ("if > 0, font size for labeling things") = 0;
26 input real crd ("circle radius");
27 input real drd ("dot radius");
28 input real frgray ("front-facing gray") = 0.3;
29 input real egray ("edge gray") = 0;
30 input real bkgray ("back-facing gray") = 0.8;
31 input real trigray ("triangle gray") = 0.8;
32 input real scl ("scaling") = 120;
33 /* this string identifies what kind of feature should be drawn,
34 which matters for choosing how to determine the apparent
35 orientation of the disc used to indicate each vertex */
36 input string feat ("FEAT-ISO, FEAT-RSF, FEAT-VSF, or FEAT-RLN");
37
38 // computing ray parameters and view-space basis
39 vec3 camN_ = normalize(camAt - camEye);// N: away from eye
40 vec3 camU_ = normalize(camN_ × normalize(camUp)); // U: right
41 vec3 camV_ = camN_ × camU_; // V: down
42 // now with camAtShift
43 vec3 camN = normalize(camAt + clasuv[0]*camU_
44 + clasuv[1]*camV_ - camEye);
45 vec3 camU = normalize(camN × normalize(camUp));
46 vec3 camV = camN × camU;
47 real camDist = |camAt + clasuv[0]*camU_
48 + clasuv[1]*camV_ - camEye|;
49 real camVmax = tan(camFOV*π/360)*camDist;
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50 real camUmax = camVmax*iresU/iresV;
51 real camNearV = camNear + camDist; // near clip, view space
52 real camFarV = camFar + camDist; // far clip, view space
53
54 real hght = 2*camVmax;
55 real width = hght*iresU/iresV;
56
57 // determine view transforms
58 tensor[4,4] WtoV = [
59 [camU[0], camU[1], camU[2], -camU•camEye],
60 [camV[0], camV[1], camV[2], -camV•camEye],
61 [camN[0], camN[1], camN[2], -camN•camEye],
62 [0, 0, 0, 1]];
63 tensor[4,4] perspVtoC = [
64 [2*camDist/width, 0, 0, 0],
65 [0, 2*camDist/hght, 0, 0],
66 [0, 0, (camFarV+camNearV)/(camFarV-camNearV),
67 -2*camFarV*camNearV/(camFarV-camNearV)],
68 [0, 0, 1, 0]];
69 tensor[4,4] orthoVtoC = [
70 [2/width, 0, 0, 0],
71 [0, 2/hght, 0, 0],
72 [0, 0, 2/(camFarV-camNearV),
73 -(camFarV+camNearV)/(camFarV-camNearV)],
74 [0, 0, 0, 1]];
75 tensor[4,4] VtoC = orthoVtoC if camOrtho else perspVtoC;
76 tensor[4,4] CtoS = [
77 [scl*camUmax, 0, 0, 0],
78 [0, scl*camVmax, 0, 0],
79 [0, 0, 1, 0],
80 [0, 0, 0, 1]];
81
82 field#2(3)[] F = bspln3 � clamp(img);
83
84 // undo homogeneous coords
85 function vec3 unh(vec4 ch) =
86 | [ch[0]/ch[3], ch[1]/ch[3], ch[2]/ch[3]];
87 // convert to homogeneous coords
88 function vec4 hom(vec3 c) = [c[0], c[1], c[2], 1];
89 // how to approximate surface "normal"
90 function vec3 snorm(vec3 p) {
91 | vec3 ret=[0,0,0];
92 | if (feat == "FEAT-ISO") {
93 | | | ret = normalize(-∇F(p));
94 | } else if (feat == "FEAT-RSF") {
95 | | | ret = evecs(∇⊗∇F(p)){2};
96 | } else if (feat == "FEAT-VSF" || feat == "FEAT-RLN") {
97 | | | ret = evecs(∇⊗∇F(p)){0};
98 | } else if (feat == "FEAT-CTP") {
99 | | | ret = -camN;

100 | } else {
101 | | | ret = [nan,nan,nan];
102 | }
103 | return ret;
104 }
105 bool snsgn = true if (feat == "FEAT-ISO") else
106 false if (feat == "FEAT-RSF") else
107 false if (feat == "FEAT-VSF") else
108 false if (feat == "FEAT-RLN") else
109 false;
110
111 strand draw (int ii) {
112 | output real foo=0;
113 | update {
