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1 Basic structures

1.1 Groups

A group is a set G endowed with a binary operation, usually called addition or multiplication,
satisfying the following axioms (written in multiplicative notation):

a) (Ya,b € G)(3lab € G) (operation uniquely defined)

(c
(d

(a) (

(b) (Va,b,c € G)((ab)c = a(bc)) (associativity)
) (3e € G)(Va € G)(ea = ae = a) (identity element)
) (

Va € G)(3b € G)(ab = ba = e) (inverses)
In additive notation, we postulate

a) (Va,b € G)(Jla+b € G) (operation uniquely defined)

(a) (

(b) (VYa,b,c € G)((a+0b) +c=a+ (b+ ¢)) (associativity)

(¢) (e € G)(Va € G)(e +a=a+e=a) (identity element)
) (

(d) (Vae G)(FbeG)a+b=0b+a=e) (inverses)



The multiplicative identity is usually denoted by “1,” the additive identity by “0.” The
multiplicative inverse of a is denoted by a!; the additive inverse by (—a).

The group is commutative or abelian if it satisfies (Va,b € G)(ab = ba) (or (Va,b €
G)(a+ b = b+ a) in the additive notation). The additive notation is customarily reserved
for abelian groups.

Example 1.1.1. (Z, +) (the additive group of integers), (Z,, +) (the additive group of mod-
ulo n residue classes), the general linear group GLa(p) (2 X 2 matrices over Z, with nonzero
determinant (nonzero mod p where p is prime)) under matrix multiplication, the special
linear group SLs(p) (the subgroup of GLy(p) consisting of those matrices with determinant
1 (mod p))

Exercise 1.1.2. If p is a prime (Z),-) is a group. Here Z) is the set of non-zero residue
classes modulo p.

The order of a group is the number of elements of the group. For instance, the order of
(Zn,+) is n; the order of (Z), ) is p — 1; the order of (Z, +) is infinite. Note that the order
of a group is at least 1 since it has an identity element. The idenity element alone is a group.

Exercise 1.1.3. Calculate the order of the special linear group SLy(p). (Give a very simple
exact formula.)

1.2 Fields

Informally, a field is a set F together with two binary operations, addition and multiplication,
so that all the usual identities and rules of inversion hold (all nonzero elements have a
multiplicative inverse). Here is the formal definition.

(F, +,) is a field if

(a) (F,+) is an abelian group (the additive group of the field);
(b) (F*,-) is an abelian group (the multiplicative group of the field) (where F* = F\ {0});
(¢) (Va,b,c € F)(a(b+ c¢) = ab+ ac) (distributivity)

Examples: the real numbers (R), the complex numbers (C), the rational numbers (Q), the
modulo p residue classes (IF,,) (where p is a prime). (This latter is the same as Z,; we write F,,
to emphasize that it is a field.) There are many other examples but only these will matter for
us so you do not need to know the formal definition of a field, just think of these examples.

Note that every field has order > 2 since it has a 0 (additive identity) and among the
nonzero elements it has a 1 (multiplicative identity). Fy has order 2. The fields F,, are finite;
they are not the only finite fields. There exists a unique finite field of order ¢ for every prime
power ¢ (Galois).

Exercise 1.2.1. Prove: in a field, ab = 0 if and only if a =0 or b = 0.



Exercise 1.2.2. Prove: multiplication in a field is associative. (Observe that this statement
is NOT an axiom as given above. What is missing?)

Exercise 1.2.3. Prove: if (Z,,+, ) is a field then n is a prime.

Exercise 1.2.4. Prove: the numbers of the form {a 4+ bv/2 : a,b € Q} form a field. (This
field is denoted Q[v/2].)

Exercise* 1.2.5. Prove: the “complex numbers over F,” form a field if and only if p = —1
(mod 4). (The “complex numbers over F,” are the formal expressions a + bi where a,b € F,
and multiplication is performed using the rule i = —1.)

