
Advanced Combinatorics
Math 295, Spring 2007

Class Summary and Homework Questions: Week 3, Lectures 9 and 10.

Note: the final exam on Friday will be closed-book, except that you will be
permitted to refer to these printed Class Summaries (for Week 3 only, not for
weeks 1 and 2) because of the more advanced nature of the 3rd week material.
Hard copies will be distributed at the exam; you cannot use your previously
received copy.

Proofread by instructor, April 12, 6 am. The Lecture 9 material
contains updates compared to the preliminary version distributed
by the TA.

Lecture 9 - April 10
The Homework below is due on Thursday 12th March.

A basis for a vector space V is a linearly independent set of vectors which span
V . Every vector space has a basis.
Theorem. The following are equivalent:
(a) B is a basis for V .
(b) B is a maximal linearly independent set for V .
(c) B is a minimal set that spans V .
(d) B is a linearly independent set and |B| = dim V .
(e) B spans V and |B| = dim V .
Do: (a) Prove every linearly independent set in a vector space V can be ex-
tended to a basis for V .
(b) Prove every set in V that spans V contains subset that is a basis for V .
Theorem. If {b1, · · · ,bn} is a basis for a vector space V , then every v ∈ V
can be written uniquely as v = β1b1 + · · ·+ βnbn.
The β1, . . . , βn are called the coordinates of v with respect to the basis {b1, · · · ,bn}.
This gives a bijection from V to Fn. An isomorphism f : V → W is a bijection
such that f(x + y) = f(x) + f(y) and f(αx) = αf(x) for all x,y ∈ V and
α ∈ F . If there exists an isomorphism we say the two vector spaces are isomor-
phic, V ∼= W . If dimF V = n then V ∼= Fn.
Do: Prove if V ∼= W , then dim V = dim W .
Corollary. If V is an n-dimensional vector space over Fp then |V | = pn.
Note that this in particular applies to the n-dimensional subspaces of FN

p for
any N : each n-dimensional subspace consists of pn vectors. We used this in the
proof of Eventown Theorem.
For a field F consider the vector space F [x] of polynomials over F . (The “vec-
tors” in F [x] are the polynomials in the variable x. Note that linear combina-
tions of polynomials can be taken in the obvious manner.)
The countably infinite set {1, x, x2, . . . } is a basis for F [x].
Puzzle: Prove that all vector spaces have bases, including those containing
uncountably large linearly independent sets. (Requires Zorn’s Lemma.)
Puzzle: (Cauchy’s Functional Equation) Consider a function f : R → R which
satisfies f(x + y) = f(x) + f(y) for all x, y ∈ R.
(I) Show that if any one of the following holds, then f(x) = cx.
(a) f is continuous.
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(b) f is continuous at a point.
(c) f is bounded in an interval.
(d) f is measurable in an interval.
(II) Prove that there exists a solution which is not linear. Hint: R is a vector
space over Q. (A basis of this space is called a “Hamel basis.”)
Notation: F [x1, . . . , xk]n is the space of polynomials of degree ≤ n in the k

variables x1, . . . , xk. The degree of the monomial
∏k

i=1 xki
i is

∑k
i=1 ri. The de-

gree of a polynomial is the largest degree of its monomials when fully expanded.
For example, if f(x, y) = x5y7 + 100x6y6 + 7x10, then deg(f) = 12. The degree
of the zero polynomial is −∞.
Homework 9.1: Prove: dim F [x1, x2, . . . , xk]n =

(
n+k

k

)
. Hint: A basis for

this space is {
∏k

i=1 xji

i | ji ≥ 0,
∑k

i=1 ji ≤ n}. Therefore the dimension of the
space is the number of solutions to the inequality

∑k
i=1 ji ≤ n in nonnegative

integers j1, . . . , jk.
Fisher’s Inequality: Suppose A1, . . . , Am ⊆ {1, 2, . . . , n} are distinct subsets,
and |Ai ∩Aj | = k for i 6= j and a fixed k > 0. Then m ≤ n.
This is actually a generalization of R. A. Fisher’s 1940 inequality which imposed
two additional uniformity constraints: all the Ai have equal size, and all ele-
ments belong to the same number of sets Ai. In a seminal 1949 note, R. C. Bose
eliminated the second uniformity constraint and more importantly, introduced
the “linear algebra method” into the theory of extremal set systems. The full
result was proved by K. N. Majumdar (1953) by a slight extension of Bose’s
method. The proof, outlined below and discussed in full in class, can be found
in the blue text, Theorem 4.1, p.78.
Def. (Erdős - Rado, 1960) A sunflower is a set system A1, . . . , Am such that for
every i 6= j we have Ai ∩ Aj =

⋂m
h=1 Ah. The set C =

⋂m
h=1 Ah is called the

kernel of the sunflower; the sets Ai \ C are the petals. The petals are disjoint
from each other as well as from the kernel.
Do: Assuming A1, . . . , Am are distinct, nonempty, and form a sunflower, show
that their incidence vectors are linearly independent.
Quadratic forms: q(x) = xT Ax, positive definite and positive semi-definite
quadratic forms and matrices over R.
Do: Show: q(x) =

∑n
i=1

∑n
j=1 αijxixj , where A = (αij) and

x = (x1, . . . , xn)T ∈ Rn.
Do: Prove: if A is positive definite and B is positive semi-definite then A + B
is positive definite.
Theorem. If A is positive definite then A is non-singular.
Do: (R.C. Bose) Compute

det


` k · · · k

k `
...