114 | | // only one strand prints preamble
115 | | if (ii==0) {
116 | | | print("%!PS-Adobe-3.0 EPSF-3.0\n");
117 | | | print("%%Creator: Diderot\n");
118 | | | print("%%Title: awesome figure\n");
119 | | | print("%%Pages: 1\n");
120 | | | print("%%BoundingBox: ", -scl*camUmax, " ", -scl*camVmax,
121 | | | | | | " ", scl*camUmax, " ", scl*camVmax, "\n");
122 | | | print("%%EndComments\n");
123 | | | print("%%BeginProlog\n");
124 | | | print("%%EndProlog\n");
125 | | | print("%%Page: 1 1\n");
126 | | | print("gsave\n");
127 | | | print(-scl*camUmax, " ", -scl*camVmax, " moveto\n");
128 | | | print(scl*camUmax, " ", -scl*camVmax, " lineto\n");
129 | | | print(scl*camUmax, " ", scl*camVmax, " lineto\n");
130 | | | print(-scl*camUmax, " ", scl*camVmax, " lineto\n");
131 | | | print("closepath clip\n");
132 | | | print("gsave newpath\n");
133 | | | print("1 -1 scale\n");
134 | | | if (label > 0) {
135 | | | | print("/Times-Roman findfont\n");
136 | | | | print(label, " scalefont setfont\n");
137 | | | }
138 | | }
139 | | if (ii <= pntNum-1) {
140 | | | /*
141 | | | p_: position of center of glyph to draw

142 | | | q_: from p, in direction towards eye, but tangent
143 | | | | | (normal to normal); should get the most fore-shortening
144 | | | r_: from p, in direction perpendicular to q’s offset from p
145 | | | _w: world-space coords
146 | | | _s: screen-space coords
147 | | | */
148 | | | vec3 pw = ipos[ii];
149 | | | vec3 nw = snorm(pw);
150 | | | if (|nw| >= 0) {
151 | | | | // nn == Nothing along Normal
152 | | | | tensor[3,3] nn = identity[3] - nw⊗nw;
153 | | | | vec3 toeye = normalize(camEye - pw);
154 | | | | vec3 qo = drd*normalize(nn•toeye);
155 | | | | vec3 qw = pw + qo;
156 | | | | vec3 ro = drd*normalize(nw×qo);
157 | | | | vec3 rw = pw + ro;
158 | | | | vec3 ps = unh(CtoS•VtoC•WtoV•hom(pw));
159 | | | | vec3 qs = unh(CtoS•VtoC•WtoV•hom(qw));
160 | | | | vec3 rs = unh(CtoS•VtoC•WtoV•hom(rw));
161 | | | | if (-1 <= ps[2] && ps[2] <= 1
162 | | | | | | && (!snsgn || !bvcull || nw•toeye > 0)) {
163 | | | | | print(ps[2], " pop ");
164 | | | | | print("gsave ");
165 | | | | | print(ps[0], " ", ps[1], " translate ");
166 | | | | | real gray = frgray if (!snsgn) else
167 | | | | | frgray if (nw•toeye > 0) else bkgray;
168 | | | | | vec3 rso = [[1,0,0],[0,1,0],[0,0,0]]•(rs - ps);
169 | | | | | vec3 qso = [[1,0,0],[0,1,0],[0,0,0]]•(qs - ps);
170 | | | | | print(180*atan2(rso[1],rso[0])/π, " rotate ");
171 | | | | | print(|rso|, " ", |qso|, " scale ");
172 | | | | | print(gray, " setgray ");
173 | | | | | if (clwid > 0) {
174 | | | | | | print(clwid/drd, " setlinewidth ");
175 | | | | | | print("0 0 ", crd/drd," 0 360 arc closepath ");
176 | | | | | | if (cfill) { print("gsave 1 setgray fill grestore ");}
177 | | | | | | print("stroke ");
178 | | | | | | if (frgray == gray) {
179 | | | | | | | print("0 0 1 0 360 arc closepath fill ");
180 | | | | | | }
181 | | | | | } else {
182 | | | | | | print("0 0 1 0 360 arc closepath fill ");
183 | | | | | }
184 | | | | | print("grestore ");
185 | | | | | print("% vi=", ii, "\n");
186 | | | | | if (label > 0) {