2 Basic Concepts of Group Theory

2.1 Generators, subgroups

Definition 2.1.1. If H is a non-empty subset of G which is a group under the same operation
as (G, we say H is a subgroup of G and write H < G.

Exercise 2.1.2. A nonempty subset H of G is a subgroup if and only if for all a,b € H we
have ab™! € H.

Observe: the “subgroup” relation is transitive: if K < H and H < G, then K < G.
Definition 2.1.3. If A,B C G, then A-B={ab|a € A b€ B}.
Exercise 2.1.4. (a) |AB| < |A||B[; (b) 0- B =0; (c) if A # 0 then AG = G.
Exercise 2.1.5. H C G is a subgroup if and only if H # () and HH~' C H.
Exercise 2.1.6. The intersection of a family of subgroups of a group is a subgroup.

Definition 2.1.7. Let S C G and let H be the intersection of all subgroups of G containing
S. We say that H is the subgroup of G generated by S and write (S) = H.

Exercise 2.1.8. Let S be a non-empty subset of G. We define

St={s"|seS}

and
(SusS™H"={aay...a, | a; € SUS.
Prove that -
($) = Jsuse.
n=0



2.2 Permutations, the symmetric group

The set of all bijections of a set 2 is a group under composition. We call this group the
symmetric group on 2 and denote it Sym(2). We call Q the permutation domain and the
elements of Sym(Q2) permutations of Q. If || = n we often denote Sym(€2) by S,,. We often
will write elements of S, using cycle notation. The symbol (ay, ..., a;) denotes the “k-cycle”
which moves a; to a;41 (i =1,...,k — 1) and a; to a; (here the a; are distinct elements of
2); all other elements of € are fixed.

Composition of permutations is performed left to right. For example, (123) = (13)(23)
(verify!)

Exercise 2.2.1. Every permutation can be written as a product of disjoint cycles. This
is referred to as the cycle decomposition of the permutation. This decomposition is unique
apart from the order of the cycles and the possible omission of cycles of length 1.

Definition 2.2.2. Let the cycle-decomposition of a permutation o consist of a cycle of
length nq, a cycle of length no, ..., and a cycle of length n,,, where n; > ny > --- > n,,.
In this representation, we include all fixed points as cycles of length one. We say that o has

cycle-type (ny,ng, ..., Ny).

Exercise 2.2.3. The order of S,, is n!.

Definition 2.2.4. A transposition is a 2-cycle.

Exercise 2.2.5. S, is generated by the n — 1 transpositions of the form (7,7 4 1).

Exercise 2.2.6. (a) Let T be a set of transpositions. View T" as the set of edges of a graph.
Give a graph theoretic characterization of those 7' which generate S,. (b) S, cannot be
generated by fewer than n — 1 transpositions.

Exercise 2.2.7. The number of (n — 1)-tuples of transpositions that generate S, is n" 2.

(Hint: Cayley’s Formula in Graph Theory.)

Definition 2.2.8. 0 € 5, is even if it is a product of an even number of transpositions and
odd if it is a product of an odd number of transpositions.

Exercise 2.2.9. If o is even, then o is not odd. (What you need to prove is that the identity
permutation is not odd.)

Exercise 2.2.10. Prove: a k-cycle is an even permutation if and only if &k is odd.

2.3 Lagrange’s Theorem

Theorem 2.3.1 (Lagrange’s Theorem). If H < G, then |H| | |G|.

Proof. Define a relation by a ~ b if ab™! € H.



Exercise 2.3.2. Verify that this is an equivalence relation.

We call the sets of the form aH (this is shorthand for {a}H) and Ha the left and right
cosets of H, respectively. We have ab~! € H if and only if a € Hb. Tt follows that (a) the
equivalence classes of the equivalence relation defined above are exactly the right cosets of
H; and (b) all cosets are of the same size. We call the number of right cosets of H in G the
index of H and G. This is denoted by |G : H|. Since all the cosets have the same number
of elements, we must have |G| = |H||G : H]|. O

Exercise 2.3.3. Prove: if H < G then the number of right cosets and the number of left
cosets is equal. (Your proof should work for infinite as well as for finite groups.)

