Quantitative Analysis for Authentication of Low-cost RFID Tags Ioannis Paparrizos School of Computer and Communication Sciences EPFL, Switzerland Email: ioannis.paparrizos@epfl.ch Stylianos Basagiannis Department of Informatics Aristotle University of Thessaloniki Greece 54124 Email: basags@csd.auth.gr Sophia Petridou Department of Informatics Aristotle University of Thessaloniki Greece 54124 Email: spetrido@csd.auth.gr Abstract—Formal analysis techniques are widely used today in order to verify and analyze communication protocols. In this work, we launch a quantitative verification analysis for the low-cost Radio Frequency Identification (RFID) protocol proposed by Song and Mitchell. The analysis exploits a Discrete-Time Markov Chain (DTMC) using the well-known PRISM model checker. We have managed to represent up to 100 RFID tags communicating with a reader and quantify each RFID session according to the protocol's computation and transmission cost requirements. As a consequence, not only does the proposed analysis provide quantitative verification results, but also it constitutes a methodology for RFID designers who want to validate their products under specific cost requirements. Index Terms—Discrete Time Markov Chains; Probabilistic Model Checking; RFID; Quantitative Analysis. ### I. Introduction Formal analysis techniques, such as probabilistic model checking, are widely used today in order to analyze and verify communication protocols [3], [6]. In bibliography, security protocols being published with flaws [1], [10], [11] constitute examples that empower the necessity of using formal methods prior to the design and implementation of a communication protocol. At the same time, given that security is a fundamental issue in communication protocols [3], [9], quantitative formal analysis can be applied to obtain useful results regarding both the validation of their security properties and the cost to support them [3], [12]. This is important, since the tradeoff of gaining in security is losing in terms of computation cost. Therefore, cost should not been overlooked throughout quantitative analysis, since it can be a prohibited design parameter, especially for protocols executed by low-cost hardware devices, such as RFID tags. RFID tags are used in industry for supply-chain management, payment systems and inventory monitoring [13] and constitute one of the three (3) basic entities of an RFID system along with RFID readers and a server. One of the great challenges in the field of RFID is the integration of secure tag identification with low-cost computation and memory expenditure [14]. This requirement forces the tag manufacturers to look for lightweight authentication solutions which preserve security guaranties of an RFID protocol session. In a real-world scenario, RFID protocol operates in a multi- parallel session environment where a large number of sessions between tags and reader will be established concurrently. The latter rises up questions about the overall computation and transmission cost for a reader-server to identify a group of tags. In this work, we propose the use of probabilistic model checking [7] to verify the Song and Mitchell's RFID authentication protocol [14]. We develop a Discrete-Time Markov Chain (DTMC) model [5] which represents a multiple tag RFID scheme where tags' authentications are validated. In the PRISM framework, the aforementioned DTMC model is augmented with computation and transmission cost requirements derived by [14]. We produce quantitative results for computation cost of server and tags and for transmission cost regarding up to 100 simultaneous parallel sessions. We also provide server processing time and tags' time delay results. To the best of our knowledge, this is the first research effort that performs a quantitative analysis of an RFID protocol using probabilistic model checking. # II. SONG-MITCHELL'S RFID PROTOCOL The Song and Mitchell's protocol is a well-known authentication protocol for low-cost RFID tags [14]. It comprises three (3) basic entities, namely, a group of RFID tags T_i , an RFID reader R that radio-communicates with T_i and a backend server S that contains the record identification database for each tag T_i , i.e. $[(u_i,t_i)_{new},(u_i,t_i)_{old},D_i]$. A single protocol session consists of six (6) steps, as shown in Fig. 1. According to the notation provided in Table I these steps are summarized as follows: - 1) Reader R generates a random value $r_1 \in \Re[0,1]^l$ and sends it to T_i . - 