Name:

\qquad
Show all your work. Do not use book, notes, or scrap paper. Write your answers in the space provided and continue on the reverse if necessary. Explain the meaning of your variables (in English). WARNING: The bonus problems are underrated. Do the ordinary problems first. - This quiz contributes 6% to your course grade.
Notation: $[n]=\{1,2, \ldots, n\}$. In the problems below, $\mathcal{F}=\left\{A_{1}, \ldots, A_{m}\right\}$ denotes a set system.

1. (3+14 points) (a) Define what it means that \mathcal{F} is 2-colorable. (b) (Erdős) Prove: if \mathcal{F} is r-uniform and $m \leq 2^{r-1}$ then \mathcal{F} is 2-colorable.
2. (BONUS: 5B points) Let $S(n, 4)=\sum_{k=0}^{\infty}\binom{n}{4 k}$. Find all values of n such that $S(n, 4)=2^{n-2}$.
3. (4+3+6 points) (a) Define $\tau(\mathcal{F})$ (the covering number) and $\nu(\mathcal{F})$ (the matching number). (b) State the inequality between τ and ν that holds for all \mathcal{F}. (c) Recall Dénes Kőnig's Theorem that for bipartite graphs, $\tau=\nu$. Draw a small graph that satifies $\tau=\nu$ even though it is not bipartite.
4. ($4+10$ points) Recall that a SDR (system of distinct representatives) is a set of distinct elements x_{i} such that $x_{i} \in A_{i}(i=1, \ldots, m)$. (a) State Philip Hall's "SDR Theorem," which gives a complete set of obstacles to having an SDR. Your statement should begin with " \mathcal{F} has a SDR if and only if ..." (b) Deduce the SDR Theorem from Kőnig's $\tau=\nu$ theorem.
5. (16 points) Recall that an $n \times n$ matrix $A=\left(a_{i j}\right)$ is doubly stochastic if $(\forall i, j)\left(a_{i j} \geq 0\right)$ and the sum of every row and the sum of every column is 1 . Recall that the permanent of a matrix $A=\left(a_{i j}\right)$ is the sum $\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i, \sigma(i)}$ (S_{n} is the group of all permutations of $[n]$). Prove: if A is doubly stochastic then $\operatorname{per}(A) \neq 0$. (Hint: SDR.)
6. (BONUS: 6B points) In "Reverse Oddtown," we assume each $\left|A_{i}\right|$ is even and each $\left|A_{i} \cap A_{j}\right|$ is odd. Prove that in this case $m \leq n$.