Exercise 2.3.4. The only subgroups of Z are of the form dZ for d € N. What is |Z : dZ|?
Show that two cosets of a + dZ and b + dZ are equal if and only if a = b mod d. Cosets of
dZ in Z are called modulo d residue classes.

2.4 The alternating group

Definition 2.4.1. The set of all even permutations of S,, is a subgroup of S, called the
alternating group of degree n and denoted A,,.

Exercise 2.4.2. The 3-cycles generate A,,.
Exercise 2.4.3. If n > 2 then |5, : A4, | = 2.

Exercise 2.4.4. For n > 2, A, is the only subgroup of index 2 in S,,.

2.5 Two famous puzzles

Now we would like to study the number of possible configurations of Rubik’s cube obtain-
able by pulling the cube apart and then reassembling it, without changing the colors on the
faces of the “cubies.” We think of the 6 face centers as fixed to the center. There are 8!
ways to arrange the “corner cubies” and 12! ways to arrange the “edge cubies.” Once the
location of a corner cubie is fixed, there are 3 ways to place it; once the location of an edge
cubie is fixed, there are 2 ways to place it. In all, this gives 8!12!3%2!2 configurations. These
configurations form a group which we call the “total group” 7" of Rubik’s cube and call the
subgroup of configurations obtained through legal moves G.

Exercise 2.5.1. |T: G| = 12.

Exercise 2.5.2. We will now describe what is known as Sam Lloyd’s 15 puzzle. Suppose
the numbers 1,2,...,15 and “blank” are arranged in a 4 x 4 grid. A legal move is to swap
the empty cell (“blank”) with an adjacent cell. Prove that it is not possible through legal
moves to go from



2111134 112314
) 718 to 516 | 7|8
9 {10 ] 11 ] 12 9 {10 |11 ] 12
13114 | 15 13114 |15

(so the first configuration is not “feasible” — the goal being to reach the second configuration).
In fact, exactly half of the 16! configurations are feasible.

2.6 Generation, diameter, Cayley graphs
Exercise 2.6.1. S, = ((12...n),(12))

Definition 2.6.2. Let G be a group and S a subset of G. We define the Cayley Graph
of G with respect to S to be the graph whose vertices are the elements of G with an edge
between g; and gs if g; = gos for some s € S U S™L

Definition 2.6.3. The diameter of group G with respect to a set S of generators is defined
to be the diameter of the Cayley graph of G with respect to S and is denoted diam(G, S).

Exercise 2.6.4. Let ¢ = (12...n) and 7 = (12). Then diam(S,, {0, 7}) = O(n?).

2.7 Conjugacy

Definition 2.7.1. We say a,b € G are conjugates if (3g € G)(a = g~'bg). Conjugation
by g is the map G — G given by a +— g 'ag.

Definition 2.7.2. If G and H are groups, a map ¢ : G — H is a homomorphism if
p(ab) = @(a)p(b) for all a,b € G. A homomorphism that is also a bijection is called an
isomorphism. An isomorphism from a group to itself is called an automorphism. The
set of all automorphisms of G is denoted Aut(G) and is a group under composition.

Exercise 2.7.3. Conjugation by g is a group automorphism. Such automorphisms are called
inner automorphisms. The group of all inner automorphisms of G is denoted Inn(G).

Observe that Inn(G) < Aut(G) < Sym(G).

Exercise 2.7.4. Conjugacy (the relation of being conjugates) is an equivalence relation on
G. We call the classes conjugacy classes.

Exercise 2.7.5. In S, two permutations are conjugate if and only if they have the same
cycle structure.



2.8 Congruences of the plane

Definition 2.8.1. A map ¢ : R? — R? is an isometry if it preserves distance. More
generally, if A,B C R", o : A — B is an isometry if it is a distance preserving bijection.
The set of all isometries of R? is a group under composition. If there is an isometry between
two subsets of R", we say they are congruent.

