
Shapes and Flattening
John Reppy

Computer Science
University of Chicago

Chicago, IL, USA
jhr@cs.uchicago.edu

Joe Wingerter
Computer Science

University of Chicago
Chicago, IL, USA

wings@cs.uchicago.edu

ABSTRACT

Nesl is a first-order functional language with an apply-to-each
construct and other parallel primitives that enables the expression
of irregular nested data-parallel (NDP) algorithms. To compile Nesl,
Blelloch and others developed a global flattening transformation
that maps irregular NDP code into regular flat data parallel (FDP)
code suitable for executing on SIMD or SIMT architectures, such
as GPUs.

While flattening solves the problem of mapping irregular par-
allelism into a regular model, it requires significant additional op-
timizations to produce performant code. Nessie is a compiler for
Nesl that generates CUDA code for running on Nvidia GPUs. The
Nessie compiler relies on a fairly complicated shape analysis that
is performed on the FDP code produced by the flattening transfor-
mation. Shape analysis plays a key rôle in the compiler as it is the
enabler of fusion optimizations, smart kernel scheduling, and other
optimizations.

In this paper, we present a new approach to the shape analysis
problem for Nesl that is both simpler to implement and provides
better quality shape information. The key idea is to analyze the NDP
representation of the program and then preserve shape information
through the flattening transformation.
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1 INTRODUCTION

Nessie [17, 20] is a compiler for the nested-data-parallel (NDP)
language Nesl [4, 5] that targets GPUs. The Nesl language was
originally designed by Guy Blelloch as a way to program irregular
parallel algorithms on the wide-vector and SIMD architectures of
the early to mid 1990s. The enabling technology for Nesl was a
global flattening transformation developed by Blelloch and others
that maps irregular NDP code into regular flat data-parallel (FDP)
code suitable for SIMD execution [7, 9, 12, 16].
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The Nessie compiler follows the same approach for compiling
Nesl to GPUs. The front half of the Nessie compiler does the usual
parsing and type checking, followed by monomorphization (Nesl
has parametric polymorphism). We then apply a modified form of
Keller’s flattening transformation [9] to produce a flat-data-parallel
(FDP) representation of the program. In the flat representation, the
only sequences are flat sequences of base types (bool, float, etc.).
The original nested-sequence structure is captured in associated
segment descriptors. The back-end of our compiler converts the
FDP representation to CUDA code by first applying a flow-based
shape analysis to determine the size and structure of sequences [20],
then converting the FDP form to our _cu [18, 25] representation,
optimizing the _cu representation, and finally generating code from
it. The shape analysis is key to enabling optimizations: it identifies
sequences of the same size, which enables the compiler to find more
opportunities for fusion, memory reuse, and other optimizations.

Examining the results of shape analysis, however, one observes
that the information recovered by the analysis is present in the
original NDP representation and can be more easily detected before
flattening. Furthermore, there is information that is trivially deter-
mined by the NDP representation that is more difficult to extract
from the flattened program. For example, a sequence of pairs in
the NDP representation will be transformed to a pair of sequences
in the FDP representation;1 in such a case, it may be difficult for
a conservative analysis to recognize that the two sequences must
have the same length.

This paper describes a new approach to mapping from a monomor-
phic NDP IR to a FDP IR annotated with shape information. Instead
of applying shape analysis after flattening, we instead first analyze
the NDP IR and record the shape information by annotating the
types of the NDP program. We then apply a flattening transforma-
tion that transcribes the shape information from the NDP types
into the type of the segment descriptors, such that if two segment
descriptors have the same type (i.e., shape), then they are equal.

The fundamental problem with shape analysis on the post-flattening
FDP IR is that the flattening process disassociates related structures.
The example of sequences of pairs has already been mentioned, but
there are other examples, such as the fact that segment descriptors
and the sequences that they describe are not directly connected.
Thus the analysis has to work hard to identify which descriptors
are associated with which data sequences. By performing the shape
analysis prior to flattening, we do not have to rely on analysis
to make those connections; instead, they are readily available in
the structure of the NDP IR. The thesis of this work is that shape
analysis on the NDP IR is inherently simpler and more precise
than our previous flow-based analysis on the FDP IR. Furthermore,
1Flattening converts sequences of pairs to pairs of sequences (the so-called “AoS to
SoA” transformation).
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our new annotation language for shape information allows us to
keep track of more precise shape information than before. We also
present a one-pass flattening algorithm that propagates the shape
information into the FDP representation.

The rest of the paper is organized as follows. We first provide
some background about the Nesl language, the flattening trans-
formation, the need for shape information, and the problem with
analysis after flattening. In Section 3, we present a representation
of types with shape annotations. We then describe how we analyze
an NDP kernel language to produce a representation with shape
information. In Section 5, we describe the flattening transformation
that produces the FDP representation, where the segment descrip-
tors are given types that reflect the shape of the sequences that
they describe. We then describe the current status of our work
and discuss future plans; finally we present concluding remarks in
Section 8.

2 BACKGROUND

In this section, we describe the context in which we are operating,
including a quick introduction to Nesl, a brief description of the flat-
tening transformation, and motivation for why shape information
is important.

2.1 Nesl

Nesl is a first-order data-parallel functional language that supports
data parallelism in two ways: through a parallel sequence com-
prehension (apply-to-each) and through a set of parallel primitive
operators. Apply-to-each allows the programmer to map an arbi-
trary computation over a sequence. For example, the following
function squares each element of the sequence xs:

function sqr (xs) : [float] -> [float] =

{ x * x : x in xs };

We have annotated this function with its type (sequence of float to
sequence of float), but Nesl supports Hindley-Milner polymorphic
type inference,2 we omit the types from subsequent examples.

It is also possible to map a computation over multiple sequences
of the same length, as in this example that computes the element-
wise product of xs and ys.

function prod (xs, ys) =

{ x * y : x in xs; y in ys };

Notice that Nesl uses zip semantics for iteration over multiple
sequences. To compute the outer product of these two sequences,
we nest the iteration over ys inside the iteration over xs.

function outer (xs, ys) =

{ { x * y : y in ys } : x in xs };

An apply-to-each may include an optional predicate to spec-
ify which elements to apply the computation to; for example, we
could compute the product of the positive elements of xs and ys as
follows:

2Nesl, in fact, extends the standard type inference mechanism with a pre-defined
set of Haskell-like type classes, so it would have inferred the more general type
“[a] -> [a]:: (a in num)” for the sqr function.

function prod_if_pos (xs, ys) =

{ x * y : x in xs; y in ys

| x >= 0 and y >= 0 };

In this case, the size of the resulting sequence is unknown at compile
time.

As seen in the outer example above, the computations that
are mapped by an apply-to-each may themselves be parallel com-
putations; thus the term nested-data parallelism is used for this
programming pattern. The NDP model is well-suited to matrix op-
erations; for example, we can use nested parallelism to multiply a
matrix by a sequence:

function dotp (xs, ys) =

sum({ x * y : x in xs; y in ys });

function mxv (m, v) =

{ dotp(row , v) : row in m };

The outer apply-to-each applies dotp in parallel to each row of the
matrix. Within each call to dotp, the elements of the row are all
multiplied in parallel, then added up with the parallel sum operation.

