Homework due 11/29. Please write the name of any collaborator you worked with.

1. Compression of switching sequences. Given N compression algorithms c_1, c_2, \ldots, c_N, and an input sequence of length T, $x_1, x_2, \ldots, x_T \in \{0, 1\}$.

As we saw in class, we can design a compression algorithm that does as well as the best of these, with only a $\log N$ overhead. For example, if one compression algorithm was for French text and another for English, we could compress either. In this problem, imagine that you want to compress a document which has segments of English and French.

To be precise, you want to give a compression algorithm c with the following guarantee, for all sequences $x_1, x_2, \ldots, x_T \in \{0, 1\}$, and for all $k > 0$ (k is the number of segments), for all segmentations $1 = i_1 < i_2 \ldots < i_k < i_{k+1} = T + 1$,

$$|c(x)| \leq k(2 + \log_2 N) + \sum_{j=1}^{k} \min_{n \in \{1,2,\ldots,N\}} |c_n(x_{i_j}x_{i_j+1} \ldots x_{i_{j+1}-1})|.$$

In words, the compression is as good as if you split the document into k segments and compressed each one separately with the best code. The overhead (regret) is at most $k(2 + \log N)$.

2. Online prediction of switching sequences. Given N probability distributions over binary sequences, specified online by $p_n(x_t = 1|x_1x_2\ldots x_{t-1}) \in [0, 1]$. That is, each probability distribution can be accessed as an oracle, where the input is a bit sequence and the output is the probability that the next bit is 1. (From this, one can compute $p_n(x_1x_2\ldots x_T) = \prod_{t=1}^{T} p_n(x_t|x_{t-1})$.) We want to define another probability distribution p, specified in the same way, with a similar guarantee as above.

In particular, we want, for all sequences $x_1, x_2, \ldots, x_T \in \{0, 1\}$, and for all $k > 0$ (k is the number of segments), for all segmentations $1 = i_1 < i_2 \ldots < i_k < i_{k+1} = T + 1$,

$$p(x) \geq \frac{1}{(TN)^k} \prod_{j=1}^{k} \max_{n \in \{1,2,\ldots,N\}} |p_n(x_{i_j}x_{i_j+1} \ldots x_{i_{j+1}-1})|.$$
In words, the probability is as large as if you split the sequence into \(k \) segments and predicted each one separately with the best predictor. The overhead (competitive ratio) is at most \((TN)^k\). You’ll get more credit if you can give an efficient algorithm for computing \(p(x_t|x_1\ldots x_{t-1}) \) that calls the \(N \) component probability oracles a number of times that is polynomial in \(N \) and \(T \).

3. Lempel-Ziv. In class, we saw that the length of the encoding using Lempel-Ziv compression is at most \(N \log N \), where \(N \) is the number of phrases. It would be nice to guarantee that this is not much longer than the original sequence length \(T \). Show that this is the case, i.e., for any \(\epsilon > 0 \), for sufficiently large \(T \) (which may depend on \(\epsilon \)), Lempel-Ziv compression never encodes any input of length \(T \) by more than \((1 + \epsilon)\) factor. You may either argue directly based on the number of codewords, or using the optimality of Lempel-Ziv compression.

4. No truly universal compression algorithm. Show that there is no compression algorithm that compresses every sequence of length \(T \) to an encoded length of less than \(T \).