...
. . . k

k · · · k `


as a product of obviously non-zero factors (` > k > 0).
(Bose’s proof of Fisher’s inequality for the uniform case (all sets have the same
size `) relied on the fact that this matrix is nonsingular, a fact he established
by computing its determinant.)
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Do: (Majumdar) Compute

det


`1 k · · · k

k `2
...

...
. . . k

k · · · k `n


as a product of obviously non-zero factors (`i > k > 0).
(Majumdar’s proof of the most general version of Fisher’s inequality, stated
above, relied on the fact that this matrix is nonsingular, a fact he established
by computing its determinant. Note that using positive definiteness, we have
obtained a simpler proof of the nonsingularity of this matrix.)
Do: Show that the diagonal matrix diag(δ1, . . . , δn) is positive definite if and
only if all δi are positive.
Zsigmond Nagy’s constructive proof (1972) that

(
k
3

)
9 (k + 1, k + 1). (See the

blue text, Thm. 4.6 (p. 83))
Puzzle: Prove if k is large enough (k ≥ 9) and we have a homogeneous red set
of size m in Nagy’s coloring then m ≤ (k − 1)/2.
Homework 9.2: For v1, . . . ,vm ∈ Fn let αij = vi · vj and A = (αij)m×m.
Prove that if det A 6= 0 then v1, . . . ,vm are linearly independent.
Homework 9.3: Find 7 subsets A1, . . . , A7 ⊂ {1, 2, . . . , 7} such that |Ai| = 3
and |Ai ∩Aj | = 1 for all i 6= j.
Homework 9.4: Count the 3-dimensional subspaces of Fn

p . (Find a closed
form expression.)

Lecture 10 - April 11
The Homework below is due on Friday, March 13.

Homework 10.1: Prove: if A1, . . . , Am are distinct k-sets and m > k!(s−1)k

then there is a sunflower with s petals among the Ai. (Hint: induction on k.
Note that a set of disjoint sets is a sunflower (with empty kernel).)
Theorem. (Skew Oddtown) Consider the sets A1, . . . , Am ⊆ {1, 2, . . . , n} and
B1, . . . , Bm ⊆ {1, 2, . . . , n}, and the conditions
(1) |Ai ∩Bi| is odd for all i,
(2) |Ai ∩Bj | is even for i > j, and
(2’) |Ai ∩Bj | is even for i 6= j.
Then not only does (1) and (2’) imply m ≤ n but so does (1) and (2).
The Ray-Chaudhuri – Wilson Theorem (1975) If A1, . . . , Am ⊆ X are
distinct, |X| = n, |Ai| = k for all i, and |Ai ∩ Aj | ∈ {`1, . . . , `s} for all i 6= j,
then m ≤

(
n
s

)
.

This result is a milestone in the theory of extremal set systems. Its proof was
based on higher incidence matrices (“inclusion matrix,” blue text Chapter 7.1)
and represented a significant extension of Bose’s linear algebra method. (See
blue text, p87, Theorem 4.10 (statement of result), and p119 (Sec. 5.11, acces-
sible proof via spaces of polynomials).)
The following variations of this fundamental result appear in a seminal paper
by Frankl and Wilson (1981).
Non-Uniform version of the Ray-Chaudhuri – Wilson Theorem (Frankl
– Wilson, 1981) Fix a prime p. If A1, . . . , Am ⊆ {1, 2, . . . , n} are distinct and
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|Ai ∩Aj | ∈ {`1, . . . , `s} for all i 6= j, then m ≤
∑s

i=0

(
n
i

)
.

The original proof of this result, like that of the Ray-Chaudhuri – Wilson
Theorem, used higher incidence matrices. The accessible proof via spaces of
multivariate polynomials, found by the instructor in 1988 and discussed in full
in class, is described in the blue text, Thm 5.17, Sec. 5.10, p117.
Definition of congruence modulo m:
a ≡ b (mod m) if m | a− b. Example: 5 ≡ 54 (mod 7).
We say that k ∈ {`1, . . . , `s} (mod p) if (∃i)(k ≡ `i (mod p)).
Modular version of the Ray-Chaudhuri – Wilson Theorem (Frankl –
Wilson, 1981) Let p be a prime. If A1, . . . , Am ⊆ {1, 2, . . . , n} are distinct,
|Ai| = k,

|Ai ∩Aj | ∈ {`1, . . . , `s} (mod p)

for all i 6= j and
k 6∈ {`1, . . . , `s} (mod p),

then m ≤
(
n
s

)
. (See blue text, p120.)

This last version is particularly significant because of its wide range of applica-
tions, one of which follows.
Explicit Ramsey construction (Frankl and Wilson, 1981): Fix a prime
p and let n > p2. Label the

(
n

p2−1

)
nodes by the (p2 − 1)-subsets of an n-set. A

line between two nodes labelled A and B is colored red if |A∩B| ≡ −1 (mod p)
and colored blue otherwise.
Homework 10.2: Use this explicit construction to prove(

n

p2 − 1

)
9

((
n

p− 1

)
+ 1,

(
n

p− 1

)
+ 1

)
.

Hint. You need to show that if A1, . . . , Am ⊆ {1, . . . , n}, |Ai| = p2−1, and these
m sets form a homogeneous subset for the given coloring then m ≤

(
n

p−1

)
. On

the one hand use the Ray-Chaudhuri – Wilson Theorem, and on the other use
Frankl and Wilson’s modular version of the Ray-Chaudhuri – Wilson Theorem.
Do: Prove that if

(
n

p2−1

)
9 (

(
n

p−1

)
+ 1,

(
n

p−1

)
+ 1) then for every C there exists

an N0 ∈ N such that for all N > N0 we have NC 9 (N,N).
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