While the previous example is a computation over a rectangular
matrix, nested parallelism does not have to be regular in Nesl. For
example, the computation of a sparse matrix (represented by rows
of index-element pairs) times a dense sequence can be coded as

function sparse_mxv (sm, v) =

{ sum({ x * v[i] : (i, x) in sv })

: sv in sm

}

This function has the same nested structure as before, but the
amount of work per row varies. The fact that nested parallel com-
putations can be arbitrary parallel computations, gives Nesl a great
deal of expressiveness that can be used to implement a wide variety
of irregular parallel computations [21].

In addition to the parallel apply-to-each construct, Nesl has a
library of parallel sequence operations. These include reductions,
such as the sum function above, prefix-scans, permutations, and
various other operations on sequences [4].

2.2 NKL

We present our shape analysis and flattening techniques using a
nested-data-parallel kernel language called NKL.3 This language,
whose abstract syntax is given in Figure 1, captures the important
features of Nesl in a more concise syntax. A program in NKL is a
sequence of function definitions terminated by an exported main
function. The expression language is normalized (i.e., all arguments
are either variables or constants) to simplify the shape analysis
and flattening transformation. The last three right-hand-side forms
support parallel sequences.

Note that NKL’s parallel map is more restrictive than Nesl’s gen-
eral apply-to-each construct, since it does not include the optional
predicate expression. We can represent the Nesl expression

{ 𝑒 : 𝑥1 in xs1, . . . , 𝑥𝑘 in xs𝑘 | 𝑒 ′ }

by the expression
3This language is inspired by Keller’s NKL [9].
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𝑝 ::= fn 𝑝 function definition
| 𝑓 main function name

fn ::= fun 𝑓 (𝑥1, . . . , 𝑥𝑘 ) : (𝜏) → 𝜏 ′ function definition
= 𝑒

𝑒 ::= 𝑣 value
| if 𝑣 then 𝑒1 else 𝑒2 conditional
| 𝑓 (𝑣1, . . . , 𝑣𝑘 ) function application
| let 𝑥 : 𝜏 = 𝑟 in 𝑒 let binding

𝑟 ::= 𝑒 r.h.s. expression
| 𝑝 (𝑣1, . . . , 𝑣𝑘 ) primop application
| ⟨𝑣1, 𝑣2⟩ pair
| { 𝑒 : 𝑏1, . . . , 𝑏𝑘 } parallel map
| [ 𝑣1, . . . , 𝑣𝑘 ] sequence
| [ 𝜏 ] empty sequence

𝑣 ::= 𝑥 variable
| 𝑛 constant

𝑏 ::= 𝑥 in xs binding
𝜏 ::= [𝜏] sequence type

| 𝜏1 × 𝜏2 pair type
| ]

] ::= int | bool | float | · · · base types

Figure 1: Syntax of NKL

let flgs = { 𝑒 ′ : 𝑥1 in xs1, . . . , 𝑥𝑘 in xs𝑘 };

xs′1 = filter(xs1, flgs);
· · ·
xs′

𝑘
= filter(xs𝑘 , flgs)

in

{ 𝑒 : 𝑥1 in xs′1, . . . , 𝑥𝑘 in xs′
𝑘

}

where filter is a builtin function that takes two sequences of equal
length and projects out the elements of the first that correspond to
true entries in the second.

NKL programs are monomorphic and explicitly typed.4 In the
remainder of the paper, we omit the type annotations on function
definitions and let-bound variables to reduce notational clutter.
Instead, we use “typeof (𝑓 )” to denote the type of functions and
“typeof (𝑥)” to denote the type of variables when necessary.

2.3 Flattening

Flattening is a global program transformation that converts nested
data parallelism into flat data parallelism [6, 7, 9]. A key aspect of
this transformation is that nested sequences are transformed into
segmented sequences, which are flat sequences of atomic data values
paired with segment descriptors that define the original sequences’s
nesting structure. The flattening transformation also converts from
“Array-of-Structs” (AoS) data layout to “Struct-of-Arrays” (SoA)
layout. For example, the nested sequence:

[ [ (true , 1), (false , 2), (true , 3) ],

4Recall that the Nessie compiler monomorphizes the program prior to flattening.

[ ],

[ (false , 4) ] ]

is represented by two data sequences
[ true , false , true , false ]

[ 1, 2, 3, 4 ]

and two segment descriptors that specify the lengths of the se-
quences at each level of nesting from inside out.

[ 3, 0, 1 ]

[ 3 ]

In practice, there are many different ways to represent segment
descriptors that provide different benefits for different operations [1,
26]. For example, using an array of boolean segment-start flags
allows segmented-scans to be defined using a flat scan operation [2].

In addition to affecting the data representation, the flattening
transformation also affects the program structure. Code that is
inside a parallel apply-to-each must be lifted to compute over se-
quences. For example, a function (or primitive operation) applica-
tion

{ 𝑓 (𝑒1, 𝑒2) : 𝑥 in xs }

is transformed to
if (empty xs)

then []

else let ys1 = { 𝑒1 : 𝑥 in xs };

ys2 = { 𝑒2 : 𝑥 in xs }

in

𝑓 ↑(ys1, ys2)

where 𝑓 ↑ is 𝑓 lifted to work on sequences (i.e., it is the parallel map
of 𝑓 over the zip of the argument sequences). The test for the empty
input is the termination condition for recursion. To complete the
above transformation, we recursively flatten the parallel maps of
𝑒1 and 𝑒2.

The flattening transformation uses bookkeeping operations to
handle multiple levels of nested apply-to-each constructs (i.e., we
do not lift already lifted operations). Informally, these operations
can be given the following types:

S : ( [[𝜏]]) → [int] extract segment descriptor
F : ( [[𝜏]]) → [𝜏] flatten one-level of nesting
P : ( [𝜏], [int]) → [[𝜏]] partition using descriptor

For example, the nested expression
{ { 𝑓 (𝑥 , 𝑦) : 𝑥 in xs, 𝑦 in ys }

: xs in xss, ys in yss
}

will be transformed to the code
let xs = F (xss);

ys = F (yss);
sd = S(xss)

in

if (empty xs)
then []

else P ( 𝑓 ↑ (xs, ys), sd)
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Because of the way that nested sequences are represented after
flattening, these bookkeeping operations are constant-time.

Lastly, conditionals inside apply-to-each constructs are replaced
with partitioning of the inputs. For example, we transform

{ if 𝑒 then 𝑒1 else 𝑒2 : 𝑥 in xs }

to

let flgs = { 𝑒 : 𝑥 in xs };

(xs1, xs2) = SPLIT(xs, flgs);
res1 = { 𝑒1 : 𝑥 in xs1 };

res2 = { 𝑒2 : 𝑥 in xs2 }

in

COMBINE(res1, res2, flgs)

Here the SPLIT and COMBINE operations are used to split and re-
combine sequences based on the sequence of booleans flgs.

2.4 The importance of shape information

Shape analysis is the process of statically identifying the nesting
structure and sizes of sequences. Shape analysis plays a key rôle
in the compiler as it is the enabler for a number of important
optimizations, including

• Kernel fusion — Our compiler performs several kinds of
fusion on parallel computations [17, 18, 25]. These include
simple producer-consumer fusion; horizontal fusion of maps,
scans, and reductions; and filter fusion [19]. The validity of
these transformations requires that the compiler be able
to reason about the sizes and structure of the argument
sequences, which is information provided by the shape anal-
ysis.