187 | | | | | | print(ps[2]-0.1, " pop gsave 0.5 setgray newpath ",
188 | | | | | | ps[0], " ", ps[1],
189 | | | | | | " moveto 1 -1 scale (v", ii, ") show grestore\n");
190 | | | | | }
191 | | | | }
192 | | | }
193 | | } else if (ii <= pntNum+edgNum-1) {
194 | | | int ei=ii-pntNum; // edge index
195 | | | int pi0 = edg[0 + 2*ei];
196 | | | int pi1 = edg[1 + 2*ei];
197 | | | if (pi0 != pi1) {
198 | | | | vec3 pw0 = ipos[pi0];
199 | | | | vec3 pw1 = ipos[pi1];
200 | | | | vec3 nw0 = snorm(pw0);
201 | | | | vec3 nw1 = snorm(pw1);
202 | | | | if (|nw0| >= 0 && |nw1| >= 0) {
203 | | | | | vec3 toeye0 = normalize(camEye - pw0);
204 | | | | | vec3 toeye1 = normalize(camEye - pw1);
205 | | | | | if (!snsgn || (toeye0•nw0 > 0 && toeye1•nw1 > 0)) {
206 | | | | | | vec3 ps0 = unh(CtoS•VtoC•WtoV•hom(pw0));
207 | | | | | | vec3 ps1 = unh(CtoS•VtoC•WtoV•hom(pw1));
208 | | | | | | real ez = min(ps0[2], ps1[2]);
209 | | | | | | if (-1 <= ez && ez <= 1) {
210 | | | | | | | print(ez, " pop ");
211 | | | | | | | print(egray, " setgray ",
212 | | | | | | | elwid*(1 if pi0 < pi1 else revth),
213 | | | | | | | " setlinewidth ",
214 | | | | | | | ps0[0], " ", ps0[1], " moveto ", ps1[0],
215 | | | | | | | " ", ps1[1], " lineto stroke % ei=",
216 | | | | | | | ei, "\n");
217 | | | | | | | if (label > 0) {
218 | | | | | | | | print(ez-0.1, " pop ");
219 | | | | | | | | vec3 ms = lerp(ps0, ps1, 0.5);
220 | | | | | | | | print("gsave 0.5 setgray newpath ", ms[0],
221 | | | | | | | | " ", ms[1], " moveto (e", ei,
222 | | | | | | | | ") 1 -1 scale show grestore\n");
223 | | | | | | | }
224 | | | | | | }
225 | | | | | }
226 | | | | }
227 | | | }
228 | | } else {
229 | | | int ti = ii-pntNum-edgNum; // tri index
230 | | | int pi0 = tri[0 + 3*ti];
231 | | | int pi1 = tri[1 + 3*ti];
232 | | | int pi2 = tri[2 + 3*ti];
233 | | | if (!(pi0 == pi1 && pi1 == pi2)) { // not a fake triangle
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234 | | | | vec3 pw0 = ipos[pi0];
235 | | | | vec3 pw1 = ipos[pi1];
236 | | | | vec3 pw2 = ipos[pi2];
237 | | | | vec3 pwm = (pw0 + pw1 + pw2)/3;
238 | | | | vec3 nwm = snorm(pwm);
239 | | | | vec3 toeye = normalize(camEye - pwm);
240 | | | | if (!snsgn || toeye•nwm > 0) {
241 | | | | | vec3 ps0 = unh(CtoS•VtoC•WtoV•hom(lerp(pwm,pw0,0.5)));
242 | | | | | vec3 ps1 = unh(CtoS•VtoC•WtoV•hom(lerp(pwm,pw1,0.5)));
243 | | | | | vec3 ps2 = unh(CtoS•VtoC•WtoV•hom(lerp(pwm,pw2,0.5)));
244 | | | | | real ez = min(min(ps0[2], ps1[2]), ps2[2]);
245 | | | | | if (-1 <= ez && ez <= 1 && trigray <= 1) {
246 | | | | | | print(ez, " pop ");
247 | | | | | | print(trigray, " setgray ",
248 | | | | | | ps0[0], " ", ps0[1], " moveto ",
249 | | | | | | ps1[0], " ", ps1[1], " lineto ",
250 | | | | | | ps2[0], " ", ps2[1],
251 | | | | | | " lineto closepath fill % ti=", ti, "\n");
252 | | | | | }
253 | | | | }
254 | | | }
255 | | }
256 | | if (ii == (pntNum+edgNum+triNum)-1) {
257 | | | | print("-2 pop ");
258 | | | | print("grestore grestore\n");
259 | | }
260 | | stabilize;
261 | }
262 }
263
264 initially { draw(ii) | ii in 0 .. (pntNum+edgNum+triNum)-1 };
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