2) Once T_i receives r_1 , it generates a random value $r_2 \in \Re[0,1]^l$, computes $M_1 = t_i \oplus r_2$ and $M_2 = f_{t_i}(r_1 \oplus r_2)$ and sends them to the reader R. - 3) R forwards M_1 , M_2 and the random bit-string r_1 to the server S. - 4) S looks into its tag identity pairs database both new and old for a t_i such that $r_2 \leftarrow M_1 \oplus t_i$ and $M_2' = f_{t_i}(r_1 \oplus r_2) = M_2$. If no suitable t_i is found, S sends an error message to R and stops the session. Otherwise, T_i Fig. 1. The analyzed Song-Mitchell's RFID authentication protocol has been authenticated by S which, in turn, computes $M_3 = u_i \oplus (r_2 \gg l/2)$ and sends it to R along with D_i . After M_3 transmission, S updates its tag database as follows: sets $u_{i(old)}$, $t_{i(old)}$ to u_i and t_i , respectively, and $u_{i(new)}$, $t_{i(new)}$ to $(u_i \ll l/4) \oplus (t_i \gg l/4) \oplus r_1 \oplus r_2$ and $h(u_{i(new)})$, respectively. - 5) R forwards M_3 to T_i . - 6) Upon receipt of M_3 , T_i computes $u_i \leftarrow M_3 \oplus (r2 \gg l/2)$ and checks if $h(u_i) = t_i$. If the check is true, then S has been authenticated by T_i and T_i updates t_i to $h((u_i \ll l/4) \oplus (t_i \gg l/4) \oplus r_1 \oplus r_2)$. Otherwise, t_i remains the same. In the above communication, the channel between the server S and the reader R is secure, while R and T_i communicate over an insecure channel. The proposed model considers two different groups of tags, namely the groups T_A and T_B , with $n=1,\ldots,50$ tags T_i per group. Given this range of n, we define $N=2,\ldots,100$ to be the upper bound of tags that the server S can authenticate concurrently. ### III. RFID MODELING USING DTMC The proposed analysis is based on probabilistic model checking principles. The RFID protocol to be analyzed is modeled using DTMCs in the PRISM model checking frame- TABLE I TABLE OF NOTATION | Crimbal | Description | |---------------------------|---| | Symbol | Description | | $T = \{T_1, \dots, T_n\}$ | Group of tags T , $i = 1, \ldots, n$ | | n | Number of tags, $n = 1, \dots, 50$ | | R | RFID reader | | S | Back-end server | | h | Hash function | | f_k | Keyed hash function | | l | The bit-length of a tag identifier | | D_i | Information associated with tag T_i | | u_i | An l -bit string assigned to T_i | | t_i | T_i 's l-bit Identifier, $t_i = h(u_i)$ | | x_{new} | The updated value of x | | x_{old} | The most recent value of x | | r | Random string of l bits | | \oplus | XOR operator | work. The proposed model is augmented with computation and transmission cost requirements derived by [14]. The reader may obtain the developed RFID-DTMC model from [2]. In PRISM, a probabilistic model is defined as a set of m modules, $MD = \{MD_1, \ldots, MD_m\}$. Each MD_i module is defined as a pair of (Var_i, C_i) , where Var_i is a set of integer-valued local variables with finite range and C_i is a set of commands. The set Var_i defines the local state space of module MD_i and in turn Var denotes the set of all local variables of the model, i.e., $Var = \bigcup_{m=1}^{i=1} Var_i$. Furthermore, each variable $v \in Var$ has an initial value \bar{v} . Our DTMC model includes m = 4 modules, namely, MD_S representing both the server S and the reader R, MD_{T_A} and MD_{T_B} for groups of tags T_A and T_B and MD_{Medium} for the communication medium between MD_S , MD_{T_A} and MD_{T_R} . The behavior of a module MD_i is defined by the set of commands C_i . Each command $c \in C_i$ takes the form of $(g,(\lambda_1,u_1),\ldots,(\lambda_{n_c},u_{n_c}))$, comprising a guard g and a set of pairs (λ_i, u_i) , where $\lambda_i \in \Re_{>0}$ and u_i is an update for each $1 \leq j \leq n_c$. A guard g is a predicate over the set of all local variables Var and each u_i update corresponds to a possible transition of module MD_i . If Var_i contains n_i local variables, $\{v_1, \ldots, v_{n_i}\}$, then an update takes the form $(v_1' = expr_1) \cap \ldots \cap (v_{n_i}' = expr_{n_i}),$ where $expr_j$ is an expression in terms of the variables in Var. Information of the model may be omitted if an update u_i does not affect some variables Var_i . In DTMC model specification, the constants λ_i determines the probability attached to transitions (i.e., the probability attached to transition that the update takes place), thus, $\lambda_j \in (0,1]$ for $1 \leq j \leq n_c$ and $\sum_{j=1}^{n_c} \lambda_j = 1$ [4]. More specifically, a DTMC model is defined as a tuple (S, \bar{s}, P, L) , where: - S is a finite set