• Memory reuse — reusing previously allocated memory for
new results requires both lifetime analysis and information
about the size of the memory object. The latter information
is provided by shape analysis.

• Segment descriptor optimization — by attaching shape in-
formation to segment descriptors, we can identify when
segment descriptors are redundant. We can also use this
information to optimize their representation in some situa-
tions.

• Optimizing for rectangular structure — while, in general,
nested sequences in Nesl are irregular, there are examples
of programs that impose a regular rectangular structure on
arrays (e.g., matrix multiplication). Segmented computations
on such nested sequences can take advantage of the rectan-
gular structure to gain efficiency. Shape analysis can discover
when rectangular structure is implied by the computation.

Currently, we support the first two of these optimizations, with
plans for adding the other two.

The challenge for shape analysis after the flattening transforma-
tion is that information about the connections between different
arrays may be obscured by flattening. For example, consider the
following Nesl function:

function norm2 (xys) =

let xs = { x : (x, y) in xys };

ys = { y : (x, y) in xys };

sum1 = sum(xs);

sum2 = sum(ys);

in

( { x / sum1 : x in xs },

{ y / sum2 : y in ys } )

that takes a sequence of pairs as an argument. Flattening will trans-
form the sequence of pairs into a pair of sequences — the flattened
version of this function will be roughly

function norm2 (xs, ys) =

let sum1 = sum(xs);

sum2 = sum(ys);

in

( { x / sum1 : x in xs },

{ y / sum2 : y in ys } )

From this code, there is no way for shape analysis to determine that
xs and ys have the same length, which prevents an opportunity for
horizontal fusion of both the reductions and the maps. It is obvious
before flattening, however, that the two sequences must have the
same size, since they are both projected from xys.

3 SHAPES

Previous work on type systems for sequence shapes has focused
on multidimensional arrays with rectangular shapes [10, 22–24].
In this work, we are interested in tracking information about the
irregular shapes that arise in NDP programs. For example, consider
the following Nesl program that adds two nested sequences:

function mm (xss , yss) =

{ { x + y : x in xs; y in ys }

: xs in xss; ys in yss };

While the shapes of xss and yss may be irregular, they must be the
same. The semantics of the Nesl apply-to-each construct means
that we can infer that xss and yss have the same number of rows
and, at the inner level, we can infer that each row of xs of xss has
the same number of elements as the corresponding row ys of yss.

Consider a slightly different example that adds the sequence ys
to each row of the sequence of sequences xss:

function mv (xss , ys) =

{ { x + y : x in xs; y in ys }

: xs in xss };

In this case, we know that each row of xss must have the same
length as ys and, thus we infer that xss must have rectangular
shape.

The shape system that we describe below has been designed both
to represent these kinds of structural properties and to provide a
way to infer them via analysis.

3.1 Representing sizes

Because the Nesl type system does not have a notion of multidi-
mensional arrays, we focus on describing the size (or dimension)
of sequences. We assume a countable set of dimension variables (𝛼 ,
𝛽 , etc.), which represent unknown sizes, and dimension-function
variables (𝜙 ,𝜓 , etc.), which represent unknown dependent sizes. The
syntax of dimension expressions is given in Figure 2. In the syntax,
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𝑑 ::= 𝑛 known size
| 𝛼 dimension variable
| 𝜙 (𝛼) applied dimension function
| 𝑑1 + 𝑑2 dimension addition
| ∑𝑑

𝛼=1 𝜙 (𝛼) summation
𝜐 ::= 𝑑 fixed dimension

| 𝜙 dimension function

Figure 2: Sizes — fixed and variable dimensions

𝜏 ::= [𝜏 # 𝜐] sequence type
| 𝜏1 × 𝜏2 pair type
| ]̂ base types

]̂ ::= int(𝜐) integer type
| bool | float | · · · other base types

Figure 3: Annotated types

we distinguish between fixed dimensions 𝑑 , which specify a single
(possibly unknown) size of a sequence, and varying dimensions 𝜐,
which are used to specify the size of nested arrays that may be
irregular.

We use the term size to describe either a fixed or variable dimen-
sion, and size variable to describe both dimension and dimension-
function variables. We use the term shape informally to refer to
either the size of a single sequence or the size structure of nested
sequences.

Size expressions are organized into three levels based on the
quality of information that they provide.

Varying dimensions: 𝜙

Fixed unknown dimensions: 𝛼 , 𝜙 (𝛼), 𝑑1 + 𝑑2,
∑𝑑
𝛼=1 𝜙 (𝛼)

Fixed known dimensions: 𝑛

Varying dimensions are the most general, then we have fixed di-
mensions of unknown size, and the most precise are known fixed
dimensions.

3.2 Annotated types

We augment the NKL types (𝜏) from Section 2.2 with shape infor-
mation to form annotated types (𝜏), the syntax of which is given in
Figure 3. We use sizes to annotate types in two ways:

(1) The type [𝜏#𝜐] is a sequence type annotated with the size𝜐 of
the sequence. When the sequence is the outermost sequence
in a type expression, 𝜐 must be a fixed dimension 𝑑 , but a
nested sequences may have a varying dimension represented
by a dimension function 𝜙 .

(2) The type int(𝜐) represents integers, where 𝜐 tracks the value
of the integer. For sequences of integers, we use dimension
functions to represent represent the fact that the value of
the integer depends on the index of the element.

Here are some examples of annotated types:

[[float # 5] # 5] a 5 × 5 matrix
[[float # 𝜙] # 5] a 5-element sequence of sequences

int(17) the integer 17
[int(𝜙) # 𝛼] a sequence of integers

For an annotated type 𝜏 , we follow the convention of writing 𝜏 for
the type with its annotations erased.

When we analyze the body of an apply-to-each, the elements may
have types that are annotated with dimension variables; since such
types are only well-formed when they are nested inside an outer
sequence type, we have to instantiate non-nested shape functions.
To address this need, we define the instantiation of a dimension
with index 𝛼 , written 𝜐@𝛼 , as follows:

𝑑@𝛼 = 𝑑

𝜙@𝛼 = 𝜙 (𝛼)
and then define the instantiation of an annotated type with index
𝛼 as

[𝜏 # 𝜐]@𝛼 = [𝜏 # 𝜐@𝛼]
𝜏1 × 𝜏2@𝛼 = 𝜏1@𝛼 × 𝜏2@𝛼

int(𝜐)@𝛼 = int(𝜐@𝛼)
𝜏@𝛼 = 𝜏 otherwise

We use this operation in Section 4.3.3 when stripping off a sequence-
type constructor to ensure that the resulting type is well formed.

3.3 Annotated function types

While functions in Nesl can be shape polymorphic (e.g., the length
function), the process of monomorphization fixes the ranks of se-
quence types. The resulting functions, however, many still be size
polymorphic. Furthermore, the result shape of a function may not
be determined by the shapes of its arguments. Therefore, we use
the following general pattern for specifying the annotated type of
a function:

∀®𝛼, ®𝜙.(𝜏1, . . . , 𝜏𝑘 ) → ∃ ®𝛽, ®𝜓 .𝜏
Returning to the two example functions (mm and mv) from the

beginning of this section, we give them the following annotated
types:

mm : ∀𝛼, 𝜙 .( [[float # 𝜙] # 𝛼], [[float # 𝜙] # 𝛼]) → [[float # 𝜙] # 𝛼]
mv : ∀𝛼, 𝛽.( [[float # 𝛽] # 𝛼], [float # 𝛽]) → [[float # 𝛽] # 𝛼]

Notice that the type of mm captures the fact that the arguments and
results must all have the same shape, albeit an irregular one. On the
other hand, the type of mv shows that the first argument must have
rectangular shape with the row dimensions equal to the second
argument’s size (i.e., 𝛽).

