CMSC-37110 Discrete Mathematics THIRD MIDTERM EXAM December 1, 2005

This is an 80-minute exam; it contributes 26% to your course grade.

Do not use book or notes. You may use a calculator for basic arithmetic but not for more advanced functions such as binomial coefficients or determinants. Show all your work. A mere statement of the answer generally does not earn partial credit. If you are not sure of the meaning of a problem or the amount of detail required, ask the proctor. The bonus problems are underrated, do not work on them until you are done with everything else.

- 1. (4 points) Let $\{b_n\}$ be a sequence of positive numbers such that $b_{n+1} = O(b_n)$. Prove: $\ln(b_n) = O(n)$.
- 2. (5 points) True or false: $\pi(x) = \Omega(x^{0.9})$. Prove your answer.
- 3. (5+3 points) For the positive integer x, let n(x) denote the number of decimal digits of x. (a) Give a very simple explicit formula for n(x) in terms of the \log_{10} function and the rounding (floor or ceiling) functions. Prove your answer. (b) Prove: $n(x) \sim \log_{10}(x)$ where \log_{10} refers to base-10 logarithms.
- 4. (3+3 points) Evaluate each of the following sums as a closed-form expression (no summation symbols or dot-dot-dots).
 - (a) $\sum_{k=0}^{n} 2^{-k/2}$.
 - (b) $\sum_{k=0}^{n} \binom{n}{k} 2^{-k/2}$.
- 5. (5 points) Find a closed-form expression for the ordinary generating function of the sequence $a_n = 1/(n+1)$ (n=0,1,...).
- 6. (3+12+12+6+6+6 points) Let X_n be the number of triangles in a random graph.
 - (a) What is the size of the sample space for this experiment?
 - (b) Determine $E(X_n)$. Prove your answer. Use indicator variables. A clear definition of these indicator variables accounts for 6 of the 12 points.
 - (c) Determine $Var(X_n)$. Make your expression reasonably simple. (Hint: use the variables introduced in (b).)
 - (d) Asymptotically evaluate $Var(X_n)$. Show that $Var(X_n) \sim an^b$ where a and b are constants. Determine a and b.
 - (e) Asymptotically compare the result with the variance of the sum Y_n of $\binom{n}{3}$ independent indicator variables with the same expectation (1/8). Which of the two is little-oh of the other?

- (f) Use the result of (c) to prove the Weak Law of Large Numbers for X_n , i. e., prove that almost surely X_n stays close (within a factor of $(1 \pm \epsilon)$) to its expectation. ("Almost surely" means with probability approaching 1 as $n \to \infty$.)
- 7. (10 points) Prove that for a strongly connected digraph the following are equivalent:
 - (a) the number h divides the length of all cycles;
 - (b) the number h divides the length of all closed walks starting at a given vertex x.

8. (4+9B points)

- (a) Define the operator-norm ||A|| of an $n \times n$ real matrix A.
- (b) (BONUS) Recall the Spectral Theorem: If A is a symmetric real matrix then (A) all eigenvalues of A are real; (B) A has an orthonormal eigenbasis. Use the Spectral Theorem to prove that if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of the symmetric real matrix A then $||A|| = \max_i |\lambda_i|$.

9. (3+6 points)

- (a) Define stochastic matrices.
- (b) Prove: if z is a (complex) eigenvalue of a stochastic matrix then $|z| \leq 1$.

10. (4+4+4+4+10B points)

- (a) Draw the diagram of a finite Markov Chain which has more than one stationary distribution. Give two stationary distributions for your Markov Chain. Use as few states as possible.
- (b) Recall that a finite Markov Chain is *irreducible* if its transition digraph is strongly connected. Draw the diagram of a non-irreducible finite Markov Chain with a unique stationary distribution. State the stationary distribution. Do not prove. Use as few states as possible.
- (c) Define ergodicity of a finite Markov Chain.
- (d) Draw the diagram of an irreducible but non-ergodic finite Markov Chain.
- (e) (BONUS) Prove: the stationary distribution of an irreducible finite Markov Chain is unique. (Prove uniqueness only. Do not prove the existence of a stationary distribution.) Do not use the Frobenius-Perron Theorem.
- 11. (10 points) Calculate the determinant of the $n \times n$ matrix $A_n = (a_{i,j})$ where $a_{i,i} = 1$ (i = 1, ..., n), $a_{i,i+1} = -1$ (i = 1, ..., n-1), and $a_{i,i-1} = 1$ (i = 2, ..., n), all other entries are zero. The figure shows the matrix A_5 . Hint: Let $d_n = \det(A_n)$. Experiment with small n; observe the pattern, make a conjecture. To prove the conjecture, expand by the last row to obtain a recurrence for the sequence d_n .

$$A_5 = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

12. (2+3+5+6+5B points) Consider the Markov Chain defined by the transition matrix

$$B = \left(\begin{array}{cc} 0.4 & 0.6\\ 0.3 & 0.7 \end{array}\right)$$

- (a) Draw the transition diagram (the digraph of positive transition probabilities). Label each edge with the corresponding transition probability.
- (b) Is the Markov Chain defined by B ergodic? Why?
- (c) Compute the eigenvalues of B. Show all your work!
- (d) Compute the stationary distribution of this Markov Chain. Give your answer as exact rational numbers in their simplest form. Show all your work!
- (e) (BONUS)(Rapid convergence) Let π denote the stationary distribution and q_n the distribution after n steps. Prove: $||q_n \pi|| = O(1/10^n)$ (regardless of the initial distribution). Here $||\cdot||$ refers to the standard Euclidean norm.
- 13. (4 points) Write down the Laplacian of $K_{1,3}$. The vertex of degree 3 should be the first vertex.
- 14. (8 points) Recall that the "Prüfer code" assigns a sequence $P(T) = (p_1, \ldots, p_{n-2})$ of numbers to every tree on the vertex set $\{1, \ldots, n\}$ and yields a bijective proof of Cayley's formula n^{n-2} . Given T, describe how to construct its Prüfer code. Do not prove its correctness.
- 15. (5 points) Prove: if G is a planar graph with n vertices then G has an independent set of size $\geq n/6$. (Hint: chromatic number.)
- 16. (5B points) (BONUS) Prove: if G is a planar graph with n vertices and the complement of G is also planar then G has at most 10 vertices.
- 17. (5B points) (BONUS) Give a closed-form expression of the **exponential** generating function of the Fibonacci numbers.