Exercise 2.8.2. Every isometry of the plane is either
1. a translation, or
2. a rotation, or
3. a reflection (in an axis), or

4. a “glide reflection,” that is, a reflection followed by a translation parallel to the axis of
reflection.

The conjugates of an isometry are of the same type. In fact, a conjugate of a rotation by
angle « is a rotation by £a (when is it —a?), a conjugate of a translation is a the translation
by a vector of the same length, and the same holds for the translation involved in a glide
reflection.

2.9 Partitions

Definition 2.9.1. A partition of a number n is a sequence of natural numbers aq, ... a
satisfying a1 > as > ... > a; > 1 such that n = a; + ... 4+ a;. The number of partitions of
n is denoted p(n).

Note that p(1) =1, p(2) =2, p(3) = 3, p(4) = 5.
Exercise 2.9.2. The number of conjugacy classes of S, is p(n).
A most amazing asymptotic formula for p(n) was found Hardy and Ramanujan.
27

Theorem 2.9.3 (Hardy-Ramanujan). p(n) ~ 2eV™ where ¢; = ﬁg and ¢ = 7.

For an elementary proof of the weaker but still surprisingly tight inequality Inp(n) <
\2/—%\/5, see Matousek and Nesettil’s “Invitation to Discrete Mathematics,” Chapter 10.7.

Exercise 2.9.4. Prove from first principles: logp(n) = ©(y/n).



2.10 Homormorphisms, normal subgroups

Definition 2.10.1. N < ( is a normal subgroup, denoted N <G, if N is invariant under
conjugation, i.e., (Vg € G)(¢7'Ng C N).

Exercise 2.10.2. N < G is a normal subgroup if and only if (Vg € G)(¢'Ng = N).
Note that every subgroup of an abelian group is normal.

Exercise 2.10.3. Let ¢ : G — H be a homomorphism and N = ¢~ !(1). Prove that N is
a normal subgroup and the partition by ¢ is cosets of N.

Definition 2.10.4. If ¢ : G — H is a homomorphism, we define

Im(p) = {p(a) : a € G}

and

ker(p) = {g € G : w(g) = 1}.
Exercise 2.10.5. Im(p) < H and ker(¢) < G.

Theorem 2.10.6. For normal subgroups N <1 G, the cosets Na form a group under the
operation of set multiplication defined in 2.1.5.

Proof. Using the fact that aN = Na, we see that (Na)(Nb) = N(aN)b = Nab. O
The group of cosets of N is denoted G/N and called a quotient group.
Example 2.10.7. dZ <{Z and Z/dZ = Zj.

Exercise 2.10.8. If ¢ : G — H is a homomorphism then Im(yp) = G/ ker .

2.11 The sign of a permutation

The sign of a permutation

sgn(o) = 1 if ois even
& ] —1 ifoisodd

is a homomorphism from S, onto the multiplicative group {—1,1}:
Exercise 2.11.1. For any 0,7 € S,, we have sgn(o7) = sgn(o) sgn(7).

The kernel of sgn is A, so S,,/A, = Z,.



2.12 Symmetries of Platonic solids

We would like to figure out the group of isometries of the Platonic solids. First we consider
the tetrahedron 7. We denote the group of isometries of T' by O(T'). Any isometry of T is
determined by what it does to the four vertices of T'. This gives an injection ¢ of O(T) into
S,. By looking at reflections across a plane intersecting two of the vertices and bisecting the
edge connecting the other two vertices, we see that all transpositions are in the image of .

We conclude that Im(p) = Sy; therefore O(T") = Sy.

Exercise 2.12.1. Give a simple explicit description of a spatial congruence that maps under
¢ to (1234).

We say an isometry of the space is orientation preserving if it turns a right hand into
a right hand; and it is orientation reversing if it turns a right hand into a left hand.

Definition 2.12.2. The group of those congruences of R?® which fix the origin is called the
3-dimensional orthogonal group and is denoted O(R?) or O3(R). Its index-2 subgroup
consisting of the orientation preserving congruences that fix the origin is SO(R?) or SO3(R),
the special orthogonal group.