There are two sources of uncertainty about result sizes: condi-
tionals and builtin functions like filter. We discuss the types we
assign to the builtin functions in Section 4.2.

4 SHAPE ANALYSIS

We present our shape analysis and lifting techniques using the NKL
kernel language given in Figure 1.
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+int : ∀𝛼, 𝛽.(int(𝛼), int(𝛽)) → int(𝛼 + 𝛽)
*int : ∀𝛼, 𝛽.(int(𝛼), int(𝛽)) → ∃𝛾 .int(𝛾)

length : ∀𝛼.( [𝜏 # 𝛼]) → int(𝛼)
lengths : ∀𝛼, 𝜙 .( [[𝜏 # 𝜙] # 𝛼]) → [int(𝜙) # 𝛼]

iota : ∀𝛼.(int(𝛼)) → ∃𝜙.[int(𝜙) # 𝛼]
! : ∀𝛼, 𝛽.( [𝜏 # 𝛼], int(𝛽)) → 𝜏

++ : ∀𝛼, 𝛽.( [𝜏 # 𝛼], [𝜏 # 𝛽]) → [𝜏 # 𝛼 + 𝛽]

concat : ∀𝛼, 𝜙 .( [[𝜏 # 𝜙] # 𝛼]) → [𝜏 #
𝛼∑︁
𝛽=1

𝜙 (𝛽)]

sumfloat : ∀𝛼.( [float # 𝛼]) → float

filter : ∀𝛼.( [𝜏 # 𝛼], [bool # 𝛼]) → ∃𝛽.[𝜏 # 𝛽]

Figure 4: Annotated types for builtins

4.1 Pre-lifting

Before shape analysis, we perform a pre-lifting pass over the pro-
gram. This pass first identifies functions that are invoked inside
parallel filter or foreach constructs (or inside other lifted functions)
and then adds lifted versions as necessary. For the function defini-
tion

fun 𝑓 (𝑥1, . . . , 𝑥𝑘 ) = 𝑒

where 𝑓 has been identified as being used in a parallel context, we
add the lifted definition

fun 𝑓 ↑ (xs1, . . . , xs𝑘 ) = { 𝑒 : 𝑥1 in xs1, . . . . 𝑥𝑘 in xs𝑘 }
to the program. The reason for applying the pre-lifting transfor-
mation prior to shape analysis is that it allows a clean separation
between shape analysis and the flattening transformation (other-
wise we would have to run shape analysis on lifted functions during
the flattening phase). Identifying which functions will require lifting
is somewhat similar to the problem of identifying maximal sequen-
tial subexpressions in vectorization avoidance [11] and could be
performed at the same time. Doing shape analysis on the pre-lifted
functions does not add any additional complication to the analysis,
since shape analysis of a pre-lifted function is no different than
analysis of any other function.

4.2 Shape types for library functions

A key source of shape information comes from the application of
primitive operations and library functions. Figure 4 presents a sam-
ple of these. The integer addition operator (+int) has a special type
that tracks the value; other integer operators, such as multiplication
return a result with unknown value. The length function returns
an integer that is equal to the dimension of the argument sequence;
likewise, the lengths function tracks the original subsequence
lengths. The type of the iota function captures the fact that the
length of the result is determined by the value of the argument
(iota(n) generates the sequence [1,. . .,n]). For example, we can

reason that iota (length xs) will have the same length as xs.
The types of ++ and concat reflect the fact that the length of their
results will be the sum of the lengths of their arguments.

4.3 Shape analysis

Shape analysis can be viewed as a type inference problem. In our
implementation, we assign annotated types to variables and func-
tions, and also generate a set 𝐶 of equality constraints. We track
three kinds of constraints: equality of dimensions (𝑑1 = 𝑑2), equal-
ity of dimension functions (𝜙 = 𝜓 ), and equality between constant
functions and dimensions (𝜙 = 𝑑)5.

Equality constraints are induced by setting two annotated types
that have the same underlying structure equal.

C[[ [𝜏1 # 𝜐1] = [𝜏2 # 𝜐2] ]] = C[[ 𝜏1 = 𝜏2 ]] ∪ {𝜐1 = 𝜐2}
C[[ 𝜏11 × 𝜏12 = 𝜏21 × 𝜏22 ]] = C[[ 𝜏11 = 𝜏21 ]] ∪ C[[ 𝜏12 = 𝜏22 ]]
C[[ int(𝜐1) = int(𝜐2) ]] = {𝜐1 = 𝜐2}

C[[ ] = ] ]] = ∅
In the case where we get a constraint of the form 𝜙 = 𝑑 or 𝜙 (𝛼) = 𝑑

(where 𝑑 is not indexed by 𝛼), then we mark 𝜙 as being a constant
function.

We currently do not do any arithmetic reasoning to determine if
two dimensions are equal. Instead, we have found that it is sufficient
to put the dimension expressions into canonical form and compare
them for symbolic equality. We do check, however, for obvious
inconsistencies when adding constraints to the set (e.g., a dimension
of 5 cannot be equal to a dimension of 3).

A key assumption that we make for the analysis is that the pro-
gram is correct with respect to the dimensions of arrays (i.e., it
does not have out-of-bounds or unequal-length runtime errors).
Because such errors will terminate the Nesl program’s execution
(either with a runtime error or with a crash when using the “unsafe”
compilation mode), being conservative about dimension equality
constraints does not seem beneficial. We must be careful, however,
to avoid eliminating potential runtime errors that might be misiden-
tified as dead code. As we discuss in Section 6, we might be able to
use the shape analysis to identify where to place bounds checks.

The shape analysis proceeds by processing each function defi-
nition in turn. We initially annotate the types of the function by
assigning fresh shape variables. Over the course of analyzing the
function body, constraints will be placed on these variables. When
analysis of the function is complete, we resolve the variables to
their canonical representation and then close over the free shape
variables to produce the function’s annotated type.

In the remainder of this section, we describe how our shape
analysis handles several of the NKL constructs.

4.3.1 Conditional. For conditionals, we compute an annotated type
for each of the arms of the conditional. If 𝜏1 and 𝜏2 are the annotated
types of the conditional’s arms, then we know that 𝜏1 = 𝜏2, since
we start with a well-typed program. Thus, the annotated types 𝜏1
and 𝜏2 can only differ in their shapes. Given two shapes 𝜐1 and 𝜐2
that appear in corresponding positions of 𝜏1 and 𝜏2, we compute a
new shape as follows:

5This last constraint should be read as as “𝜙 = _𝛼.𝑑 ;” i.e., 𝜙 is the constant function
that returns 𝑑 .
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• If 𝐶 ⊢ 𝜐1 = 𝜐2, where 𝐶 is the constraint set, then we use 𝜐1.
• If 𝜐1 = 𝜙1 (𝛼) and 𝜐2 = 𝜙2 (𝛼), then we use𝜓 (𝛼), where𝜓 is

fresh. Note that since 𝜐1 and 𝜐2 share the same index (𝛼), we
preserve the iteration structure in the result.

