Advanced Combinatorics Math 295, Spring 2007

Class Summary and Homework Questions: Week 2, part 2

Lecture 7 - April 4th

The Homework below is due on Tuesday, March 10.

Do: (a) Prove that $a_n > 0$ and $a_n \to 0$ as $n \to \infty$ does not imply $n^{a_n} \to 1$. (b) If $c_n \to \infty$, prove there exists a sequence $(b_n)_n$ such that $b_n > 1$, $b_n \to 1$ and $b_n^{c_n} \to \infty$.

A permutation f is a bijection $f: A \to A$ to itself, S_n is the set of all permutations of $\{1, 2, \ldots, n\}$, cyclic notation for permutations and k-cycles.

Puzzle: Prove, for two permutations f and g, fg has the same cycle structure as gf.

Inverse of a permutation g^{-1} is a permutation such that gg^{-1} is the identity permutation, an involution is a permutation g for which $g^2 = \mathrm{id}$, the support of a permutation: $\mathrm{supp}(f) := \{x \mid x^f \neq x\}$, two permutations are disjoint if their supports are disjoint.

Do: If f and g are disjoint show they commute: fg = gf.

A permutation $f \neq id$ commutes with itself and $f^l f^k = f^k f^l$ despite having non-zero intersection of supports.

Puzzle: Find permutations f and g which are not disjoint and commute but do not arise via the examples above.

A transposition is a 2-cycle, a set $T \subset S_n$ generates $g \in S_n$ if g can be written as $g = a_1 a_2 \dots a_n$ where $a_i \in T$ for all $i = 1, \dots, n$ (perhaps with repetition).

Do: Prove every permutation can be written as a product of disjoint cycles uniquely up to order.

Theorem. Transpositions generate all permutations.

A k-cycle is a product of a k-1 transpositions.

Do: The transpositions $(12), (23), \ldots, (n-1, n)$ generate S_n .

A permutation is $even\ (odd)$ if it is the product of an even (odd) number of transpositions.

$$sgn(f) = \begin{cases} 1, & \text{if } f \text{ is even} \\ -1, & \text{if } f \text{ is odd} \end{cases}$$

This definition completes the definition of the determinant.

Do: Prove: exactly half of S_n is even (for $n \geq 2$).

Puzzle: Prove that if a permutation is even it is not odd. Hint: This is equivalent to proving the identity is not odd.

Sam Lloyd's Puzzle. Given a 4×4 square and 15 unit squares we may slide the 15 unit squares around inside the large square.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	×

A permutation of $\{1, \ldots, 15\}$ (leaving \times fixed) is said to be feasible if we can slide the unit squares around to get back to the picture above.

Do: Prove that exactly half of the possible permutations in Sam Lloyd's Puzzle

are feasible. The transposition of 1 and 2 is not feasible.

Do: Define feasibility for a Rubik's Cube in the same way, but replace the squares with the "cubies" of Rubik's Cube. Prove that switching two corner cubies is not feasible.

Homework 7.1: Prove that the *n*-cycle (12...n) and the transposition (12)generate S_n .

Puzzle: Prove that fewer than n-1 transpositions cannot generate S_n . (This has an ah-ha solution.)

Puzzle*: Prove that the number of (n-1)-tuples of transpositions that generate S_n is n^{n-2} . (There is no ah-ha solution.)

Diagonal, upper triangular and lower triangular matrices and their determinants.

Definition. A matrix $A \in F^{n \times n}$ is non-singular if its columns are linearly independent.

Theorem. A matrix A is non-singular if $det(A) \neq 0$.

Theorem. The following are equivalent:

- (a) A is non-singular.
- (b) $\operatorname{rk}(A) = n$.
- (c) The rows of A are linearly independent.
- (d) The columns of A form a basis for F^n .
- (e) The rows of A form a basis for F^n .
- (f) $\det(A) \neq 0$.
- (g) $\exists A^{-1}$.

Matrix product: For $A = (a_{ij})_{ij} \in F^{k \times \ell}$ and $B = (b_{ij})_{ij} \in F^{\ell \times m}$, AB = $(c_{ij})_{ij} \in F^{k \times m}$ is defined by

$$c_{ij} = \sum_{t=1}^{\ell} a_{it} b_{tj},$$

Do: $\operatorname{rk}(AB) \leq \min\{\operatorname{rk}(A), \operatorname{rk}(B)\}.$

Do: Prove (AB)C = A(BC).

Definition. The trace of a matrix $A = (a_{ij})_{n \times nj}$ is $\text{Tr}(A) = \sum_{i=1}^{n} a_{ii}$. **Homework 7.2:** Prove if $A \in F^{k \times \ell}$ and $B \in F^{\ell \times k}$ then Tr(AB) = Tr(BA).

Puzzle: If $A, B \in F^{n \times n}$ prove det(AB) = det(A) det(B).

Do: Prove Tr(A + B) = Tr(A) + Tr(B).

Do: Show that rk(A) = 0 if and only if A = 0, the zero matrix.

Do: Let I_n be the $n \times n$ identity matrix and J_n be the $n \times n$ "all-ones matrix" (for which every entry is 1). Find a formula for $\det(J_n - I_n)$. (It's a very simple expression.)

Do: Suppose $A = (a_{ij})_{n \times n}$ and $a_{ii} = a$, $a_{ij} = b$ for j > i, and $a_{ij} = c$ for j < i. Compute det(A). (Again, there is a simple expression.)

Do: Suppose $A = (a_{ij})_{n \times n}$ and $a_{ij} = 1$ if $i - 1 \le j \le i + 1$, and $a_{ij} = 0$ otherwise. Compute det(A).

An inverse of a matrix $A \in F^{n \times n}$ is a matrix B such that $AB = I_n$, if such a matrix exists we write $B = A^{-1}$ and say A is *invertible*.

Do: Show that A^{-1} exists if and only if A is non-singular. (Gaussian elimina-

Do: Show that if A is invertible then $A^{-1}A = I_n$. That is, given A, if $AB = I_n$ then $BA = I_n$.