We have, as usual, a homomorphism ¢ : O(R3) — {1, —1} given by ¢(z) = 1 if and only
if z is orientation preserving; ker(¢) = SO(R?). So, SO(R?) < O(R3?).

Since the only subgroup of index 2 in S, is A4, we must have that SO(T') = A,.

Now let us find the O(cube). Any vertex v of a cube can be mapped to one of 8 vertices.
Once we decide where v is mapped, there are 3 possibilities for where a vertex adjacent
to v can be mapped. Once we fix this, we can do one additional reflection. We conclude
that |O(Cube)| = 48. A cube has four main diagonals. Any member of O(Cube) permutes
these diagonals. This gives us a homomorphism ¢ from O(Cube) into S,. If we restrict to
SO(Cube), ¢ is injective. As with the tetrahedron, we can verify that all transpositions are
in the image of . It follows that ¢ is onto and SO(Cube) = S;. From this we see that
O(Cube) = Sy X Zs.

The octahedron can be embedded in the cube so that its six vertices correspond to the
centers of the six faces of the cube. It follows that the isometry group of the octahedron is
isomorphic to the isometry group of the cube.

Finally, we consider isometries of the dodecahedron. A similar argument to the one we
used to count the isometries of the cube shows us that the dodecahedron has 120 isometries.

Definition 2.12.3. The center of G is

Z(G) ={g € G : g commutes with all elements of G}
Exercise 2.12.4. (a) Z(G) < G; (b) G/Z(G) = Inn(G).
Exercise 2.12.5. If n > 3, Z(95,) = {1}.

Since the isometry group of the dodecahedron has non-trivial center, it cannot be Ss.
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Exercise 2.12.6. Show that
O(dodecahedron) = SO(dodecahedron) x Zs

and
SO(dodecahedron) = As.

Definition 2.12.7. An automorphism of a graph G is a permutation of the set of vertices
V' that preserves adjacency. The set Aut(G) of all automorphisms of G is a group under
composition. Note that Aut(G) < Sym(V).

Exercise 2.12.8. The group of automorphisms of the Petersen graph is isomorphic to S5.

Definition 2.12.9. If V' is a vector space over a field I, we define GL(V') to be the group
of automorphisms of V. We define GL,,(F) to be the set of n x n invertible matrices with
coefficients in F.

2.13 Representations of groups

Definition 2.13.1. A representation of G is a group homomorphism G — GL(V). If V'
is of finite dimension n over the field F then this is equivalent to giving a homomorphism

into GL, (F).
Recall we found two representations of Sy in O(R?), namely the SO(Cube) and O(tetrahedron).

Definition 2.13.2. G — GL(V) is irreducible if no subspace of V' is mapped into itself by
each element of G.

Exercise 2.13.3. Find an irreducible representation Sy — O(R?).
We have the following irreducible representations of Sj:
1. Sy — {1}
2. sgn : Sy — {1}
3. 5S4 — O(R?) (Ex. 2.13)
4. Sy — O(tetrahedron)
5. Sy — O(Cube)

Theorem 2.13.4. (Frobenius) If G is a finite group, the number of irreducible represen-
tations over C of G is equal to the number of conjugacy classes of G.

Exercise 2.13.5. (Cayley) If |G| = n, then G < S,,.
Exercise 2.13.6. (Frucht) (VG)(3 graph X)(Aut(X) = G).
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Definition 2.13.7. G is cyclic if G = (g).

Exercise 2.13.8. If G is cyclic and |G| = n, then G is isomorphic to Z,. If G is cyclic and
infinite, then G = Z.

Definition 2.13.9. The group of symmetries of a regular n-gon is called a dihedral group
and denoted D,,.

Observe that |D,,| = 2n and SO(regular n-gon) = Z,.
Exercise 2.13.10. The center of D,, is {1} if n is odd and {1, —1} if n is even.
Exercise 2.13.11. Z(GL,(F)) = {\ : A € F*} (“scalar matrices”).

