CMSC-37110 Discrete Mathematics SECOND MIDTERM EXAM November 13, 2007 This exam contributes 16% to your course grade. Do not use book, notes. Show all your work. If you are not sure of the meaning of a problem, ask the proctor. - 1. (8 points) Let G be a connected planar graph such that every vertex has degree ≥ 3 . John claims to have drawn G in the plane such that each region is 6-sided. Prove him wrong. - 2. (6 points) Prove that every DAG can be topologically sorted. In other words: if G is an acyclic digraph, prove that the vertices of G can be numbered such that if $i \to j$ is an egde then i < j. - 3. (9 points) Prove that almost all tournaments are strongly connected. In other words, let p_n denote the probability that a random tournament¹ on a given set of n vertices is strongly connected. Prove that $p_n \to 1$. State the size of the sample space for this experiment. - 4. (7+3 points) Let A be the adjacency matrix of a DAG G with n vertices. (a) Determine the rank of A^n . Prove your answer. (b) Show that the rank of A^{n-1} determines whether or not G has a Hamilton path. - 5. (9+3 points) Let G be a random graph on the vertex set [n] (each pair of vertices is adjacent with probability 1/2). Let p_n denote the probability of the event that $\deg(1) = \deg(2)$. (a) Give a closed-form expression for p_n . (b) Prove that $p_n \sim c/\sqrt{n}$. Determine the value of the constant c. - 6. (1+5+2+8+3 points) Let T_n denote the number of triangles in a random graph. (a) State the size of the sample space in this experiment. (b) Write T_n as a sum of indicator variables. Give a clear definition of each indicator variable in the sum and state the number of indicator variables used. (c) Determine E(T_n). (d) Determine Var(T_n). Give a closed-form expression. (e) Asymptotically evaluate Var(T_n): show that Var(T_n) ~ cn^d; determine the constants c and d. - 7. (Bonus problem, not required, 6 points) Let G be a directed graph such that all vertices have out-degree $\leq k$. Prove that G is (2k+1)-colorable. (A legal coloring of a directed graph is defined the same way as for undirected graphs; coloring is insensitive to the direction of edges.) - 8. (Bonus problem, not required, 6 points) Prove that for almost all graphs, every vertex has degree $n/2 + O(\sqrt{n \log n})$. ¹A tournament is an orientation of the complete graph, i. e., every edge of the complete graph is oriented in one of the two possible directions. In a random tournament, these orientations are assigned independently with each choice having probability 1/2.