• If𝜐1 = 𝛼1,𝜐2 = 𝛼2, and these are not nested inside a sequence,
then we use a fresh dimension variable 𝛽 as the shape.

• Otherwise, we use a fresh dimension-function variable𝜓 as
the shape.

4.3.2 Function application. Consider the function application 𝑓 (𝑣1, . . . , 𝑣𝑘 ),
where 𝑓 has the annotated type

∀®𝛼, ®𝜙.(𝜏1, . . . , 𝜏𝑘 ) → ∃ ®𝛽, ®𝜙.𝜏
We instantiate the function’s type by replacing the bound variables
with fresh shape variables to get the type

(𝜏 ′1, . . . , 𝜏 ′𝑘 ) → 𝜏 ′

Then, for each argument 𝑣𝑖 with type 𝜏 ′′
𝑖

. we add the constraints
induced by C[[ 𝜏 ′

𝑖
= 𝜏 ′′

𝑖
]] to the set of constraints. We use a similar

approach to handling primitive-operator applications.

4.3.3 Parallel map. A parallel map induces equality constraints on
the outermost dimension of the argument arrays. For example, the
outermost dimensions of xs and ys must be equal in the following
expression:

{ x * y : x in xs; y in ys }

Furthermore, the outermost dimension of the result will also be
equal to the other dimensions. It is important to note that in this
situation we are only imposing equality constraints on the outer-
most dimension, since the shapes and types of the elements do not
have to match.

The one subtlety with analyzing parallel maps is reconstructing
nested structure without losing shape information. Consider the
expression

{ { x * x : x in xs } : xs in xss }

where xss has the annotated type [[float#𝜙]#𝛼]. When we analyze
the outer parallel map, we need to assign a valid annotated type
to xs. We use [float # 𝜙]@𝛽 = [float # 𝜙 (𝛽)] as the type of xs,
where 𝛽 is a fresh variable that represents the iteration index of
the map. In this example, the result type of the inner map will be
[float # 𝜙 (𝛽)], we then generalize the shape 𝜙 (𝛽) to 𝜙 and get the
type [[float # 𝜙] # 𝛼] for the whole expression.

4.4 Detecting rectangular structure

We conclude the discussion of shape analysis by revisiting the mv
example from Section 3.

function mv (xss: [[float]], ys: [float]) =

{ { x + y : x in xs; y in ys }

: xs in xss };

Shape analysis will begin by assigning the types of the parameters:
xss : [[float # 𝜙] # 𝛼]
ys : [float # 𝛽]

When processing the outer parallel map, we give xs the type
xs : [float # 𝜙 (𝛾)]

𝜏 ::= [:]:] base-sequence type
| 𝜏1 × 𝜏2 pair type
| ] base type
| 𝜎 shape descriptor type

𝜎 ::= sd(𝑑 ∗ 𝜐) segment descriptor
| sz(𝑑) base-sequence size

Figure 5: Flattened types

Processing the inner map requires setting the (outermost) dimen-
sions of xs and ys to be equal — {𝜙 (𝛾) = 𝛽} — which means that
𝜙 must be a constant function. We end up with a result type of
[float # 𝛽] for the inner map and [[float # 𝜙 (𝛾)] # 𝛼] for the outer
map, and thus, mv has the type we predicted in Section 3.3.

5 FLATTENINGWITH SHAPES

Once we have annotated the NKL program with shape information,
the next step is to flatten the program into the FDP representation.
The syntax of the FDP language, called FKL, is a subset of NKL
with the parallel map constructs removed. The types for FKL are
different, however, and are shown in Figure 5. Notice that sequences
in FKL may only contain base types and that we have types for
segment descriptors and sequence sizes. The segment-descriptor
type sd(𝑑 ∗ 𝜐) describes a segment descriptor with 𝑑 segments,
where 𝜐 defines the size of the segments, while the base-sequence
size type sz(𝑑) specifies the size of an associated base sequence as
being 𝑑 . We do not transfer all of the shape information from the
annotated types to the flattened types — specifically we no longer
track integer values — but by including the shape information in
the segment descriptors, we can determine when two segment
descriptors are the same.

5.1 Translating types

The first part of the flattening transformation is the conversion
from types annotated with shape information to FKL types. This
translation is defined as follows:

T[[ [] # 𝜐] ]] 𝑑 = sz(𝑑) × [:T[[ ] ]] 1:]
T[[ [[𝜏 # 𝜐] # 𝑑 ′] ]] 𝑑 = sd(𝑑 ∗ 𝜐) × T[[ [𝜏 # ⌊𝜐 ⌋] ]] (𝑑 ′ ⊛ 𝑑)
T[[ [𝜏1 × 𝜏2 # 𝑑 ′] ]] 𝑑 = T[[ [𝜏1 # 𝑑 ′] ]] 𝑑 × T[[ [𝜏2 # 𝑑 ′] ]] 𝑑

T[[ 𝜏1 × 𝜏2 ]] 𝑑 = T[[ 𝜏1 ]] 𝑑 × T[[ 𝜏2 ]] 𝑑
T[[ int(𝜐) ]] 𝑑 = int

T[[ ] ]] 𝑑 = ] otherwise
where the second argument (𝑑) to T is the cumulative size of the
array. We use an initial value of 1 when translating an annotated
type and we use the dimension multiplication operator “⊛”, which
is defined as

𝑛 ⊛𝑚 = 𝑛 ∗𝑚
𝑑 ⊛ 𝑑 ′ = 𝛼 where 𝛼 is fresh

This allows us to statically determine the actual size of the data
sequence in the case where we have a rectangular array of known
dimensions. We also use the notation ⌊𝑑 ⌋, which is defined as
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follows:

⌊ 𝑑 ⌋ = 𝑑

⌊ 𝜙 ⌋ = 𝛼 where 𝛼 is fresh

This notation is used when stripping off a level of sequence so that
the resulting type is well formed.

Here are some examples of the type translation:

T[[ [[float # 5] # 5] ]] 1 =

sd(5 ∗ 5) × sz(25) × [:float:]

T[[ [[float # 𝜙] # 5] ]] 1 =

sd(5 ∗ 𝜙) × sz(𝛼) × [:float:]

T[[ [int(𝜙) # 𝛼] ]] 1 = sz(𝛼) × [:int:]

T[[ [bool × [float # 𝜙] # 𝛼] ]] 1 =

(sz(𝛼) × [:bool:]) × (sd(𝛼 ∗ 𝜙) × sz(𝛽) × [:float:])

5.2 Target operations

In Section 2.3, we described how the S, F , and P operators are
used to eliminate excess levels of lifting. These operations are im-
plemented at the meta-level in our translation. Furthermore, we
use type-indexed definitions because of the flat representation for
sequences of pairs. These operations have the following annotated
types, where the element type 𝜏 is the type index.

