1. (10 points) Given the positive integers x, y, m, compute the quantity $z = (x^y \mod m)$ in polynomial time. Here $0 \leq z \leq m - 1$. Your algorithm should be direct, no recursive calls to itself. Give your solution in pseudocode. Use as few arithmetic operations as possible. Name the method used. Assuming each of x, y, m have n digits, estimate the number of multiplications/divisions of $O(n)$-digit integers required by your algorithm.

2. (2+6+7 points) (a) Define the CLIQUE language. (This language corresponds to the decision version of the “maximum clique” problem.) (b) Give a Karp-reduction from CLIQUE to HALTING. (c) Prove that there is no Karp-reduction from HALTING to CLIQUE.
3. (5+10 points) When asked to give a formal definition of NP, Chuck gave this answer: “A language \(L \subseteq \Sigma^* \) belongs to NP if and only if there exists a finite alphabet \(\Sigma_1 \) and a language \(L_1 \subseteq \Sigma_1^* \) such that \(L_1 \in P \) and \((\exists c)(\forall x \in \Sigma^*)(x \in L \Rightarrow (\exists y \in \Sigma_1^*)(|y| \leq |x|^c \text{ AND } (x, y) \in L_1)) \).

(a) Find the error in this definition; make the small change needed to correct it. (There is only one small error.)
(b) Determine, exactly which languages \(L \) satisfy Chuck’s definition. Prove your answer.

4. (10 points; lose 4 points for each mistake) Consider the following three statements: (A) 3-colorability of graphs can be decided in polynomial time. (B) RSA can be broken in polynomial time. (C) Integers can be factored into their prime factors in polynomial time. – Which of the six implications is known (circle all that apply): (A) \(\Rightarrow \) (B); (B) \(\Rightarrow \) (A); (A) \(\Rightarrow \) (C); (C) \(\Rightarrow \) (A); (B) \(\Rightarrow \) (C); (C) \(\Rightarrow \) (B). Do not prove.

5. (10 points) (MAX-3-SAT) Let \(C_1, \ldots, C_m \) be disjunctive 3-clauses (expressions of the form \(z_1 \lor z_2 \lor z_3 \) where each \(z_i \) is a literal) over \(n \) Boolean variables \(x_1, \ldots, x_n \). Prove that at least \(7m/8 \) of the clauses are simultaneously satisfiable. Define your random variables!

6. (BONUS, 8B points) The “weighted interval scheduling” problem takes as input a list of \(n \) intervals \((s(i), t(i)) \) and corresponding weights \(w_i > 0 \) and asks to find a set of disjoint intervals among these of maximum total weight. Solve this problem in \(O(n) \) plus sorting whatever needs to be sorted. Hint: dynamic programming. Half the credit goes for a clear definition of the array of problems to be solved (the “brain” of the algorithm).

7. (BONUS, 6B points) Let \(K \) be the set of those 3-colorable graphs which have fewer edges than vertices. Assuming 3-COL is NP-complete, prove that \(K \) is NP-complete,