Combinatorics Math 284/CMSC-372 First Quiz. April 9, 2010 Instructor: László Babai

Name:
Show all your work. Do not use book, notes, or scrap paper. Write
your answers in the space provided and $\underline{\mathbf{continue}}$ on $\underline{\mathbf{the}}$ reverse if nec-
essary. Explain the meaning of your variables (in English). Notations

 $[n] = \{1, 2, ..., n\}$. WARNING: The bonus problems are underrated. Do the ordinary problems first. – This quiz contributes 6% to your course grade.

1. (20 points) (BLYM inequality) Recall that a Sperner family is an antichain of sets. Prove: if $A_1, \ldots, A_m \subseteq [n]$ is a Sperner family then

$$\sum_{i=1}^{m} \frac{1}{\binom{n}{|A_i|}} \le 1.$$

Define your variables! (Reproduce the proof from class.)

- 2. (10 points) Count the 4-cycles in the complete bipartite graph $K_{r,s}$. Your answer should be a simple closed-form expression (no summation or dot-dot-dots). Just give the formula, do not prove.
- 3. (5+5 points) (a) Define when do we say that two sequences $\{a_n\}$ and $\{b_n\}$ are asymptotically equal $(a_n \sim b_n)$. (b) State Stirling's formula. Use the \sim notation.

- 4. (12 points) True or false? Circle one. If "false," draw a small counterexample. G is a graph with n vertices and m edges; $\chi(G)$ is its chromatic number; $\alpha(G)$ is the size of the largest independent set.
 - (a) If $\chi(G) \geq 4$ then G contains K_4 . **T F**
 - (b) If $\chi(G) \leq 4$ then $\alpha(G) \geq n/4$. **T F**
 - (c) If $\alpha(G) \geq n/4$ then $\chi(G) \leq 4$. **T F**
 - (d) $m \le n(n-1)/2$. **T F**
 - (e) If $m \ge n(n-1)/3$ then G is connected. **T**

5. (8 + 8B points) In "Reverse Oddtown," we assume each $|A_i|$ is even and each $|A_i \cap A_j|$ is odd. Prove that in this case (a) $m \le n + 1$ (b) (BONUS) $m \le n$.

- 6. (BONUS: 6B+6B points)
 - (a) Prove: if the graph G has no paths of length k then G is k-colorable $(\chi(G) \leq k)$.
 - (b) Prove: for every k there exists c_k such that if the graph G does not contain k-cycles then $\chi(G) \leq c_k \sqrt{n}$.