Instructor: László Babai

Problems 1-9 posted May 26, 10:20pm, the rest May 28, 6 am .
Show all your work. Prove everything you use unless it was proved in class. You may use sources (text, web). Do not copy; understand, and reproduce in your own words. Name your sources. Do NOT collaborate.
Explain the meaning of your variables (in English). Make your proofs short and clear. Elegance counts. WARNING: The bonus problems are underrated. Do the ordinary problems first. - This exam contributes $25 \%$ to your course grade.

1. (16 points) Prove: the probability that a random graph does not contain a clique of size 100 is $<C^{-n^{2}}$ for some constant $C>1$ and all sufficiently large $n$. (Edges are chosen with probability $1 / 2$.)
2. (10 points) Prove: for all $c>0$ there exists $d>0$ such that if a graph $G$ on $n$ vertices does not contain a clique of $\operatorname{size}\lceil c \log n\rceil$ then it contains an independent set of size $\lceil d \log n\rceil$.
3. (15 points) Prove: for almost all graphs $G$ we have $\chi(G)=\Theta(n / \log n)$.
4. (8 points) Let $L(n)$ denote the number of Latin squares on a given set of $n$ points. Let $N(n)$ denote the number of non-isomorphic Latin Squares of order $n$. Prove: $\log L(n) \sim \log N(n)$.
5. (3 points) Define what it means for $n$ random variables $X_{1}, \ldots, X_{n}$ to be independent.
6. $\left(2+4+12+8\right.$ points) Consider the Erdős-Rényi random graph $G_{n, p}$. This graph has $n$ vertices and each of the $\binom{n}{2}$ pairs is chosen with probability $p$ to be an edge (independently). (a) What is the size of the sample space for this experiment? (b) Let $X$ denote the number of 4 -cliques (copies of $K_{4}$ ) in $G_{n, p}$. Determine $E(X)$. Prove. Define your variables. (c) Determine $\operatorname{Var}(X)$. Your answer should be a simple closed-form expression (no summation/product signs, no dot-dot-dots). Prove your formula. (d) Prove: if $p_{n}$ is a sequence of numbers, $0<p_{n}<1$, and $\lim _{n \rightarrow \infty} n^{2 / 3} p_{n}=\infty$, then with high probability (w.h.p.), $G_{n, p_{n}}$ contains a 4 -clique. ("W.h.p." means the probability approaches 1 as $n \rightarrow \infty$.) Name the method used.
7. (8 points) Prove: for every $n$, there exists a graph with $n$ vertices and $\Omega\left(n^{3 / 2}\right)$ edges which does not contain a 4 -cycle. Estimate the constant implied by the $\Omega$ notation for large $n$. (The bigger, the better.) Prove.
8. (8 points) Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix of a graph. Prove: $\sum \lambda_{i}^{2}=2 m$ where $m$ is the number of edges.
9. (8 points) Let $S(n, 4)=\sum_{k=0}^{\infty}\binom{n}{4 k}$. Find all values of $n$ such that $S(n, 4)=2^{n-2}$.
10. ( $6+6+6+6$ points) An $r$-matching of a graph is a set of $r$ disjoint edges. Count the $r$-matchings of (a) the complete bipartite graph $K_{s, t}$; (b) the complete graph $K_{n}$; (c) the path $P_{n}$ of length $n-1$ (it has $n$ vertices); (d) the cycle $C_{n}$ of length $n$. Your answer to each question should be a simple closed-form expression.
11. (20 points) The matchings polynomial of the graph $G$ is defined as

$$
\begin{equation*}
m(G, x)=\sum_{r=0}^{\lfloor n / 2\rfloor}(-1)^{r} p(G, r) x^{n-2 r}, \tag{1}
\end{equation*}
$$

where $p(G, r)$ is the number of $r$-matchings of $G$. Prove: $m\left(C_{n}, x\right)=$ $2 T_{n}(x / 2)$ where $T_{n}(x)$ is the Chebyshev polynomial of the first kind. ( $T_{n}(x)$ is defined by the identity $T_{n}(\cos \theta)=\cos (n \theta)$.)
12. (24 points) Let $f_{G}(x)$ denote the characteristic polynomial of the adjacency matrix $A$ of the $\operatorname{graph} G$, i. e., $f_{G}(x)=\operatorname{det}(x I-A)$. Prove: if $G$ is a tree then $f_{G}(x)=m(G, x)$.
13. $\left(12+6+6\right.$ points) (a) The projective plane $\mathcal{P}^{\prime}=\left(P^{\prime}, L^{\prime}, I^{\prime}\right)$ is a subplane of the projective plane $\mathcal{P}=(P, L, I)$ if $P^{\prime} \subseteq P, L^{\prime} \subseteq L$, and $I^{\prime}=$ $I \cap\left(P^{\prime} \times L^{\prime}\right)$. A proper subplane is a subplane that is not the entire plane. Prove: if a projective plane of order $m$ is a proper subplane of a projective plane of order $n$ then $m \leq \sqrt{n}$. (Recall that the order of a projective plane is one less than the number of points on a line.) (b) We say that a subset $S \subseteq P$ generates the projective plane $\mathcal{P}=(P, L, I)$ if $S$ is not contained in any proper subplane. Prove: a projective plane of order $n$ has a set of $\leq 3+\log _{2} \log _{2} n$ generators. (c) Prove that $|\operatorname{Aut}(\mathcal{P})| \leq(n+1)^{6+2 \log _{2} \log _{2} n}$.
14. ( $6+4$ points) Let $A$ be a $(0,1)$-matrix (every entry is 0 or 1 ). (a) Prove: if the columns of $A$ are linearly independent over the field of order 2 then they are linearly independent over the reals. (b) Prove that the converse is false. Make your counterexample as small as possible.
15. (20 points) Let $X_{1}, \ldots, X_{k}$ be pairwise independent non-constant random variables over a probability space of size $n$. Prove: $k \leq n$.
16. (8 points) Let $S(n)$ denote the number of Steiner Triple Systems (STS) on the point set $n n$. Let $L(n)$ denote the number of $n \times n$ Latin Squares. Prove: $S(3 n) \geq(S(n))^{3} L(n)$.
17. (18 points) Let $v_{1}, \ldots, v_{k}$ be vectors in $\mathbb{R}^{2}$ of norm $\geq 1$. Let $r \in \mathbb{R}^{2}$. Let $I$ be a random subset of $[k]$. Prove: $P\left(\left\|\sum_{i \in I} v_{i}-r\right\|<100\right)=$ $O(1 / \sqrt{k})$.
18. (BONUS: $6 B+6 B$ points)
(a) Prove: if the graph $G$ has no paths of length $k$ then $G$ is $k$ colorable $(\chi(G) \leq k)$.
(b) Prove: for every $k$ there exists $c_{k}$ such that if the graph $G$ does not contain $k$-cycles then $\chi(G) \leq c_{k} \sqrt{n}$.
19. (BONUS: 6B points) Let $f$ be a nonzero polynomial. Prove: there exists a nonzero polynomial $g$ such that only prime numbers occur as exponents (with nonzero coefficient) in the polynomial $f g$. (This is true over any field.)
20. (BONUS: 8 B points) Prove: the probability that a random graph is regular is $<n^{-c n}$ for some positive constant $c$. ( $n \geq 3$ is the number of vertices.)
21. (BONUS: 10B points) For a graph $G$, let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ denote the eigenvalues of the adjacency matrix. Let $\mu=\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\}$. Prove: for almost all graphs, $\mu=o(n)$.