of states - $\bar{s} \in S$ is the initial state - $P: S \times S \to \Re_{\geq 0}$ is the transition probability matrix such that $\sum_{s' \in S} P(s,s') = 1$ and $L: S \to 2^{AP}$ is a labeling function mapping states to sets - L: S → 2^{AP} is a labeling function mapping states to sets of atomic propositions from a set AP with the properties of interest Terminating states are modeled by a single transition going back to the same state with probability 1. DTMCs are further described in [5]. In order to attach RFID cost parameters into the developed DTMC model, we define reward modules MD_{RC} and MD_{RT} which correspond to the RFID computation and transmission requirements, respectively [14]. Results will be acquired by defining the appropriate formulae properties according to the Probabilistic Computational Tree Logic (PCTL) [8]. The syntax of PCTL is as follows: $$\phi ::= true \mid \alpha \mid \phi \land \phi \mid \neg \phi \mid P_{\bowtie p}[\psi]$$ $$\psi ::= X \phi \mid \phi \mathcal{U}^{\leq t} \phi \mid \phi \mathcal{U} \phi$$ where a is an atomic proposition, operator $\bowtie \in [\leq, <, \geq, >]$, $p \in [0, 1]$ and $t \in \aleph_{\geq 0}$. For a DTMC (S, \bar{s}, P, L) , a reward structure is a tuple (ϱ, ι) , where: - $\varrho: S \to \Re_{\geq 0}$ is a vector of state rewards, and - $\iota: S \times S \to \Re_{>0}$ is a matrix of transition rewards. DTMC allows the specification of four distinct types of rewards R: - Instantaneous $R_{\bowtie r}[I^{=t}]$: the expected value of the reward at time-instant t is $\bowtie r$, - Cumulative $R_{\bowtie r}[\mathbf{C}^{\leq t}]$: the expected reward cumulated up to time-instant t is $\bowtie r$, Fig. 2. The number of RFID tags under authentication as a function of time for different upper bound of tags ${\cal N}$ Fig. 3. Transmission cost of RFID authentication protocol as a function of time for different upper bound of tags ${\cal N}$ - Reachability $R_{\bowtie r}[F \ \phi]$: the expected reward cumulated before reaching ϕ is $\bowtie r$, - Steady-state $R_{\bowtie r}[S]$: the long-run average expected reward is $\bowtie r$. Cumulative and rechability reward properties are employed for the proposed quantitative verification of the proposed RFID-DTMC model. ## IV. QUANTITATIVE VERIFICATION RESULTS The novelty of the current work is that for the first time probabilistic model checking using DTMCs is employed in order to verify the properties of the RFID authentication protocol. In the proposed quantitative analysis we model multiple RFID sessions according to the steps described in Section II. Since, our model considers two groups T_A and T_B of up to 50 tags each, it concludes that the server S can authenticate concurrently an upper bound of up to N=100 tags. Fig. 2 represents the number of RFID tags which are under authentication as a function of time expressed in time steps. It is natural that as time passes the server S will authenticate an increasing number of incoming tags T_i . However, this number has a threshold equal to N, i.e., the upper bound of tags being authenticated concurrently. We observe that for N=50,75,100 the corresponding curve is fixed at N and this happens at time step 1100,1600,2200 respectively. This means the smaller the N the sooner the curves' fixing. In line with the above observation, it is expected that the transmission cost of the RFID protocol, which depends on the number of tags under concurrent authentication, will Fig. 4. Server- and tag-side computation cost as a function of the upper bound of tags ${\cal N}$ Fig. 5. Server processing time and tags' time delay as a function of the upper bound of tags ${\cal N}$ be increased with time but it will not exceed an up limit which indicates the time that the server S is constantly fully occupied with N tags. Thus, Fig. 3 confirms that at time step 1100, 1600, 2200 the tags' authentication requests will be fixed at their maximum keeping transmission cost unchanged. Results depicted in Fig. 2 and 3 derived using cumulative reward queries. Apart from transmission cost, the proposed analysis incorporates the computation requirements of RFID protocol. More specifically, according to [14], the server-side and tag-side cost is exponential and linear to the number of tags, respectively. In Fig. 4 we depict computation cost at server- and tag-side as a function of N, for $N=10,\ldots,100$, and we confirm the expected curves' trend. We finally launch a set of experiments in order to compute the service rate and mean tags' delay. Fig. 