S𝜏 : ∀𝛼, 𝜙 .( [[𝜏 # 𝜙] # 𝛼]) → [int(𝜙) # 𝛼]
F𝜏 : ∀𝛼, 𝜙 .( [[𝜏 # 𝜙] # 𝛼]) → [𝜏 #

∑𝜙 (𝛽)
𝛼=1 𝛽 (𝛼)]

P𝜏 : ∀𝛼, 𝜙 .( [𝜏 # 𝛼], [int(𝜙) # 𝛼]) → [[𝜏 # 𝜙] # 𝛼]
The definition of these meta operations is as follows:

S𝜏1×𝜏2 = _⟨𝑎, 𝑏⟩.S𝜏1 (𝑎)
S𝜏 = _⟨sd, seq⟩.sd

F𝜏1×𝜏2 = _⟨𝑎, 𝑏⟩.⟨F𝜏1 (𝑎), F𝜏2 (𝑏)⟩
F𝜏 = _⟨sd, seq⟩.seq

P𝜏1×𝜏2 = _(⟨𝑎, 𝑏⟩, sd).⟨P𝜏1 (𝑎, sd), P𝜏2 (𝑏, sd)⟩
P𝜏 = _(seq, sd) .⟨sd, seq⟩

We also need the primitive # : (𝜎) → int that returns the length of
the sequence described by a shape descriptor.

We also introduce several FKL primitives for working with se-
quences, which are described in Figure 6. The SPLIT and COMBINE
primitives are used to implement conditionals and the FILTER prim-
itive is used to implement parallel filters. The DIST, INDEX, SDIST,
and TDIST primitives are used to generate argument sequences.
Lastly, the SD𝜎 primitive creates a segment descriptor of the speci-
fied type.

As will be shown below, the DIST primitive is used to replicate
constants and variables to form sequences that can be used as
arguments to lifted operations. In the case where the value being
replicated is not a base value, the replication operation is more
complicated, since the result must conform to the flattened-type
representation described in the previous section. Therefore, we
define a type-indexed function dist𝜏 that expands to the necessary

code.

dist𝜏1×𝜏2 = _(⟨𝑎, 𝑏⟩, 𝑛) .⟨dist𝜏1 (𝑎, 𝑛), dist𝜏2 (𝑏, 𝑛)⟩
dist [̂]#𝜐 ] = _(⟨sd, seq⟩, 𝑛).

⟨𝑛, ⟨SDsd(𝑛∗𝜐) (SDIST(sd, 𝑛, #(sd))),
SDIST(seq, 𝑛, sd)⟩⟩

dist[𝜏#𝜐 ] = _(⟨sd, seq⟩, 𝑛).
⟨𝑛, ⟨SDsd(𝑛∗𝜐) (SDIST(sd, 𝑛, #(sd))),

SDIST(dist𝜏 (seq, 𝑛), 𝑛, sd)⟩⟩
dist̂] = _(𝑥, 𝑛) .⟨𝑛, DIST(𝑥, 𝑛)⟩

Here the SDIST primitive is used to create multiple copies of a
sequence and we also use it to build the segment descriptors for
the nested sequences.

The TDIST primitive is required to support nesting of parallel
maps. For example, consider the expression

{ { x + y : x in xs } : y in ys }

where xs = [𝑥1, . . . , 𝑥𝑛] and ys = [𝑦1, . . . , 𝑦𝑚]. This expression is
flattened to a lifted addition (+↑) applied to two sequences, where
the first argument is the xs sequence replicated 𝑚 times and the
second sequence is the concatenation of 𝑛 copies of 𝑦1, followed by
𝑛 copies of 𝑦2, up to𝑚 copies of 𝑦𝑚 . The TDIST primitive is used to
create this second sequence, as illustrated in the following diagram:

· · ·

<latexit sha1_base64="fMjlE7qEp8rDO9nOsmbDWXw/75k="></latexit>

· · ·

<latexit sha1_base64="fMjlE7qEp8rDO9nOsmbDWXw/75k="></latexit>

· · ·

<latexit sha1_base64="fMjlE7qEp8rDO9nOsmbDWXw/75k="></latexit>

· · ·

<latexit sha1_base64="fMjlE7qEp8rDO9nOsmbDWXw/75k="></latexit>

· · ·

<latexit sha1_base64="fMjlE7qEp8rDO9nOsmbDWXw/75k="></latexit>

· · ·

<latexit sha1_base64="fMjlE7qEp8rDO9nOsmbDWXw/75k="></latexit>

�1

<latexit sha1_base64="R+ehaurYftSFFP7MFBT557Ji+7c="></latexit>

�1

<latexit sha1_base64="R+ehaurYftSFFP7MFBT557Ji+7c="></latexit>

�m

<latexit sha1_base64="yWtWlbzu8rBSXJtPylMQ58il74I="></latexit>

�m

<latexit sha1_base64="yWtWlbzu8rBSXJtPylMQ58il74I="></latexit>

x1

<latexit sha1_base64="KSYInTvqt0sIsr3y6YicnsGDlic="></latexit>

x1

<latexit sha1_base64="KSYInTvqt0sIsr3y6YicnsGDlic="></latexit>

xn

<latexit sha1_base64="R3bx3zmH6JVKEOqDetHLuxg0OAs="></latexit>

xn

<latexit sha1_base64="R3bx3zmH6JVKEOqDetHLuxg0OAs="></latexit>

+
<latexit sha1_base64="DRnzGMx1dfcTkwiRfwEIj3GAiWw="></latexit>

+
<latexit sha1_base64="DRnzGMx1dfcTkwiRfwEIj3GAiWw=">AAACYXicfVFNSwMxEE3Xr1q/aj32slgEQSi79WCPFS+9iIpWhbZINp22odlkSWbFEvYneNXf5tk/YrbtoX7gMIHHm3m8mUmUCG4wCD4K3srq2vpGcbO0tb2zu1fer9wblWoGHaaE0o8RNSC4hA5yFPCYaKBxJOAhmlzk9Ydn0IYreYfTBPoxHUk+5Iyio27tSfZUrgX1YBb+bxAuQI0s4vppv9DuDRRLY5DIBDWmGwYJ9i3VyJmArNRLDSSUTegIug5KGoPp29msmX/kmIE/VNo9if6MXVZYGhszjSPXGVMcm5+1nPyr1k1x2OxbLpMUQbK50TAVPio/X9wfcA0MxdQByjR3s/psTDVl6M7zzQW5G9itcQt46WzORTKmEaDt5aaImZVKx1Rk9uouzGwC2jF5/qOIlBgs90cvM4G7ffjz0r/BfaMentYbN41aq7n4hSKpkkNyTEJyRlqkTa5JhzAyIq/kjbwXPr1Nr+xV5q1eYaE5IN/Cq34BjE27lQ==</latexit>

+
<latexit sha1_base64="DRnzGMx1dfcTkwiRfwEIj3GAiWw="></latexit>

+
<latexit sha1_base64="DRnzGMx1dfcTkwiRfwEIj3GAiWw="></latexit>

TDIST(ys, n, m)