Exercise 2.13.12. If A is an n x n matrix over the integers then A~! is an integer matrix
if and only if the determinant of A is £1.

Definition 2.13.13. GL,(Z) is the group of all n x n matrices with determinant +1.

Exercise 2.13.14. If F is a field, the determinant map is a homomorphism GL, (F) — F*.
The kernel of the determinant map is SL,,(F).

3 Linear Algebra: basic concepts

3.1 Vector space, linear independence, rank

Throughout, F will be a field (think of F being R, the set of real numbers).

Definition 3.1.1. A vector space V over a field F of scalars is an abelian group where we
can multiply by scalars such that (Vo, 5 € F,v,w € V)

(a) (af)v = a(fv),

(b) (a+ B)v = av + v,
(¢) a(v+w) =av+ aw,
d) 1-v=

Example 3.1.2. C[0,1] = continuous real-valued functions on [0, 1] form a vector space
over R; the set " = n x 1 column vectors with entries from [F form a vector space over F.

Exercise 3.1.3. Prove: if « € Fand v € V then av = 0 if and only if @ = 0 or v = 0. (Note
that we are talking about two different zeros here.)

Definition 3.1.4. A linear combination of the vectors vy, ..., v, is an expression of the
form Zle ;.
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Definition 3.1.5. vy, ..., v; are said to be linearly independent over F if (Vay,...,a; €
F)(Zf:l ;UV; = 0 = Al =...= Q= O)

Note that if any of the v; is zero or if v; = v; for some ¢ # j then the system is not
linearly independent. Note also that every subset of a linearly independent set of vectors is
linearly independent.

Definition 3.1.6. An infinite set of vectors is said to be linearly independent if every finite
subset is linearly independent.

Definition 3.1.7. If S C V, the rank of S (denoted rk(S)) is the maximal number of
linearly independent vectors in S.

Exercise* 3.1.8. Find a curve in R™ such that any n points are linearly independent (give
a simple explicit formula). (Hint: Vandermonde determinant)

Exercise 3.1.9. R is a vector space over Q. Prove that 1,v/2,v/3 are linearly independent
over Q.

Exercise* 3.1.10. The square roots of all square-free positive integers (integers not divisible
by the square of any prime) are linearly independent over Q.

Definition 3.1.11. A subset F of a field G is a subfield if F is a field under the same
operations.

Warning: Fy is NOT a subfield of Q, even though Fy = {0,1} can be viewed as a subset of
Q and both are fields. Why is 5 not a subfield of Q7

Exercise 3.1.12. If F is a subfield of the field G then G is a vector space over F.

3.2 Subspace, span, dimension, basis

Definition 3.2.1. A subset W of V' is a subspace of V' (denoted W < V) if it is closed
under linear combinations, i.e., all linear combinations of elements of W belong to W.

Remarks. 1. If W is a subspace then 0 € W (take a linear combination of the empty set;
note that the empty sum is zero).
2. If W <V then W is a vector space over F (with respect to the same operations). Note
that W is a vector space over the same field as V.

Since subspaces are vector spaces in their own right, every concept to be defined for vector

spaces applies to subspaces as well (e. g, subspaces will have generators and dimension, see
below).

Exercise 3.2.2. A subset W C V is a subspace if and only if (a) 0 € W; (b) (Va,b €
W)la+beW); (c) (VAeF)(Vae W)(Aae W).

Definition 3.2.3. The rank of a vector space is called its dimension.
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Exercise 3.2.4. The intersection of any set of subspaces is a subspace. (Here we permit to
take the intersection of infinitely many subspaces; and we may also consider the empty set
of subspaces. What is the intersection of the empty set of subspaces?)

Exercise 3.2.5. Prove: if the union of two subspaces is a subspace then one of the two
subspaces contains the other.

Exercise 3.2.6. Prove: if a union of fewer than |F| 4+ 1 subspaces of a finite dimensional
space is a subspace then one of them contains all the others. (This is true whether F is finite
or infinite. In the infinite case, “fewer than |F| + 1”7 means fewer than |F|, not < |F|.)