5 shows that both the server processing time and tags' time delay are increased in line with N, for $N=10,\ldots,100$. Service rate is equal to 25 tags per time step while mean tags' delay is approximately 4.5 time steps. Results depicted in Fig. 4 and 5 derived using rechability reward queries. An additional value of the proposed model, besides the above results, is that it is designed to be configurable. Cost requirements incorporating in the proposed model are protocol dependant providing an analyst the capability of assigning rewards according to the hardware specifications of a protocol. ### V. CONCLUSION Quantitative analysis using probabilistic model checking is firstly used in this work in order to verify cost requirements of the Song and Mitchell's RFID authentication protocol, while its security properties are preserved. We have managed to create a representative cost weighted DTMC model within the PRISM model checking environment, towards the quantitative analysis of a parallel session scenario that include up to 100 RFID tag identifications. Apart from results launched by the proposed analysis, current work provides insights for addressing cost-related issues of RFID protocols and deciding upon their cost-dependent viability in line with their security guarantees. Our future plans involve the cost-based analysis of RFID solutions [13] which propose some fixes for strengthening the security of RFID protocols. In this way we will be able to evaluate the computation cost caused by a fix solution. Furthermore, our goal is to model and compare a series of Radio Identification protocols using the proposed analysis. In this way we will provide researchers and protocol designers with a complete framework for quantitative analyzing any security mechanism embedded in existing or new RFID protocols, especially when exploiting low-cost hardware. ### REFERENCES - [1] S. Basagiannis, P. Katsaros, A. Pombortsis, and N. Alexiou, "A probabilistic attacker model for quantitative verification of dos security threats," in *Proc. of the 32nd Annual IEEE International Conference on Computer Software and Applications (COMPSAC'08)*, Finland, July 2008, pp. 12–19. - [2] S. Basagiannis, I. Paparrizos, and S. Petridou, "Quantitative analysis for authentication of low-cost rfid tags: The dtmc model." [Online]. Available: http://users.auth.gr/~basags/rfid.html - [3] S. Basagiannis, S. Petridou, N. Alexiou, G. Papadimitriou, and P. Katsaros, "Quantitative analysis of a certified e-mail protocol in mobile environments: A probabilistic model checking approach," to appear in Computers & Security, Elsevier, 2011. - [4] A. Bianco and L. de Alfaro, "Model checking of probabilistic and nondeterministic systems," in 15th Conf. on Foundations of Computer Technology and Theoretical Computer Science, 1995, pp. 499–513. - [5] H. Hansson and B. Jonsson, "A logic for reasoning about time and reliability," Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535, 1994 - [6] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston, Modeling and Verification of Real-Time Systems: Formalisms and Software Tools. John Wiley & Sons. 2008. - [7] M. Z. Kwiatkowska, G. Norman, and D. Parker, "Prism 2.0: A tool for probabilistic model checking," in *In Proc. of QEST'04*, Netherlands, Sep. 2004, pp. 322–323. - [8] —, "Stochastic model checking," in In Proc of SFM'07, Italy, May 2007, pp. 220–270. - [9] C. Liaskos, S. Petridou, and G. Papadimitriou, "Cost-aware wireless data broadcasting," *IEEE Transactions on Broadcasting*, vol. 56, no. 1, pp. 66–76, 2010. - [10] G. Lowe, "Breaking and fixing the needham-schroeder public-key protocol using fdr," Software - Concepts and Tools, vol. 17, no. 3, pp. 93–102, 1996 - [11] G. Lowe and A. W. Roscoe, "Using csp to detect errors in the tmn protocol," *IEEE Trans. on Soft. Engineering*, vol. 23, no. 10, pp. 659– 669, 1997. - [12] S. Petridou, S. Basagiannis, N. Alexiou, G. Papadimitriou, and P. Katsaros, "Quantitative model checking of an rsa-based email protocol on mobile devices," in *Proc. of the 16th IEEE Symbosium on Computers and Communications (ISCC 2011)(to appear)*, Greece, Jun. 2011. - [13] P. Rizomiliotis, E. Rekleitis, and S. Gritzalis, "Security analysis of the song-mitchell authentication protocol for low-cost rfid tags," *IEEE Comm. Letters*, vol. 13, pp. 274–276, 2009. - [14] B. Song and C. J. Mitchell, "Rfid authentication protocol for low-cost tags," in *1st ACM Conf. on Wireless Network Security*, New York, NY, USA, 2008, pp. 140–147.