<latexit sha1_base64="5UVl+aSYZqgHKPLJnmqjzJtCUcU=">AAAEHnicdZPLahRBFIYrGS/JeEt0I7hpHIQIQ5iWBOMiEKILXQgRc4PpJlRXn54ppqq6rTqdyaRocOVz+ACuBH0Ed+JWwbXPYfWF4EzGggOnT33/uTUVZYIb7PV+LSy2rly9dn1puX3j5q3bd1ZW7x6aNNcMDlgqUn0cUQOCKzhAjgKOMw1URgKOotHz8v7oFLThqdrHSQahpAPFE84outDJihfI0djuv3j1dr9YCyTFIUc7MUU36Cpn8vHJSqe33quOd9nxG6ezc//89/L7z7t7J6uLf4I4ZbkEhUxQY/p+L8PQUo2cCSjaQW4go2xEB9B3rqISTGirUQrvkYvEXpJqZwq9KvqvwlJpzERGjiybNbN3ZXDeXT/HZCu0XGU5gmJ1oSQXHqZeuRcv5hoYiolzKNPc9eqxIdWUodveVCbE7YQKA91S52+jziG0gkfgBlQz851S/S4P7TnfmI5f4KFVMMazqu2pWep9tIMYEodVX3ZX5FBYPYgK6/5At7ZnM9BrHis+GOIlcNOBrhhLpaQqtgFL41pSlP6UdIYcjae5qg/HZDo95WWShosSxKLvh9YGiAmVXExczIDmYGzR8edpWNwoLtoJEM4Q0Zb8HMFo3Aiarqqq/4Nlkz4AZXIN5Zptlb8sXIvmqZoac1TusTSqtnsZ/uw7uOwcPln3N9Y33/idnS1SnyXygDwka8QnT8kOeUn2yAFh5AP5RL6Qr62PrW+t760fNbq40GjukanT+vkXf3lugQ==</latexit>

SDIST(xs, m, n)

<latexit sha1_base64="cf/sh0Q7M660pXMUgv/KQbkW8nM="></latexit>

Note that the TDIST primitive could be defined in terms of DIST as
follows:

TDIST(ys, 𝑛, 𝑚) = DIST↑(ys, DIST(𝑛, 𝑚))
but it is useful to have it as a primitive. As with DIST, we define a
type-indexed function tdist𝜏 to handle the cases where the first
argument is not a sequence of base values. We also define combine𝜏
as a type-indexed version of the COMBINE primitive.

5.3 Flattening

Our presentation of the flattening transformation roughly follows
that of Keller [9], except that we also track shape information. We
organize the translation by the syntactic forms found in Figure 1
and define three corresponding flatting translations for terms inside
a parallel map.

E[[ 𝑒 ◁ #»

𝑏 ]]sd flatten expression 𝑒

R[[ 𝑟 ◁ #»

𝑏 ]]sd flatten right-hand-side 𝑟
V[[ 𝑣 ◁ #»

𝑏 ]]sd flatten value 𝑣

For each of these translations, #»

𝑏 is the sequence of bindings for
the map and sd is the size/segment descriptor of the result.

Although FKL is a normalized IR, we take the liberty of using
direct-style notation for the result of the translation to simplify its
specification. In the actual implementation, the result is normalized.
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COMBINE : (sz(𝑑1) × [:]:], sz(𝑑2) × [:]:], sz(𝑑) × [:bool:]) → [:]:] merge two sequences according to the boolean
flags

DIST : (], int) → [:]:] replicate the first argument by given length

FILTER : ([:]:], [:bool:], sz(𝑑)) → sz(𝑑1) × [:]:] filter out elements of the first argument where
the corresponding element in the second argu-
ment is true

INDEX : ([:int:], [:int:], [:int:], sz(𝑑)) → sz(𝑑 ′) × [:int:] given a sequence of start values, strides, and
lengths, build a flattened sequence index se-
quences

SPLIT : ([:]:], [:bool:], sz(𝑑)) → (sz(𝑑1) × [:]:]) × (sz(𝑑2) × [:]:]) split the first argument according to the values
in the second argument

SDIST : ([:]:], int, int) → [:]:] replication of the first argument; the second
argument is the number of copies and the third
argument is the length of the first argument

SD𝜎 : (int, [:int:]) → 𝜎 build a segment descriptor from a length and
sequence of segment lengths

TDIST : ([:]:], int, int) → [:]:] transposed replication of the first argument;
the second argument is the number of copies
and the third argument is the length of the first
argument

Figure 6: Primitive sequence operations for FKL

5.3.1 Flattening expressions. For expressions that are inside a par-
allel map context, we use the translation E[[ 𝑒 ◁ #»

𝑏 ]]sd , where 𝑒 is
the expression being flattened, #»

𝑏 is the sequence of bindings for
the map, and sd is the size/segment descriptor of the result.

E[[ 𝑣 ◁ #»

𝑏 ]]sd = V[[ 𝑣 ◁ #»

𝑏 ]]sd

E[[ if 𝑝 then 𝑒1 else 𝑒2 ◁
#               »
𝑥𝑖 in xs𝑖 ]]sd =

let flgs = E[[ 𝑝 ◁ #               »
𝑥𝑖 in xs𝑖 ]]sd

#                                                                                                  »

let ⟨ys𝑖 , zs𝑖 ⟩ = splittypeof (𝑥𝑖 ) (xs𝑖 , flgs, sd)
let res1 = E[[ 𝑒1 ◁

#               »
𝑥𝑖 in ys𝑖 ]]S(ys1)

let res2 = E[[ 𝑒2 ◁
#               »
𝑥𝑖 in zs𝑖 ]]S(zs2)

in
combinetypeof (𝑒1) (res1, res2, flgs)

E[[ 𝑓 (𝑣1, . . . , 𝑣𝑘 ) ◁
#»

𝑏 ]]sd =

if #(sd) = 0
then ⟨sd, [ ]⟩
else 𝑓 ↑ (V[[ 𝑣1 ◁

#»

𝑏 ]]sd , . . . , V[[ 𝑣𝑘 ◁
#»

𝑏 ]]sd , sd)

E[[ let 𝑦 = 𝑟 in 𝑒 ◁
#»

𝑏 ]]sd =

let ys = R[[ 𝑟 ◁ #»

𝑏 ]]sd
in

E[[ 𝑒 ◁ 𝑦 in ys,
#»

𝑏 ]]sd

5.3.2 Flattening right-hand sides. For right-hand sides of let bind-
ings, we use the translation R[[ 𝑟 ◁ #»

𝑏 ]]sd , where 𝑟 is the right-hand
side being flattened, #»

𝑏 is the sequence of bindings for the itera-
tion, sd is the size/segment descriptor of the result. The flattening

translation of most right-hand-side forms is straightforward:

R[[ 𝑒 ◁ #»

𝑏 ]]sd = E[[ 𝑒 ◁ #»

𝑏 ]]sd

R[[ 𝑝 (𝑣1, . . . , 𝑣𝑘 ) ◁
#»

𝑏 ]]sd =

𝑝↑ (sd, V[[ 𝑣1 ◁
#»

𝑏 ]]sd , . . . , V[[ 𝑣𝑘 ◁
#»

𝑏 ]]sd )
R[[ ⟨𝑣1, 𝑣2⟩ ◁ #»

𝑏 ]]sd =

⟨V[[ 𝑣1 ◁
#»

𝑏 ]]sd , V[[ 𝑣2 ◁
#»

𝑏 ]]sd⟩
R[[ [ 𝑣1, . . . , 𝑣𝑘 ] ◁

#»

𝑏 ]]sd =

V[[ 𝑣1 ◁
#»

𝑏 ]]sd ++𝜏 · · · ++𝜏 V[[ 𝑣𝑘 ◁
#»

𝑏 ]]sd
where typeof (𝑣1) = 𝜏

The case for flattening nested parallel maps is more complicated.
Keller’s translation relies on multiple translation passes to handle
nested parallel maps, which results in multiple levels of lifting.
As described in Section 2.3, the following identity allows multiple
levels of lifting to be reduced to a single level:

𝑓 ↑
↑ ( #   »xss𝑖 ) = P(𝑓 ↑( #             »F (xss𝑖 )), #(xss1))

In our approach, we lift the outer bindings in anticipation that
they might be referred to inside the nested parallel map. Dead-code



IFL ’19, September 25–27, 2019, Singapore, Singapore John Reppy and Joe Wingerter

elimination will remove any unused liftings.