Definition 3.2.7. The span of a set S C V is the set of all linear combinations of S (i.e.,
the set of all linear combinations of all finite subsets of S). In particular, for finite families,

Span(vy, ..., v) = {2 o | oy € F}.

Definition 3.2.8. We say that a vector space is finite dimensional if it has a finite set of
generators; otherwise, infinite dimensional.

Our focus in these notes are finite dimensional spaces, even though we often consider
finite dimensional subspaces of certain infinite dimensional spaces (function spaces, spaces
of polynomials, spaces of sequences, etc.).

Exercise 3.2.9. The span of any subset of V' is a subspace.

Exercise 3.2.10. Span(W) = W if and only if W <V (W is a subspace).
Exercise 3.2.11. Span(Span(S)) = Span(sS).

Exercise 3.2.12. If S C T C V then Span(S) < Span(7) < V.

Exercise 3.2.13. If S C W < V then Span(S) < W. In other words, Span(S) is the
smallest subspace containing S.

Definition 3.2.14. A subset S C V generates V if Span(S) = V.
Definition 3.2.15. A basis of V' is a linearly independent set of generators.

Exercise 3.2.16. {v; : i € I} is a basis if and only if every vector is a unique linear
combination of the v;.

Example 3.2.17. F[z] = {ap+ a1z +. ..+ a,2™ | a; € F,n € N} = the space of polynomials
over F. A basis is {1, 2z, 2% 23,...}. Indeed, every polynomial is a unique linear combination
of powers of the variable.

Exercise 3.2.18. If fy, f1,... € F[z| and deg(f;) = 4, then fo, f1,... form a basis of F|x].

Exercise 3.2.19. Every linearly independent set can be extended to a basis and every set
of generators contains a basis.

It follows in particular that every vector space has a basis. We note that for infinite
dimensional spaces, the proof of this result requires Zorn’s Lemma from set theory.

Exercise 3.2.20. Every maximal linearly independent set is a basis. (“Maximal” means if
we add any element to it, it will no longer be linearly independent.)

13



3.3 Dimension invariance: the first miracle of linear algebra
Theorem 3.3.1. (Miracle #1 of linear algebra) If L is a linearly independent set and
G is a set of generators then |L| < |G]|.

Infer the following corollaries:

Exercise 3.3.2. All bases have equal cardinality (same number of vectors); this common
cardinality is the dimension of V.

Exercise 3.3.3. rk(S5) = rk(Span(S)) = dim(Span(S)).
Exercise 3.3.4. dim(F*) = k.

Definition 3.3.5. A mapping f : V — W between two vector spaces over the same field
is an isomorphism if f is a bijection and f preserves linear combinations: f(>_ «;a;) =
Y a;f(a;). V and W are isomorphic if there exists an isomorphism between them; notation:
VWw.

Exercise 3.3.6. (Dimension invariance) If F* = F* then k = /.
Theorem 3.3.7. IfdimV = k then V = F*.
Proof. We start with a definition.

Definition 3.3.8. If B = (by,...,b) is a basis and v = ayb; + -+ + agbg then g, ...,
are the coordinates of v with respect to this basis. We arrange the coordinates as a k x 1
column vector, denoted [v]pg:

g

[v]p =

Qy,
Exercise 3.3.9. Prove: given a basis B = (by,...,b;), the mapping f : w — [w]p is an
isomorphism from V to F*.

This exercise completes the proof of the theorem.
Hence a vector space is characterized, up to isomorphism, by its dimension and the field
of scalars.

Exercise 3.3.10. If I is a finite field of order ¢ and V' is a k-dimensional vector space over
F then |V| = ¢*.

Exercise 3.3.11. Prove: if F and G are finite fields and F is a subfield of G then |G| = |F|*
for some positive integer k.

Notation: if S, 7 CV then S+ T ={s+t:se€ S,teT}.
Exercise 3.3.12. Prove: if U, W are subspaces then U + W is also a subspace.

Exercise 3.3.13. (Modular equation) If U, W are subspaces then dim(UNW)+dim(U +
W) = dim(U) + dim(W).