R[[ { 𝑒 : #               »
𝑥𝑖 in xs𝑖 } ◁ #                 »

y𝑗 in ys 𝑗 ]]sd =

let sd ′ = Stypeof (x1) (xs1)
#                                                                                                       »

let xs′
𝑖
= Ftypeof (xs𝑖 ) (V[[ xs𝑖 ◁

#                 »
y𝑗 in ys 𝑗 ]]sd )

#                                                                                                      »

let ys′
𝑗
= tdisttypeof (𝑦 𝑗 ) (ys 𝑗 , #(sd ′), #(sd))

let res = E[[ 𝑒 ◁ #               »

𝑥𝑖 in xs′
𝑖
,

#                 »

y𝑗 in ys′
𝑗
]]sd′

in
Ptypeof (𝑒) (res, sd)

5.3.3 Flattening values. We use the translation V[[ 𝑣 ◁ #»

𝑏 ]]sd for
values, where 𝑣 is the value being flattened, #»

𝑏 is the sequence of
bindings for the iteration, sd is the size/segment descriptor of the
result.

V[[ 𝑛 ◁ #»

𝑏 ]]sd = DIST(𝑛, sd)
V[[ 𝑥 ◁ 𝑥 in xs,

#»

𝑏 ]]sd = xs

V[[ 𝑥 ◁ 𝑦 in ys,
#»

𝑏 ]]sd = V[[ 𝑥 ◁ #»

𝑏 ]]sd

V[[ 𝑥 ◁ · ]]sd = disttypeof (𝑥) (𝑥, sd)
For base constants, we can use the DIST primitive to lift a single
value to a sequence of values. If a variable 𝑥 is in the binding list,
then we can replace it with the corresponding sequence variable;
otherwise, we use the type-indexed dist𝜏 operation to generate
the necessary FKL code.

6 STATUS AND FUTUREWORK

We have implemented a prototype of the analysis and shape-preserving
flattening transformations for NKL. Based on this prototype, we
have added the analysis to the Nessie compiler.6 The analysis per-
forms well on the roughly 35 test programs that we have tried. As
hoped, it is able to identify rectangular structure and also handles
the extensive collection of predefined functions that are part of the
Nesl language. Rectangular structures arise frequently in Nesl pro-
grams, even when the underlying algorithm is an irregular parallel
computation, so we expect hope to see real performance benefits
from optimizing those cases. The analysis also does an effective job
of identifying opportunities for horizontal fusion (as described in
Section 2.4.

We have not addressed the replication problem that some Nesl
programs suffer from, but we believe that the techniques developed
by other researchers to solve this problem are compatible with our
approach [14, 15].

Vectorization avoidance is a technique to increase the granular-
ity of primitive operations prior to flattening [11]. This technique
identifies maximal subexpressions that are sequential and packages
them up as indivisible operations that are not subject to decom-
position by the flattening transformation. We have previously im-
plemented this technique in the Nessie compiler and believe that
we can combine the pre-lifting analysis from Section 4.1 with the
analysis that identifies sequential subexpressions.

6As of this writing, we have shape analysis for full Nesl implemented and are working
on the flattening transformation.

The shape information that annotates segment descriptors can be
used to eliminate redundant descriptors and optimize the represen-
tation of descriptors. In particular, one of the major improvements
of our new shape analysis is that it can identify regular rectangular
arrays. There are some obvious opportunities for exploiting this in-
formation, such as using more compact representations of segment
descriptors and more efficient segmented scan and reduction opera-
tions, but we have not worked out the details of these optimizations
yet.

In Nesl, maps over multiple sequences require that the sequences
have the same length; if they do not, the program terminates with
an error (or crashes when running in unchecked mode). Our shape
analysis assumes that execution does not encounter such errors.
This assumption is manifest when we constrain the lengths of two
sequences that are involved in a map to be equal.7 It is interesting to
note that source of potential unequal-length errors corresponds to
constraining existentially-quantified shape variables. For example,
consider the following contrived Nesl code:

let xs2 = { x : x in xs1 | x < 0 };

ys2 = { y : y in ys1 | y < 0 };

in

{ x + y : x in xs2 , y in ys2 }

Because these sequences are defined by filters, they will have
existentially-quantified dimension variables as their lengths. For
this program to run correctly, however, these variables must be
equal, so the shape analysis will force that constraint. We could
exploit the connection between existentially-quantified variables
and unequal-length errors to place error-checking code. We may
be able to use some of the ideas from Futhark for this purpose [8].

Once we have sorted out the issue of bounds checking, it should
be possible to prove the correctness of the shape analysis, but this
is left for future work.

7 RELATEDWORK

The flattening transformation dates back to Blelloch’s Ph.D. re-
search [3, 7], but Blelloch only described the transformation using
informal English-language prose. Keller developed a more rigor-
ous description [9, 12] in her dissertation, which we loosely follow
here. Our approach differs from Keller in that we handle nested
parallel maps directly, whereas Keller transforms the inner maps
first, which results in multiple passes. Keller’s transformation also
extends the Nesl model with support for inductive types, which
we have not done. Leshchinskiy developed a formal transformation
for Data-Parallel Haskell (DPH) [13]. DPH not only supports in-
ductive types, but also supports higher-order functions. He uses an
approach of representing functions as pairs of closures; one for the
original function and one for the lifted version of the function. None
of these flattening transformations, however, tracks the shapes of
irregular nested computations.

Analyzing the shapes of arrays has been an important research
problem in the area of array-language compilers, but all of the work
that we are aware of has focused on rectangular arrays. Scholz has
developed a type system for shapes in the functional array language
Single-Assignment C (SaC) [22]. His system supports a limited form
7Various builtin functions introduce similar constraints.
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of dimension polymorphism, which is not part of our system, but it
is limited to rectangular array shapes. A related idea, also for SaC,
allows users to define constraints on the shapes of arrays that have
polymorphic structure as a way to provide more information about
the structure of shape-polymorphic code [23]. Their constraints
are similar to the constraints that we induce during shape analysis.
The Repa library for GHC uses Haskell’s powerful type system to
define shape polymorphic code [10]. The Futhark language uses
a hybrid approach that combines static analysis of array shapes
with a dynamic fallback mechanism that can check situations that
were not possible to resolve statically [8]. They also use a novel
program slicing method to extract code for computing array shapes
at runtime. Like the other works listed, Futhark does not support
irregular nested arrays.

8 CONCLUSION

We have described a new approach to the problem of determining
shape information for the FDP code produced by the flattening
transformation. This approach is simpler than previous approaches,
because it analyzes the shapes of the NDP code before the flattening
transformation. We have prototyped this approach for a kernel
language NKL and are currently integrating it into Nessie, our Nesl
to CUDA compiler.
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