(Submodularity of rank)
Exercise 3.3.14. If S, T C V then rtk(SNT) 4+ rk(SUT) < 1k(S) + rk(T).
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3.4 Surprising applications to extremal combinatorics

Exercise* 3.4.1. If there are n people, and they can form clubs such that (a) no two clubs
have the exact same set of members; (b) every club has an even number of members; and
(c) any two clubs have an even number of members in common (“Eventown Rules”) then
prove that the maximum number of clubs that can be formed in Eventown is 21"/2/.

Exercise* 3.4.2. Let us now slightly change the rules. (i) Every club must have an odd
number of members; and (ii) any two clubs must have an even number of members in
common (“Oddtown Rules”). Prove that the maximum number of clubs that can be formed
in Oddtown is n.

Exercise* 3.4.3. Prove that in Eventown, every maximal set of clubs is maximum.

Exercise 3.4.4. Prove that this is not the case in Oddtown; in fact, in Oddtown there
always exists a maximal set of clubs consisting of at most two clubs.

Exercise* 3.4.5. (Generalized Fisher Inequality) In Blocktown, the rule is that no two
clubs have identical membership and every pair of clubs must share the exact same number,
say k, members, where £ > 1. Prove: the number of clubs in Blocktown is at most n.

3.5 Matrix rank: the second miracle

Definition 3.5.1. We denote by F™** the set of all n x k matrices with coefficients in F. If
A € F"**_the column rank of A is the rank of the set of columns of A and the row rank
is the rank of the set of rows of A.

Theorem 3.5.2. (Miracle #2 of linear algebra) The row rank and column rank of a
matrix are equal and this number is called the rank of the matrix.

Definition 3.5.3. The column space of A is the span of its columns; the row space of A
is the span of its rows.

Accroding to the Second Miracle, these two, seemingly unrelated, spaces have equal
dimension.

Definition 3.5.4. If A is an m X n matrix with ¢,j entry a,;, then the transpose of A
(denoted AT) is the n x m matrix with i, j entry a;;.

So another way of stating Miracle #2 is that
rk(A) = rk(AT). (3.5.1)

In the following exercises, A and B are matrices of the right dimensions so that the operations
indicated can be performed.

Exercise 3.5.5. (A + B)T = AT + BT,
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Exercise 3.5.6. (AB)T = BT AT,

Exercise 3.5.7. rk(A + B) <rk(A) + rk(B).

Exercise 3.5.8. 1k(AB) < min{rk(A),rk(B)}.

Exercise 3.5.9. If A and B are n x n matrices then rk(AB) > rk(A) + rk(B) — n.
Exercise* 3.5.10. Over the real numbers, k(AT A) = rk(A).

The following two exercises show that over fields other than the real numbers (and its
subfields), this conclusion is false.

Exercise 3.5.11. Find a matrix A over F,, (p a prime) such that A = AT £ 0 and A? = 0.

Exercise 3.5.12. Find a 2 x 2 matrix A # 0 over C such that ATA = 0.

3.6 Function spaces, spaces of sequences
Definition 3.6.1. If A, B are sets, then A® = {f : B — A}. Note that |A®| = |A|IBI.
If Q is a set, F is a vector space. If Q is finite, then dim(F%) = |Q].

Exercise 3.6.2. Let S = {sin(z + a);a € R}. This is a subset of the space R® of real
functions. Prove: rk(S) = 2. Find a very simple basis of Span(sS).

The seqences (ag, ay, az, . ..) of elements of F form the vector space FY.

Definition 3.6.3. A sequence (aj,as,...) is of Fibonacci type if for all n > 2 we have
ap = Ap_1 + a,_o. We let F be the set of all Fibonacci type sequences.

Exercise 3.6.4. Prove: (a) F <FY. (b) Prove: dim(F) = 2.

Exercise 3.6.5. Let A = (a;;) be the n x n matrix defined by a;; = ¢ + j. Determine the
rank of A (over R).
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